Chasing Virus Replication and Infection: PAMP-PRR Interaction Drives Type I Interferon Production, Which in Turn Activates ISG Expression and ISGylation
Abstract
:1. Introduction
2. Virus-Triggered Generation of Type I Interferons
2.1. Interaction of PAMPs and PRRs
2.2. Signaling Pathways Leading to Type I Interferon Production
- Myeloid differentiation primary response gene 88 (MyD88)-Dependent Pathway [24,25,26]: Activated by all TLRs except TLR3, primarily TLR2, TLR4, TLR5, TLR7, TLR8, and TLR9. It activates kinases such as interleukin-1 receptor-associated kinases (IRAK), specifically IRAK1 and IRAK4, and tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6), Transforming growth factor-β activated kinase 1 (TAK1), and MAPKs (mitogen-activated protein kinases, e.g., JNK, p38), leading to transcription factor activation. TAK1 phosphorylates the IκB kinase (IKK) complex, which in turn phosphorylates IκB (an inhibitor of NF-κB), leading to its degradation. This allows NF-κB to translocate to the nucleus, where it promotes the transcription of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. The main result of the MyD88-dependent pathway is the rapid induction of pro-inflammatory cytokines (e.g., TNF-α, IL-6, IL-12), which play a vital role in the immune response to infections.
- Toll/IL-1R domain-containing adaptor-inducing IFN-β (TRIF)-dependent pathway [27,28,29]: Activated by TLR3 and TLR4, this pathway activates IRF3 and NF-κB, key transcription factors for interferon production. This pathway is more focused on the production of type I interferons (IFN-α/β) and is essential for antiviral responses. TLR3 detects viral dsRNA (common in RNA viruses), and TLR4 detects LPS from Gram-negative bacteria or certain viral envelope proteins. TRIF is recruited to the TIR domain of TLR3 or TLR4, initiating the TRIF-dependent signaling pathway. TRIF activates TRAF3, which plays a key role in the activation of TBK1 (TANK-binding kinase 1) and IKKε (IκB kinase epsilon). TBK1 and IKKε phosphorylate the transcription factors IRF3 and IRF7. Once phosphorylated, IRF3 and IRF7 dimerize and translocate to the nucleus. In the nucleus, IRF3 and IRF7 bind to the promoter regions of type I interferon genes (e.g., IFN-β, IFN-α), initiating their transcription. The primary outcome of the TRIF-dependent pathway is the production of type I interferons (IFN-α and IFN-β), which are essential for establishing an antiviral state.
- Retinoic acid-inducible gene-I (RIG-I)-like receptor (RLR) pathway [17,18,30,31]: Activated by RIG-I, MDA5, and LGP2, which are cytosolic sensors detecting viral RNA. Upon recognition of viral RNA, RIG-I and MDA5 interact with the mitochondrial antiviral signaling protein (MAVS, also known as IPS-1, VISA, or Cardif) located on the outer mitochondrial membrane. This interaction activates downstream signaling through TBK1 (TANK-binding kinase 1) and IKKε (IκB kinase epsilon), which leads to the activation of IRF3, IRF7, and NF-κB. The outcome is the production of type I interferons (IFN-α/β) and other pro-inflammatory cytokines, establishing an antiviral state.
- Cyclic GMP-AMP synthase (cGAS)–Stimulator of Interferon Genes (STING) pathway [32,33]: Activated by the cGAS (cyclic GMP-AMP synthase) receptor that is a cytosolic sensor detecting cytosolic DNA, which can originate from viruses (such as herpesviruses) or bacteria. Upon binding to cytosolic DNA, cGAS produces cGAMP, a second messenger that binds to the STING (Stimulator of Interferon Genes) protein located on the endoplasmic reticulum. STING then activates TBK1, leading to the phosphorylation and activation of IRF3/IRF7 and subsequent induction of type I interferons. This pathway is crucial for the detection of DNA viruses and triggers the production of type I interferons and other immune responses.
- The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) pathway [34,35]: The NOD-like receptor (NLR) pathway is a key component of the innate immune system, responsible for detecting intracellular pathogens and cellular stress. NLRs, including NOD1, NOD2, NLRP1, NLRP3, and NAIP, are cytoplasmic PRRs that recognize PAMPs and DAMPs, leading to the activation of inflammatory and immune responses. Although NOD1 and NOD2 mainly detect bacterial peptidoglycan fragments (e.g., muramyl dipeptide from bacterial cell walls), many RNA viruses, including influenza virus, dengue virus, and SARS-CoV-2, activate the NLRP3 inflammasome, leading to IL-1β production and exacerbated inflammation. Moreover, NOD2 also senses viral single-stranded RNA (ssRNA), leading to type I interferon production via activation of IRF3.
