Harnessing the Activity of Lytic Bacteriophages to Foster the Sustainable Development Goals and the “One Health” Strategy
Abstract
:1. Introduction
2. Bacteriophages and Sustainable Development Goals
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Clokie, M.R.; Millard, A.D.; Letarov, A.V.; Heaphy, S. Phages in Nature. Bacteriophage 2011, 1, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Naureen, Z.; Dautaj, A.; Anpilogov, K.; Camilleri, G.; Dhuli, K.; Tanzi, B.; Maltese, P.E.; Cristofoli, F.; DeAntoni, L.; Beccari, T.; et al. Bacteriophages Presence in Nature and Their Role in the Natural Selection of Bacterial Populations. Acta Biomed. 2020, 91, e2020024. [Google Scholar] [CrossRef]
- Abril, A.G.; Carrera, M.; Notario, V.; Sánchez-Pérez, Á.; Villa, T.G. The Use of Bacteriophages in Biotechnology and Recent Insights Into Proteomics. Antibiotics 2022, 11, 653. [Google Scholar] [CrossRef]
- Jo, S.J.; Kwon, J.; Kim, S.G.; Lee, S.J. The Biotechnological Application of Bacteriophages: What to Do and Where to Go in the Middle of the Post-Antibiotic Era. Microorganisms 2023, 11, 2311. [Google Scholar] [CrossRef]
- García, P.; Tabla, R.; Anany, H.; Bastias, R.; Brøndsted, L.; Casado, S.; Cifuentes, P.; Deaton, J.; Denes, T.G.; Islam, M.A.; et al. ECOPHAGE: Combating Antimicrobial Resistance Using Bacteriophages for Eco-Sustainable Agriculture and Food Systems. Viruses 2023, 15, 2224. [Google Scholar] [CrossRef]
- Álvarez, B.; Biosca, E.G. Potential of the Bacteriophage-Based Therapy for a More Eco-Sustainable Agriculture. Int. J. Biol. Nat. Sci. 2024, 4, 1–9. [Google Scholar] [CrossRef]
- Haq, I.U.; Rahim, K.; Paker, N.P. Exploring the Historical Roots, Advantages and Efficacy of Phage Therapy in Plant Diseases Management. Plant Sci. 2024, 346, 112164. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. A/RES/70/1.2015. Available online: https://www.refworld.org/legal/resolution/unga/2015/en/111816 (accessed on 26 January 2025).
- European Commission. A European One Health Action Plan Against Antimicrobial Resistance (AMR). 2017. Available online: https://health.ec.europa.eu/system/files/2020-01/amr_2017_action-plan_0.pdf (accessed on 26 January 2025).
- Erez, Z.; Steinberger-Levy, I.; Shamir, M.; Doron, S.; Stokar-Avihail, A.; Peleg, Y.; Melamed, S.; Leavitt, A.; Savidor, A.; Albeck, S.; et al. Communication Between Viruses Guides Lysis-Lysogeny Decisions. Nature 2017, 541, 488–493. [Google Scholar] [CrossRef]
- Makky, S.; Dawoud, A.; Safwat, A.; Abdelsattar, A.S.; Rezk, N.; El-Shibiny, A. The Bacteriophage Decides Own Tracks: When They Are With or Against the Bacteria. Curr. Res. Microb. Sci. 2021, 2, 100050. [Google Scholar] [CrossRef]
- Principi, N.; Silvestri, E.; Esposito, S. Advantages and Limitations of Bacteriophages for the Treatment of Bacterial Infections. Front. Pharmacol. 2019, 10, 513. [Google Scholar] [CrossRef]
- Lin, D.M.; Koskella, B.; Lin, H.C. Phage Therapy: An Alternative to Antibiotics in the Age of Multi-Drug Resistance. World J. Gastrointest. Pharmacol. Ther. 2017, 8, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Behera, M.; De, S.; Ghorai, S.M. The Synergistic and Chimeric Mechanism of Bacteriophage Endolysins: Opportunities for Application in Biotherapeutics, Food, and Health Sectors. Probiotics Antimicrob. Proteins 2024, 17, 807–831. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Lu, H.; Zhang, S.; Shi, Y.; Chen, Q. Phages Against Pathogenic Bacterial Biofilms and Biofilm-Based Infections: A Review. Pharmaceutics 2022, 14, 427. [Google Scholar] [CrossRef]