3. Virus-Induced Type I IFNs Stimulate Defensive Responses in Infected and Uninfected Cells by Activating ISGs
3.1. Introduction of Autocrine and Paracrine Signalings
3.2. Signaling Pathways Leading to Type I IFN-Mediated Antiviral Defense or Balance Antiviral Defense with Tissue Repair Processes
4. ISG15, ISGylation, and Their Role in Viral Infection and Replication
4.1. Introduction of Interferon-Stimulated Genes (ISGs)
4.2. ISG15
4.3. ISGylation
- (1)
- The E1 enzyme, ubiquitin-like modifier activating enzyme 7 (UBA7, also known as UBE1L), binds to and activates ISG15 to expose its terminal LRLRGG sequences.
- (2)
- The E2 enzyme, ubiquitin-conjugating enzyme UBCH8 (also called UBE2L6), transfers ISG15 from UBA7 to the next step.
- (3)
- The E3 ligases, including HECT and RLD domain-containing E3 ubiquitin–protein ligase 5 (HERC5), ariadne RBR E3 ubiquitin–protein ligase 1 (ARIH1), and tripartite motif-containing protein 25 (TRIM25), facilitate the transfer of ISG15 from the E2 enzyme to the target protein, resulting in the conjugation of ISG15 to the ε-amino group of a lysine residue present in the target protein, completing the ISGylation process [113,114,115].
4.4. ISGylation and Its Antiviral Mechanisms
4.5. Antiviral Role of ISG15 and ISGylation in Virus Infections and Viral Evasion of ISGylation and IFN Response
4.5.1. Influenza Virus
4.5.2. Hepatitis C Virus (HCV)
4.5.3. Coronaviruses
4.5.4. Flaviviruses (Zika and Dengue Virus)
4.5.5. Ebola Virus
4.5.6. Human Immunodeficiency Virus (HIV)
4.5.7. Crimean–Congo Haemorrhagic Fever Virus (CCHFV)
4.5.8. Gammaherpesviruses (MHV-68 and KSHV) and HBV
5. Summary and Perspectives
- Future Directions:
- 1.
- Understanding Virus-Specific Interactions with ISGylation:
- 2.
- Exploring the Dual Role of ISG15 in Viral Infections:
- 3.
- Viral Evasion Mechanisms as Therapeutic Targets:
- 4.
- Enhancing ISGylation as an Antiviral Strategy:
- 5.
- Therapeutic Potential of ISG15 as a Cytokine:
Author Contributions
Funding
Conflicts of Interest
References
- Payne, S. Chapter 3—Virus Interactions With the Cell. In Viruses: From Understanding to Investigation; Elsevier: Amsterdam, The Netherlands, 2017; pp. 23–35. [Google Scholar] [CrossRef]
- Janeway, C.A., Jr. Pillars article: Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989. 54: 1–13. J. Immunol. 2013, 191, 4475–4487. [Google Scholar]
- Daniels, B.P.; Holman, D.W.; Cruz-Orengo, L.; Jujjavarapu, H.; Durrant, D.M.; Klein, R.S. Viral pathogen-associated molecular patterns regulate blood-brain barrier integrity via competing innate cytokine signals. mBio 2014, 5, e01476-14. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Kang, R.; Coyne, C.B.; Zeh, H.J.; Lotze, M.T. PAMPs and DAMPs: Signal 0s that spur autophagy and immunity. Immunol. Rev. 2012, 249, 158–175. [Google Scholar] [CrossRef] [PubMed]
- McCartney, S.A.; Colonna, M. Viral sensors: Diversity in pathogen recognition. Immunol. Rev. 2009, 227, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.R.; Kaminski, J.J.; Kurt-Jones, E.A.; Fitzgerald, K.A. Pattern recognition receptors and the innate immune response to viral infection. Viruses 2011, 3, 920–940. [Google Scholar] [CrossRef]
- Mogensen, T.H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 2009, 22, 240–273. [Google Scholar] [CrossRef] [PubMed]
- Ivashkiv, L.B.; Donlin, L.T. Regulation of type I interferon responses. Nat. Rev. Immunol. 2014, 14, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, S.; Sen, G.C. dsRNA-activation of TLR3 and RLR signaling: Gene induction-dependent and independent effects. J. Interferon Cytokine Res. 2014, 34, 427–436. [Google Scholar] [CrossRef]
- de Marcken, M.; Dhaliwal, K.; Danielsen, A.C.; Gautron, A.S.; Dominguez-Villar, M. TLR7 and TLR8 activate distinct pathways in monocytes during RNA virus infection. Sci. Signal. 2019, 12, eaaw1347. [Google Scholar] [CrossRef]
- Moreno-Eutimio, M.A.; Lopez-Macias, C.; Pastelin-Palacios, R. Bioinformatic analysis and identification of single-stranded RNA sequences recognized by TLR7/8 in the SARS-CoV-2, SARS-CoV, and MERS-CoV genomes. Microbes Infect. 2020, 22, 226–229. [Google Scholar] [CrossRef]
- Lund, J.M.; Alexopoulou, L.; Sato, A.; Karow, M.; Adams, N.C.; Gale, N.W.; Iwasaki, A.; Flavell, R.A. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl. Acad. Sci. USA 2004, 101, 5598–5603. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Liu, L.; Wang, Y. Viral proteins recognized by different TLRs. J. Med. Virol. 2021, 93, 6116–6123. [Google Scholar] [CrossRef] [PubMed]
- Akira, S.; Takeda, K.; Kaisho, T. Toll-like receptors: Critical proteins linking innate and acquired immunity. Nat. Immunol. 2001, 2, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Wicherska-Pawlowska, K.; Wrobel, T.; Rybka, J. Toll-Like Receptors (TLRs), NOD-Like Receptors (NLRs), and RIG-I-Like Receptors (RLRs) in Innate Immunity. TLRs, NLRs, and RLRs Ligands as Immunotherapeutic Agents for Hematopoietic Diseases. Int. J. Mol. Sci. 2021, 22, 13397. [Google Scholar] [CrossRef] [PubMed]
- Sameer, A.S.; Nissar, S. Toll-Like Receptors (TLRs): Structure, Functions, Signaling, and Role of Their Polymorphisms in Colorectal Cancer Susceptibility. Biomed. Res. Int. 2021, 2021, 1157023. [Google Scholar] [CrossRef]
- Onomoto, K.; Onoguchi, K.; Yoneyama, M. Regulation of RIG-I-like receptor-mediated signaling: Interaction between host and viral factors. Cell. Mol. Immunol. 2021, 18, 539–555. [Google Scholar] [CrossRef]
- Rehwinkel, J.; Gack, M.U. RIG-I-like receptors: Their regulation and roles in RNA sensing. Nat. Rev. Immunol. 2020, 20, 537–551. [Google Scholar] [CrossRef] [PubMed]
- Ireton, R.C.; Gale, M., Jr. RIG-I like receptors in antiviral immunity and therapeutic applications. Viruses 2011, 3, 906–919. [Google Scholar] [CrossRef]
- Chen, G.; Shaw, M.H.; Kim, Y.G.; Nunez, G. NOD-like receptors: Role in innate immunity and inflammatory disease. Annu. Rev. Pathol. 2009, 4, 365–398. [Google Scholar] [CrossRef] [PubMed]
- Franchi, L.; Warner, N.; Viani, K.; Nunez, G. Function of Nod-like receptors in microbial recognition and host defense. Immunol. Rev. 2009, 227, 106–128. [Google Scholar] [CrossRef]
- Pei, G.; Dorhoi, A. NOD-Like Receptors: Guards of Cellular Homeostasis Perturbation during Infection. Int. J. Mol. Sci. 2021, 22, 6714. [Google Scholar] [CrossRef] [PubMed]
- Almeida-da-Silva, C.L.C.; Savio, L.E.B.; Coutinho-Silva, R.; Ojcius, D.M. The role of NOD-like receptors in innate immunity. Front. Immunol. 2023, 14, 1122586. [Google Scholar] [CrossRef]
- Bonnert, T.P.; Garka, K.E.; Parnet, P.; Sonoda, G.; Testa, J.R.; Sims, J.E. The cloning and characterization of human MyD88: A member of an IL-1 receptor related family. FEBS Lett. 1997, 402, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zheng, L.; Chen, P.; Liang, G. Myeloid Differentiation Primary Response Protein 88 (MyD88): The Central Hub of TLR/IL-1R Signaling. J. Med. Chem. 2020, 63, 13316–13329. [Google Scholar] [CrossRef]
- Deguine, J.; Barton, G.M. MyD88: A central player in innate immune signaling. F1000Prime Rep. 2014, 6, 97. [Google Scholar] [CrossRef]
- Hu, L.; Cheng, Z.; Chu, H.; Wang, W.; Jin, Y.; Yang, L. TRIF-dependent signaling and its role in liver diseases. Front. Cell Dev. Biol. 2024, 12, 1370042. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Jain, A.; Gao, Y.; Dozmorov, I.M.; Mandraju, R.; Wakeland, E.K.; Pasare, C. Differential outcome of TRIF-mediated signaling in TLR4 and TLR3 induced DC maturation. Proc. Natl. Acad. Sci. USA 2015, 112, 13994–13999. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.O.; Sweet, M.J.; Mansell, A.; Kellie, S.; Kobe, B. TRIF-dependent TLR signaling, its functions in host defense and inflammation, and its potential as a therapeutic target. J. Leukoc. Biol. 2016, 100, 27–45. [Google Scholar] [CrossRef] [PubMed]
- Loo, Y.M.; Gale, M., Jr. Immune signaling by RIG-I-like receptors. Immunity 2011, 34, 680–692. [Google Scholar] [CrossRef] [PubMed]