- Biosca, E.G.; Català-Senent, J.F.; Figàs-Segura, À.; Bertolini, E.; López, M.M.; Álvarez, B. Genomic Analysis of the First European Bacteriophages With Depolymerase Activity and Biocontrol Efficacy Against the Phytopathogen Ralstonia solanacearum. Viruses 2021, 13, 2539. [Google Scholar] [CrossRef]
- Islam, M.M.; Mahbub, N.U.; Shin, W.S.; Oh, M.H. Phage-Encoded Depolymerases as a Strategy for Combating MultiDrug-Resistant Acinetobacter baumannii. Front. Cell Infect. Microbiol. 2024, 14, 1462620. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, J.; Zhang, C.; Xu, S.; Ren, H.; Zou, L.; Ma, J.; Liu, W. Characterization of a Salmonella abortus equi phage 4FS1 and Its Depolymerase. Front. Vet. Sci. 2024, 11, 1496684. [Google Scholar] [CrossRef] [PubMed]
- Bertolini, E.; Figàs-Segura, À.; Álvarez, B.; Biosca, E.G. Development of TaqMan Real-Time PCR Protocols for Simultaneous Detection and Quantification of the Bacterial Pathogen Ralstonia solanacearum and Their Specific Lytic Bacteriophages. Viruses 2023, 15, 841. [Google Scholar] [CrossRef]
- Ranveer, S.A.; Dasriya, V.; Ahmad, M.F.; Dhillon, H.S.; Samtiya, M.; Shama, E.; Anand, T.; Dhewa, T.; Chaudhary, V.; Chaudhary, P.; et al. Positive and Negative Aspects of Bacteriophages and Their Immense Role in the Food Chain. NPJ Sci. Food 2024, 8, 1. [Google Scholar] [CrossRef]
- Rogovski, P.; Cadamuro, R.D.; da Silva, R.; de Souza, E.B.; Bonatto, C.; Viancelli, A.; Michelon, W.; Elmahdy, E.M.; Treichel, H.; Rodríguez-Lázaro, D.; et al. Uses of Bacteriophages as Bacterial Control Tools and Environmental Safety Indicators. Front. Microbiol. 2021, 12, 793135. [Google Scholar] [CrossRef]
- Duan, Y.; Llorente, C.; Lang, S.; Brandl, K.; Chu, H.; Jiang, L.; White, R.C.; Clarke, T.H.; Nguyen, K.; Torralba, M.; et al. Bacteriophage Targeting of Gut Bacterium Attenuates Alcoholic Liver Disease. Nature 2019, 575, 505–511. [Google Scholar] [CrossRef]
- Grubb, D.S.; Wrigley, S.D.; Freedman, K.E.; Wei, Y.; Vázquez, A.R.; Trotter, R.E.; Wallace, T.C.; Johnson, S.A.; Weir, T.L. PHAGE-2 Study: Supplemental Bacteriophages Extend Bifidobacterium animalis subsp. lactis BL04 Benefits on Gut Health and Microbiota in Healthy Adults. Nutrients 2020, 12, 2474. [Google Scholar] [CrossRef]
- Zhang, Y.; Sharma, S.; Tom, L.; Liao, Y.T.; Wu, V.C.H. Gut Phageome—An Insight Into the Role and Impact of Gut Microbiome and Their Correlation With Mammal Health and Diseases. Microorganisms 2023, 11, 2454. [Google Scholar] [CrossRef]
- Milijasevic, M.; Veskovic-Moracanin, S.; Babic Milijasevic, J.; Petrovic, J.; Nastasijevic, I. Antimicrobial Resistance in Aquaculture: Risk Mitigation Within the One Health Context. Foods 2024, 13, 2448. [Google Scholar] [CrossRef]
- Lobo, R.R.; Faciola, A.P. Ruminalphages—A Review. Front. Microbiol. 2021, 12, 763416. [Google Scholar] [CrossRef]
- Aydin, S.; Can, K.; Çalışkan, M.; Balcazar, J.L. Bacteriophage Cocktail as a Promising Bio-Enhancer for Methanogenic Activities in Anaerobic Membrane Bioreactors. Sci. Total Environ. 2022, 832, 154716. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.Y.; Liu, S.; Patel, M.H.; Glenzinski, K.M.; Skory, C.D. Saccharomyces cerevisiae Surface Display of Endolysin LysKB317 for Control of Bacterial Contamination in Corn Ethanol Fermentations. Front. Bioeng. Biotechnol. 2023, 11, 1162720. [Google Scholar] [CrossRef]