- Shipley, J.G.; Vandergaast, R.; Deng, L.; Mariuzza, R.A.; Fredericksen, B.L. Identification of multiple RIG-I-specific pathogen associated molecular patterns within the West Nile virus genome and antigenome. Virology 2012, 432, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Hu, Y.; He, X.; Zang, H.; Sun, R.; Zhu, C.; Yao, W. Activation of mitochondrial DNA-mediated cGAS-STING pathway contributes to chronic postsurgical pain by inducing type I interferons and A1 reactive astrocytes in the spinal cord. Int. Immunopharmacol. 2024, 127, 111348. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Chen, X.X.; Zhang, D.Y.; Wang, W.J.; Peng, K.; Li, Z.Y.; Mao, Z.W.; Tan, C.P. Activation of the cGAS-STING pathway by a mitochondrial DNA-targeted emissive rhodium(iii) metallointercalator. Chem. Sci. 2023, 14, 6890–6903. [Google Scholar] [CrossRef] [PubMed]
- Kuriakose, T.; Man, S.M.; Malireddi, R.K.; Karki, R.; Kesavardhana, S.; Place, D.E.; Neale, G.; Vogel, P.; Kanneganti, T.D. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Sci. Immunol. 2016, 1, aag2045. [Google Scholar] [CrossRef]
- Yalcinkaya, M.; Liu, W.; Islam, M.N.; Kotini, A.G.; Gusarova, G.A.; Fidler, T.P.; Papapetrou, E.P.; Bhattacharya, J.; Wang, N.; Tall, A.R. Modulation of the NLRP3 inflammasome by Sars-CoV-2 Envelope protein. Sci. Rep. 2021, 11, 24432. [Google Scholar] [CrossRef]
- Anwar, S.; Ul Islam, K.; Azmi, M.I.; Iqbal, J. cGAS-STING-mediated sensing pathways in DNA and RNA virus infections: Crosstalk with other sensing pathways. Arch. Virol. 2021, 166, 3255–3268. [Google Scholar] [CrossRef]
- Lauterbach-Riviere, L.; Bergez, M.; Monch, S.; Qu, B.; Riess, M.; Vondran, F.W.R.; Liese, J.; Hornung, V.; Urban, S.; Konig, R. Hepatitis B Virus DNA is a Substrate for the cGAS/STING Pathway but is not Sensed in Infected Hepatocytes. Viruses 2020, 12, 592. [Google Scholar] [CrossRef]
- Su, C.; Zheng, C. Herpes Simplex Virus 1 Abrogates the cGAS/STING-Mediated Cytosolic DNA-Sensing Pathway via Its Virion Host Shutoff Protein, UL41. J. Virol. 2017, 91, e02414-16. [Google Scholar] [CrossRef]
- Guarnieri, J.W.; Angelin, A.; Murdock, D.G.; Schaefer, P.; Portluri, P.; Lie, T.; Huang, J.; Wallace, D.C. SARS-COV-2 viroporins activate the NLRP3-inflammasome by the mitochondrial permeability transition pore. Front. Immunol. 2023, 14, 1064293. [Google Scholar] [CrossRef]
- Pan, P.; Shen, M.; Yu, Z.; Ge, W.; Chen, K.; Tian, M.; Xiao, F.; Wang, Z.; Wang, J.; Jia, Y.; et al. SARS-CoV-2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation. Nat. Commun. 2021, 12, 4664. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Akinyemi, I.A.; Chitre, S.A.; Loeb, J.C.; Lednicky, J.A.; McIntosh, M.T.; Bhaduri-McIntosh, S. SARS-CoV-2 viroporin encoded by ORF3a triggers the NLRP3 inflammatory pathway. Virology 2022, 568, 13–22. [Google Scholar] [CrossRef]
- Crespo, A.; Filla, M.B.; Russell, S.W.; Murphy, W.J. Indirect induction of suppressor of cytokine signalling-1 in macrophages stimulated with bacterial lipopolysaccharide: Partial role of autocrine/paracrine interferon-alpha/beta. Biochem. J. 2000, 349, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Michael Lavigne, G.; Russell, H.; Sherry, B.; Ke, R. Autocrine and paracrine interferon signalling as ‘ring vaccination’ and ‘contact tracing’ strategies to suppress virus infection in a host. Proc. Biol. Sci. 2021, 288, 20203002. [Google Scholar] [CrossRef]
- Giugliano, S.; Kriss, M.; Golden-Mason, L.; Dobrinskikh, E.; Stone, A.E.; Soto-Gutierrez, A.; Mitchell, A.; Khetani, S.R.; Yamane, D.; Stoddard, M.; et al. Hepatitis C virus infection induces autocrine interferon signaling by human liver endothelial cells and release of exosomes, which inhibits viral replication. Gastroenterology 2015, 148, 392–402.e13. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Tian, Y.; Chan, S.T.; Kim, J.Y.; Cho, C.; Ou, J.H. TNF-alpha Induced by Hepatitis C Virus via TLR7 and TLR8 in Hepatocytes Supports Interferon Signaling via an Autocrine Mechanism. PLoS Pathog. 2015, 11, e1004937. [Google Scholar] [CrossRef]
- Nociari, M.; Ocheretina, O.; Murphy, M.; Falck-Pedersen, E. Adenovirus induction of IRF3 occurs through a binary trigger targeting Jun N-terminal kinase and TBK1 kinase cascades and type I interferon autocrine signaling. J. Virol. 2009, 83, 4081–4091. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, D.; Ernandez, T.; Rosetti, F.; Batal, I.; Cullere, X.; Luscinskas, F.W.; Zhang, Y.; Stavrakis, G.; Garcia-Cardena, G.; Horwitz, B.H.; et al. Endothelial TNF receptor 2 induces IRF1 transcription factor-dependent interferon-beta autocrine signaling to promote monocyte recruitment. Immunity 2013, 38, 1025–1037. [Google Scholar] [CrossRef]
- Harrison, D.A. The Jak/STAT pathway. Cold Spring Harb. Perspect. Biol. 2012, 4, a011205. [Google Scholar] [CrossRef]
- Hu, Q.; Bian, Q.; Rong, D.; Wang, L.; Song, J.; Huang, H.S.; Zeng, J.; Mei, J.; Wang, P.Y. JAK/STAT pathway: Extracellular signals, diseases, immunity, and therapeutic regimens. Front. Bioeng. Biotechnol. 2023, 11, 1110765. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.X.; Mao, Q.Z.; Zhuo, J.C.; Huang, H.J.; Lu, J.B.; Zhang, C.X.; Li, J.M.; Chen, J.P.; Lu, G. The JAK-STAT pathway promotes persistent viral infection by activating apoptosis in insect vectors. PLoS Pathog. 2023, 19, e1011266. [Google Scholar] [CrossRef]
- Mahjoor, M.; Mahmoudvand, G.; Farokhi, S.; Shadab, A.; Kashfi, M.; Afkhami, H. Double-edged sword of JAK/STAT signaling pathway in viral infections: Novel insights into virotherapy. Cell Commun. Signal. 2023, 21, 272. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct. Target. Ther. 2021, 6, 402. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.A.; Gil, J.; Ventoso, I.; Guerra, S.; Domingo, E.; Rivas, C.; Esteban, M. Impact of protein kinase PKR in cell biology: From antiviral to antiproliferative action. Microbiol. Mol. Biol. Rev. 2006, 70, 1032–1060. [Google Scholar] [CrossRef] [PubMed]
- Dejucq, N.; Chousterman, S.; Jegou, B. The testicular antiviral defense system: Localization, expression, and regulation of 2′5′ oligoadenylate synthetase, double-stranded RNA-activated protein kinase, and Mx proteins in the rat seminiferous tubule. J. Cell Biol. 1997, 139, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, S.L.; Conn, G.L. RNA regulation of the antiviral protein 2′-5′-oligoadenylate synthetase. Wiley Interdiscip. Rev. RNA 2019, 10, e1534. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Trujillo, M.A.; Garcia-Rosado, E.; Alonso, M.C.; Alvarez, M.C.; Bejar, J. Synergistic effects in the antiviral activity of the three Mx proteins from gilthead seabream (Sparus aurata). Vet. Immunol. Immunopathol. 2015, 168, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Floege, J.; Burg, M.; Al Masri, A.N.; Grone, H.J.; von Wussow, P. Expression of interferon-inducible Mx-proteins in patients with IgA nephropathy or Henoch-Schonlein purpura. Am. J. Kidney Dis. 1999, 33, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, J.; Holzer, M.; Schilling, M.; Patzina, C.; Schoen, A.; Hoenen, T.; Zimmer, G.; Marz, M.; Weber, F.; Muller, M.A.; et al. Evolution and Antiviral Specificities of Interferon-Induced Mx Proteins of Bats against Ebola, Influenza, and Other RNA Viruses. J. Virol. 2017, 91, 10–1128. [Google Scholar] [CrossRef]
- Jin, M.; Seed, R.I.; Cai, G.; Shing, T.; Wang, L.; Ito, S.; Cormier, A.; Wankowicz, S.A.; Jespersen, J.M.; Baron, J.L.; et al. Dynamic allostery drives autocrine and paracrine TGF-beta signaling. Cell 2024, 187, 6200–6219. [Google Scholar] [CrossRef]
- Bossler, F.; Hoppe-Seyler, K.; Hoppe-Seyler, F. PI3K/AKT/mTOR Signaling Regulates the Virus/Host Cell Crosstalk in HPV-Positive Cervical Cancer Cells. Int. J. Mol. Sci. 2019, 20, 2188. [Google Scholar] [CrossRef]
- Glaviano, A.; Foo, A.S.C.; Lam, H.Y.; Yap, K.C.H.; Jacot, W.; Jones, R.H.; Eng, H.; Nair, M.G.; Makvandi, P.; Geoerger, B.; et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023, 22, 138. [Google Scholar] [CrossRef]