- Loc-Carrillo, C.; Abedon, S.T. Pros and Cons of Phage Therapy. Bacteriophage 2011, 1, 111–114. [Google Scholar] [CrossRef]
- Gundersen, M.S.; Fiedler, A.W.; Bakke, I.; Vadstein, O. The Impact of Phage Treatment on Bacterial Community Structure is Minor Compared to Antibiotics. Sci. Rep. 2023, 13, 21032. [Google Scholar] [CrossRef]
- Koskella, B.; Hernandez, C.A.; Wheatley, R.M. Under Standing the Impacts of Bacteriophage Viruses: From Laboratory Evolution to Natural Ecosystems. Annu. Rev. Virol. 2022, 9, 57–78. [Google Scholar] [CrossRef]
- Tokuda, M.; Shintani, M. Microbial Evolution Through Horizontal Gene Transfer by Mobile Genetic Elements. Microb. Biotechnol. 2024, 17, e14408. [Google Scholar] [CrossRef]
- Durbas, I.; Machnik, G. Phage Therapy: An Old Concept With New Perspectives. J. Appl. Pharm. Sci. 2022, 12, 27–38. [Google Scholar] [CrossRef]
- Chen, B.; Ponce Benavente, L.; Chittò, M.; Post, V.; Constant, C.; Zeiter, S.; Nylund, P.; D’Este, M.; González Moreno, M.; Trampuz, A.; et al. Combination of Bacteriophages and Vancomycin in a Co-Delivery Hydrogel for Localized Treatment of Fracture-Related Infections. NPJ Biofilms Microbiomes 2024, 10, 77. [Google Scholar] [CrossRef]
- Mirzaei, A.; Esfahani, B.N.; Ghanadian, M.; Wagemans, J.; Lavigne, R.; Moghim, S. Alhagi maurorum Extract in Combination With Lytic Phage Cocktails: A Promising Therapeutic Approach Against Biofilms of Multi-Drug Resistant P. mirabilis. Front. Pharmacol. 2024, 15, 1483055. [Google Scholar] [CrossRef] [PubMed]
- Rastegar, S.; Skurnik, M.; Tadjrobehkar, O.; Samareh, A.; Samare-Najaf, M.; Lotfian, Z.; Khajedadian, M.; Hosseini-Nave, H.; Sabouri, S. Synergistic Effects of Bacteriophage Cocktail and Antibiotics Combinations Against Extensively Drug-Resistant Acinetobacter baumannii. BMC Infect. Dis. 2024, 24, 1208. [Google Scholar] [CrossRef]
- Shymialevich, D.; Wójcicki, M.; Sokołowska, B. The Novel Concept of Synergically Combining: High Hydrostatic Pressure and Lytic Bacteriophages to Eliminate Vegetative and Spore-Forming Bacteria in Food Products. Foods 2024, 13, 2519. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, B.; Biosca, E.G. Bacteriophage-Based Bacterial Wilt Biocontrol for an Environmentally Sustainable Agriculture. Front. Plant Sci. 2017, 8, 1218. [Google Scholar] [CrossRef]
- Álvarez, B.; Gadea-Pallás, L.; Rodríguez, A.; Vicedo, B.; Figàs-Segura, À.; Biosca, E.G. Viability, Stability and Biocontrol Activity In Planta of Specific Ralstonia solanacearum Bacteriophages After Their Conservation Prior to Commercialization and Use. Viruses 2022, 14, 183. [Google Scholar] [CrossRef]
- Jo, S.J.; Giri, S.S.; Lee, S.B.; Jung, W.J.; Park, J.H.; Hwang, M.H.; Park, D.S.; Park, E.; Kim, S.W.; Jun, J.W.; et al. Optimization of the Large-Scale Production for Erwinia amylovora Bacteriophages. Microb. Cell Fact. 2024, 23, 342. [Google Scholar] [CrossRef]
- Krysiak-Baltyn, K.; Martin, G.J.O.; Gras, S.L. Computational Modelling of Large Scale Phage Production Using a Two-Stage Batch Process. Pharmaceuticals 2018, 11, 31. [Google Scholar] [CrossRef]
- Álvarez, B.; López, M.M.; Biosca, E.G. Biocontrol of the Major Plant Pathogen Ralstonia solanacearum in Irrigation Water and Host Plants by Novel Water Borne Lytic Bacteriophages. Front. Microbiol. 2019, 10, 2813. [Google Scholar] [CrossRef]
- Oechslin, F. Resistance Development to Bacteriophages Occurring During Bacteriophage Therapy. Viruses 2018, 10, 351. [Google Scholar] [CrossRef]
- Lopatina, A.; Tal, N.; Sorek, R. Abortive Infection: Bacterial Suicide as an Antiviral Immune Strategy. Annu. Rev. Virol. 2020, 7, 371–384. [Google Scholar] [CrossRef]
- Zou, H.; Huang, X.; Xiao, W.; He, H.; Liu, S.; Zeng, H. Recent Advancements in Bacterial Anti-Phage Strategies and the Underlying Mechanisms Altering Susceptibility to Antibiotics. Microbiol. Res. 2025, 295, 128107. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.M.; Nang, S.C.; Tang, S.S. The Safety of Bacteriophages in Treatment of Diseases Caused by MultiDrug-Resistant Bacteria. Pharmaceuticals 2023, 16, 1347. [Google Scholar] [CrossRef]
- Liu, D.; van Belleghem, J.D.; de Vries, C.R.; Burgener, E.; Chen, Q.; Manasherob, R.; Aronson, J.R.; Amanatullah, D.F.; Tamma, P.D.; Suh, G.A. The Safety and Toxicity of Phage Therapy: A Review of Animal and Clinical Studies. Viruses 2021, 13, 1268. [Google Scholar] [CrossRef] [PubMed]
- Faltus, T. The Medicinal Phage-Regulatory Roadmap for Phage Therapy Under EU Pharmaceutical Legislation. Viruses Mar. 2024, 16, 443. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Le, S.; Zhu, T.; Wu, N. Regulations of Phage Therapy Across the World. Front. Microbiol. 2023, 14, 1250848. [Google Scholar] [CrossRef]
- Crowther, T.W.; Rappuoli, R.; Corinaldesi, C.; Danovaro, R.; Donohue, T.J.; Huisman, J.; Stein, L.Y.; Timmis, J.K.; Timmis, K.; Anderson, M.Z.; et al. Scientists’Call to Action: Microbes, Planetary Health, and the Sustainable Development Goals. Cell 2024, 187, 5195–5216. [Google Scholar] [CrossRef]
- Mohsin, S.; Amin, M.N. Superbugs: A Constraint to Achieving the Sustainable Development Goals. Bull. Natl. Res. Cent. 2023, 47, 63. [Google Scholar] [CrossRef]
- Samson, R.; Dharne, M.; Khairnar, K. Bacteriophages: Status Quo and Emerging Trends Toward One Health Approach. Sci. Total Environ. 2024, 908, 168461. [Google Scholar] [CrossRef]
- Summer, E.J.; Liu, M. Application of Bacteriophages for the Control of Unwanted Bacteria in Biofuel Production Mediated by Non-Bacterial Reactive Agents. U.S. Patent US-9453247-B2, 27 September 2016. [Google Scholar]
- González Biosca, E.; López González, M.M.; Álvarez Ortega, B. Procedimiento para la Prevención y/o el Control Biológico de la Marchitez Causada por Ralstonia solanacearum, a Través del Uso de Bacteriófagos Útiles para Ello y Composiciones de los Mismos. Spain Patent ES2592352B2, 10 July 2017. [Google Scholar]
- González Biosca, E.; López González, M.M.; Álvarez Ortega, B. Method for the Prevention and/or the Biological Control of Bacterial Wilt Caused by Ralstonia solanacearum, via the Use of Bacteriophages Suitable for This Purpose and Compositions Thereof. U.S. Patent US10508266B2, 17 December 2019. [Google Scholar]
- González Biosca, E.; López González, M.M.; Álvarez Ortega, B. Method for the Prevention and/or the Biological Control of Bacterial Wilt Caused by Ralstonia solanacearum, via the Use of Bacteriophages Suitable for this Purpose and Compositions Thereof. Eur. Patent EP3305892B1, 9 September 2020. [Google Scholar]
- Gutiérrez, D.; Fernández, L.; Rodríguez, A.; García, P. Role of Bacteriophages in the Implementation of a Sustainable Dairy Chain. Front. Microbiol. 2019, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Siyanbola, K.F.; Ejiohuo, O.; Ade-adekunle, O.A.; Adekunle, F.O.; Onyeaka, H.; Furr, C.-L.L.; Hodges, F.E.; Carvalho, P.; Oladipo, E.K. Bacteriophages: Sustainable and Effective Solution for Climate-Resilient Agriculture. Sustain. Microbiol. 2024, 1, qvae025. [Google Scholar] [CrossRef]