- Lahon, A.; Arya, R.P.; Banerjea, A.C. Dengue Virus Dysregulates Master Transcription Factors and PI3K/AKT/mTOR Signaling Pathway in Megakaryocytes. Front. Cell. Infect. Microbiol. 2021, 11, 715208. [Google Scholar] [CrossRef]
- Guo, Y.J.; Pan, W.W.; Liu, S.B.; Shen, Z.F.; Xu, Y.; Hu, L.L. ERK/MAPK signalling pathway and tumorigenesis. Exp. Ther. Med. 2020, 19, 1997–2007. [Google Scholar] [CrossRef] [PubMed]
- Dawson, C.W.; Laverick, L.; Morris, M.A.; Tramoutanis, G.; Young, L.S. Epstein-Barr virus-encoded LMP1 regulates epithelial cell motility and invasion via the ERK-MAPK pathway. J. Virol. 2008, 82, 3654–3664. [Google Scholar] [CrossRef] [PubMed]
- Qin, D.; Feng, N.; Fan, W.; Ma, X.; Yan, Q.; Lv, Z.; Zeng, Y.; Zhu, J.; Lu, C. Activation of PI3K/AKT and ERK MAPK signal pathways is required for the induction of lytic cycle replication of Kaposi’s sarcoma-associated herpesvirus by herpes simplex virus type 1. BMC Microbiol. 2011, 11, 240. [Google Scholar] [CrossRef] [PubMed]
- Xing, Z.; Cardona, C.J.; Anunciacion, J.; Adams, S.; Dao, N. Roles of the ERK MAPK in the regulation of proinflammatory and apoptotic responses in chicken macrophages infected with H9N2 avian influenza virus. J. Gen. Virol. 2010, 91, 343–351. [Google Scholar] [CrossRef]
- Naschberger, E.; Werner, T.; Vicente, A.B.; Guenzi, E.; Topolt, K.; Leubert, R.; Lubeseder-Martellato, C.; Nelson, P.J.; Sturzl, M. Nuclear factor-kappaB motif and interferon-alpha-stimulated response element co-operate in the activation of guanylate-binding protein-1 expression by inflammatory cytokines in endothelial cells. Biochem. J. 2004, 379, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, L.M. The role of nuclear factor κB in the interferon response. J. Interferon Cytokine Res. 2011, 31, 553–559. [Google Scholar] [CrossRef]
- Pfeffer, L.M.; Kim, J.G.; Pfeffer, S.R.; Carrigan, D.J.; Baker, D.P.; Wei, L.; Homayouni, R. Role of nuclear factor-κB in the antiviral action of interferon and interferon-regulated gene expression. J. Biol. Chem. 2004, 279, 31304–31311. [Google Scholar] [CrossRef]
- Alvarez Mde, L.; Quiroga, A.D.; Parody, J.P.; Ronco, M.T.; Frances, D.E.; Carnovale, C.E.; Carrillo, M.C. Cross-talk between IFN-α and TGF-β1 signaling pathways in preneoplastic rat liver. Growth Factors 2009, 27, 1–11. [Google Scholar] [CrossRef]
- Arany, I.; Rady, P.; Tyring, S.K. Interferon treatment enhances the expression of underphosphorylated (biologically-active) retinoblastoma protein in human papilloma virus-infected cells through the inhibitory TGF beta 1/IFN beta cytokine pathway. Antivir. Res. 1994, 23, 131–141. [Google Scholar] [CrossRef]
- Park, I.K.; Letterio, J.J.; Gorham, J.D. TGF-β1 inhibition of IFN-γ-induced signaling and Th1 gene expression in CD4+ T cells is Smad3 independent but MAP kinase dependent. Mol. Immunol. 2007, 44, 3283–3290. [Google Scholar] [CrossRef] [PubMed]
- Schoggins, J.W. Interferon-Stimulated Genes: What Do They All Do? Annu. Rev. Virol. 2019, 6, 567–584. [Google Scholar] [CrossRef] [PubMed]
- Schneider, W.M.; Chevillotte, M.D.; Rice, C.M. Interferon-stimulated genes: A complex web of host defenses. Annu. Rev. Immunol. 2014, 32, 513–545. [Google Scholar]
- Schoggins, J.W.; Rice, C.M. Interferon-stimulated genes and their antiviral effector functions. Curr. Opin. Virol. 2011, 1, 519–525. [Google Scholar] [PubMed]
- Christ, W.; Klingstrom, J.; Tynell, J. SARS-CoV-2 variant-specific differences in inhibiting the effects of the PKR-activated integrated stress response. Virus Res. 2024, 339, 199271. [Google Scholar] [PubMed]
- Gomez, C.E.; Vandermeeren, A.M.; Garcia, M.A.; Domingo-Gil, E.; Esteban, M. Involvement of PKR and RNase L in translational control and induction of apoptosis after Hepatitis C polyprotein expression from a vaccinia virus recombinant. Virol. J. 2005, 2, 81. [Google Scholar]
- Goodman, A.G.; Smith, J.A.; Balachandran, S.; Perwitasari, O.; Proll, S.C.; Thomas, M.J.; Korth, M.J.; Barber, G.N.; Schiff, L.A.; Katze, M.G. The cellular protein P58IPK regulates influenza virus mRNA translation and replication through a PKR-mediated mechanism. J. Virol. 2007, 81, 2221–2230. [Google Scholar] [CrossRef]
- Taylor, D.R.; Shi, S.T.; Romano, P.R.; Barber, G.N.; Lai, M.M. Inhibition of the interferon-inducible protein kinase PKR by HCV E2 protein. Science 1999, 285, 107–110. [Google Scholar] [PubMed]
- Li, Y.; Renner, D.M.; Comar, C.E.; Whelan, J.N.; Reyes, H.M.; Cardenas-Diaz, F.L.; Truitt, R.; Tan, L.H.; Dong, B.; Alysandratos, K.D.; et al. SARS-CoV-2 induces double-stranded RNA-mediated innate immune responses in respiratory epithelial-derived cells and cardiomyocytes. Proc. Natl. Acad. Sci. USA 2021, 118, e2022643118. [Google Scholar] [CrossRef]
- Cooper, D.A.; Banerjee, S.; Chakrabarti, A.; Garcia-Sastre, A.; Hesselberth, J.R.; Silverman, R.H.; Barton, D.J. RNase L targets distinct sites in influenza A virus RNAs. J. Virol. 2015, 89, 2764–2776. [Google Scholar] [CrossRef]
- Goujon, C.; Moncorge, O.; Bauby, H.; Doyle, T.; Ward, C.C.; Schaller, T.; Hue, S.; Barclay, W.S.; Schulz, R.; Malim, M.H. Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature 2013, 502, 559–562. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Niklasch, M.; Liu, T.; Wang, Y.; Shi, B.; Yuan, W.; Baumert, T.F.; Yuan, Z.; Tong, S.; Nassal, M.; et al. Interferon-inducible MX2 is a host restriction factor of hepatitis B virus replication. J. Hepatol. 2020, 72, 865–876. [Google Scholar] [CrossRef] [PubMed]
- Pavlovic, J.; Zurcher, T.; Haller, O.; Staeheli, P. Resistance to influenza virus and vesicular stomatitis virus conferred by expression of human MxA protein. J. Virol. 1990, 64, 3370–3375. [Google Scholar] [CrossRef] [PubMed]
- Hsiang, T.Y.; Zhao, C.; Krug, R.M. Interferon-induced ISG15 conjugation inhibits influenza A virus gene expression and replication in human cells. J. Virol. 2009, 83, 5971–5977. [Google Scholar] [CrossRef] [PubMed]
- Pincetic, A.; Kuang, Z.; Seo, E.J.; Leis, J. The interferon-induced gene ISG15 blocks retrovirus release from cells late in the budding process. J. Virol. 2010, 84, 4725–4736. [Google Scholar] [CrossRef] [PubMed]
- Tecalco Cruz, A.C. Free ISG15 and Protein ISGylation Emerging in SARS-CoV-2 Infection. Curr. Drug Targets 2022, 23, 686–691. [Google Scholar] [CrossRef]
- Chen, L.; Li, S.; McGilvray, I. The ISG15/USP18 ubiquitin-like pathway (ISGylation system) in hepatitis C virus infection and resistance to interferon therapy. Int. J. Biochem. Cell Biol. 2011, 43, 1427–1431. [Google Scholar] [CrossRef]
- Gonzalez-Sanz, R.; Mata, M.; Bermejo-Martin, J.; Alvarez, A.; Cortijo, J.; Melero, J.A.; Martinez, I. ISG15 Is Upregulated in Respiratory Syncytial Virus Infection and Reduces Virus Growth through Protein ISGylation. J. Virol. 2016, 90, 3428–3438. [Google Scholar] [CrossRef] [PubMed]
- Hishiki, T.; Han, Q.; Arimoto, K.; Shimotohno, K.; Igarashi, T.; Vasudevan, S.G.; Suzuki, Y.; Yamamoto, N. Interferon-mediated ISG15 conjugation restricts dengue virus 2 replication. Biochem. Biophys. Res. Commun. 2014, 448, 95–100. [Google Scholar] [CrossRef]
- Espert, L.; Degols, G.; Gongora, C.; Blondel, D.; Williams, B.R.; Silverman, R.H.; Mechti, N. ISG20, a new interferon-induced RNase specific for single-stranded RNA, defines an alternative antiviral pathway against RNA genomic viruses. J. Biol. Chem. 2003, 278, 16151–16158. [Google Scholar] [CrossRef]
- Kouno, T.; Shibata, S.; Shigematsu, M.; Hyun, J.; Kim, T.G.; Matsuo, H.; Wolf, M. Structural insights into RNA bridging between HIV-1 Vif and antiviral factor APOBEC3G. Nat. Commun. 2023, 14, 4037. [Google Scholar] [CrossRef]
- Zhao, Y.; Lu, Y.; Richardson, S.; Sreekumar, M.; Albarnaz, J.D.; Smith, G.L. TRIM5alpha restricts poxviruses and is antagonized by CypA and the viral protein C6. Nature 2023, 620, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Ran, X.H.; Zhu, J.W.; Ni, R.Z.; Zheng, Y.T.; Chen, Y.Y.; Zheng, W.H.; Mu, D. TRIM5alpha recruits HDAC1 to p50 and Sp1 and promotes H3K9 deacetylation at the HIV-1 LTR. Nat. Commun. 2023, 14, 3343. [Google Scholar] [PubMed]