- Vikram, A.; Callahan, M.T.; Woolston, J.W.; Sharma, M.; Sulakvelidze, A. Phage Biocontrol for Reducing Bacterial Food Borne Pathogens in Produce and other Foods. Curr. Opin. Biotechnol. 2022, 78, 102805. [Google Scholar] [CrossRef]
- Batinovic, S.; Wassef, F.; Knowler, S.A.; Rice, D.T.F.; Stanton, C.R.; Rose, J.; Tucci, J.; Nittami, T.; Vinh, A.; Drummond, G.R.; et al. Bacteriophages in Natural and Artificial Environments. Pathogens 2019, 8, 100. [Google Scholar] [CrossRef] [PubMed]
- Holtappels, D.; Fortuna, K.; Lavigne, R.; Wagemans, J. The Future of Phage Biocontrol in Integrated Plant Protection for Sustainable Crop Production. Curr. Opin. Biotechnol. 2021, 68, 60–71. [Google Scholar] [CrossRef]
- Garvey, M. Bacteriophages and Food Production: Biocontrol and Bio-Preservation Options for Food Safety. Antibiotics 2022, 11, 1324. [Google Scholar] [CrossRef] [PubMed]
- Biosca, E.G.; Delgado-Santander, R.; Morán, F.; Figàs-Segura, À.; Vázquez, R.; Català-Senent, J.F.; Álvarez, B. First European Erwinia amylovora Lytic Bacteriophage Cocktails Effective in the Host: Characterization and Prospects for Fire Blight Biocontrol. Biology 2024, 13, 176. [Google Scholar] [CrossRef]
- Suja, E.; Gummadi, S.N. Advances in the Applications of Bacteriophages and Phage Products Against Food-Contaminating Bacteria. Crit. Rev. Microbiol. 2024, 50, 702–727. [Google Scholar] [CrossRef]
- Pirnay, J.P.; Djebara, S.; Steurs, G.; Griselain, J.; Cochez, C.; DeSoir, S.; Glonti, T.; Spiessens, A.; Vanden Berghe, E.; Green, S.; et al. Personalized Bacteriophage Therapy Outcomes for 100 Consecutive Cases: A Multicentre, Multinational, Retrospective Observational Study. Nat. Microbiol. 2024, 9, 1434–1453. [Google Scholar] [CrossRef]
- McCammon, S.; Makarovs, K.; Banducci, S.; Gold, V. Phage Therapy and the Public: Increasing Awareness Essential to Widespread Use. PLoS ONE 2023, 18, e0285824. [Google Scholar] [CrossRef]
- Thompson, T.; Kilders, V.; Widmar, N.; Ebner, P. Consumer Acceptance of Bacteriophage Technology for Microbial Control. Sci. Rep. 2024, 14, 25279. [Google Scholar] [CrossRef] [PubMed]
- Heller, D.M.; Sivanathan, V.; Asai, D.J.; Hatfull, G.F. SEA-PHAGES and SEA-GENES: Advancing Virology and Science Education. Annu. Rev. Virol. 2024, 11, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Maicas, S.; Fouz, B.; Figàs-Segura, À.; Zueco, J.; Rico, H.; Navarro, A.; Carbó, E.; Segura-García, J.; Biosca, E.G. Implementation of Antibiotic Discovery by Student Crowdsourcing in the Valencian Community Through a Service Learning Strategy. Front. Microbiol. 2020, 11, 564030. [Google Scholar] [CrossRef] [PubMed]
- Timmis, K.; Hallsworth, J.E.; McGenity, T.J.; Armstrong, R.; Colom, M.F.; Karahan, Z.C.; Chavarría, M.; Bernal, P.; Boyd, E.S.; Ramos, J.L.; et al. A Concept for International Societally Relevant Microbiology Education and Microbiology Knowledge Promulgation in Society. Microb. Biotechnol. 2024, 17, e14456. [Google Scholar] [CrossRef]
- Hatfull, G.F. Wildy Prize Lecture, 2020-2021: Who Wouldn’t Want to Discover a New Virus? Microbiology 2021, 167, 001094. [Google Scholar] [CrossRef]
- Citizen Phage Library. Developing Therapeutic Phages to Fight Antimicrobial Resistance With Citizen Science. 2025. Available online: https://www.citizenphage.com (accessed on 26 January 2025).
- Hitchcock, N.M.; Devequi Gomes Nunes, D.; Shiach, J.; Valeria Saraiva Hodel, K.; Dantas Viana Barbosa, J.; Alencar Pereira Rodrigues, L.; Coler, B.S.; Botelho Pereira Soares, M.; Badaró, R. Current Clinical Landscape and Global Potential of Bacteriophage Therapy. Viruses 2023, 15, 1020. [Google Scholar] [CrossRef]
- Khan, A.N.; Soomro, M.A.; Khan, N.A.; Bodla, A.A. Psychological Dynamics of over Qualification: Career Anxiety and Decision Commitment in STEM. BMC Psychol. 2024, 12, 686. [Google Scholar] [CrossRef]
- Sieiro, C.; Areal-Hermida, L.; Pichardo-Gallardo, Á.; Almuiña-González, R.; de Miguel, T.; Sánchez, S.; Sánchez-Pérez, Á.; Villa, T.G. A Hundred Years of Bacteriophages: Can Phages Replace Antibiotics in Agriculture and Aquaculture? Antibiotics 2020, 9, 493. [Google Scholar] [CrossRef]
- Khalid, A.; Lin, R.C.Y.; Iredell, J.R. A Phage Therapy Guide for Clinicians and Basic Scientists: Background and Highlighting Applications for Developing Countries. Front. Microbiol. 2021, 11, 599906. [Google Scholar] [CrossRef]
- Huang, D.; Xia, R.; Chen, C.; Liao, J.; Chen, L.; Wang, D.; Alvarez, P.J.J.; Yu, P. Adaptive Strategies and Ecological Roles of Phages in Habitats Under Physicochemical Stress. Trends Microbiol. 2024, 32, 902–916. [Google Scholar] [CrossRef]
- Fiedler, A.W.; Gundersen, M.S.; Vo, T.P.; Almaas, E.; Vadstein, O.; Bakke, I. Phage Therapy Minimally Affects the Water Microbiota in an Atlantic Salmon (Salmo salar) Rearing System While Still Preventing Infection. Sci. Rep. 2023, 13, 19145. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Álvarez, B.; Biosca, E.G. Harnessing the Activity of Lytic Bacteriophages to Foster the Sustainable Development Goals and the “One Health” Strategy. Viruses 2025, 17, 549. https://doi.org/10.3390/v17040549
Álvarez B, Biosca EG. Harnessing the Activity of Lytic Bacteriophages to Foster the Sustainable Development Goals and the “One Health” Strategy. Viruses. 2025; 17(4):549. https://doi.org/10.3390/v17040549
Chicago/Turabian StyleÁlvarez, Belén, and Elena G. Biosca. 2025. "Harnessing the Activity of Lytic Bacteriophages to Foster the Sustainable Development Goals and the “One Health” Strategy" Viruses 17, no. 4: 549. https://doi.org/10.3390/v17040549
APA StyleÁlvarez, B., & Biosca, E. G. (2025). Harnessing the Activity of Lytic Bacteriophages to Foster the Sustainable Development Goals and the “One Health” Strategy. Viruses, 17(4), 549. https://doi.org/10.3390/v17040549