- Hagelauer, E.; Lotke, R.; Kmiec, D.; Hu, D.; Hohner, M.; Stopper, S.; Nchioua, R.; Kirchhoff, F.; Sauter, D.; Schindler, M. Tetherin Restricts SARS-CoV-2 despite the Presence of Multiple Viral Antagonists. Viruses 2023, 15, 2364. [Google Scholar] [CrossRef] [PubMed]
- Marougka, K.; Judith, D.; Jaouen, T.; Blouquit-Laye, S.; Cosentino, G.; Berlioz-Torrent, C.; Rameix-Welti, M.A.; Sitterlin, D. Antagonism of BST2/Tetherin, a new restriction factor of respiratory syncytial virus, requires the viral NS1 protein. PLoS Pathog. 2024, 20, e1012687. [Google Scholar] [CrossRef] [PubMed]
- Yi, E.; Oh, J.; Kang, H.R.; Song, M.J.; Park, S.H. BST2 inhibits infection of influenza A virus by promoting apoptosis of infected cells. Biochem. Biophys. Res. Commun. 2019, 509, 414–420. [Google Scholar]
- Colomer-Lluch, M.; Gollahon, L.S.; Serra-Moreno, R. Anti-HIV Factors: Targeting Each Step of HIV’s Replication Cycle. Curr. HIV Res. 2016, 14, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhu, Y.; Zhang, N.; Xian, Y.; Tang, Y.; Ye, J.; Reza, F.; He, G.; Wen, X.; Jiang, X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct. Target. Ther. 2024, 9, 282. [Google Scholar]
- Qiu, X.; Taft, J.; Bogunovic, D. Developing Broad-Spectrum Antivirals Using Porcine and Rhesus Macaque Models. J. Infect. Dis. 2020, 221, 890–894. [Google Scholar] [PubMed]
- Herrera-Uribe, J.; Convery, O.D.A.L.; Weinberg, F.I.; Stevenson, N.J. The Neglected Suppressor of Cytokine Signalling (SOCS): SOCS4-7. Inflammation 2024, 1–17. [Google Scholar] [CrossRef]
- Wang, X.; Hinson, E.R.; Cresswell, P. The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts. Cell Host Microbe 2007, 2, 96–105. [Google Scholar]
- Helbig, K.J.; Lau, D.T.; Semendric, L.; Harley, H.A.; Beard, M.R. Analysis of ISG expression in chronic hepatitis C identifies viperin as a potential antiviral effector. Hepatology 2005, 42, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Brass, A.L.; Huang, I.C.; Benita, Y.; John, S.P.; Krishnan, M.N.; Feeley, E.M.; Ryan, B.J.; Weyer, J.L.; van der Weyden, L.; Fikrig, E.; et al. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 2009, 139, 1243–1254. [Google Scholar] [PubMed]
- Shi, G.; Kenney, A.D.; Kudryashova, E.; Zani, A.; Zhang, L.; Lai, K.K.; Hall-Stoodley, L.; Robinson, R.T.; Kudryashov, D.S.; Compton, A.A.; et al. Opposing activities of IFITM proteins in SARS-CoV-2 infection. EMBO J. 2021, 40, e106501. [Google Scholar]
- Zhang, Y.; Wang, L.; Huang, X.; Wang, S.; Huang, Y.; Qin, Q. Fish Cholesterol 25-Hydroxylase Inhibits Virus Replication via Regulating Interferon Immune Response or Affecting Virus Entry. Front. Immunol. 2019, 10, 322. [Google Scholar]
- Lenschow, D.J.; Lai, C.; Frias-Staheli, N.; Giannakopoulos, N.V.; Lutz, A.; Wolff, T.; Osiak, A.; Levine, B.; Schmidt, R.E.; Garcia-Sastre, A.; et al. IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proc. Natl. Acad. Sci. USA 2007, 104, 1371–1376. [Google Scholar] [CrossRef]
- Frias-Staheli, N.; Giannakopoulos, N.V.; Kikkert, M.; Taylor, S.L.; Bridgen, A.; Paragas, J.; Richt, J.A.; Rowland, R.R.; Schmaljohn, C.S.; Lenschow, D.J.; et al. Ovarian tumor domain-containing viral proteases evade ubiquitin- and ISG15-dependent innate immune responses. Cell Host Microbe 2007, 2, 404–416. [Google Scholar] [CrossRef] [PubMed]
- Blomstrom, D.C.; Fahey, D.; Kutny, R.; Korant, B.D.; Knight, E., Jr. Molecular characterization of the interferon-induced 15-kDa protein. Molecular cloning and nucleotide and amino acid sequence. J. Biol. Chem. 1986, 261, 8811–8816. [Google Scholar] [CrossRef] [PubMed]
- Reich, N.; Evans, B.; Levy, D.; Fahey, D.; Knight, E., Jr.; Darnell, J.E., Jr. Interferon-induced transcription of a gene encoding a 15-kDa protein depends on an upstream enhancer element. Proc. Natl. Acad. Sci. USA 1987, 84, 6394–6398. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.I.; Malakhova, O.A.; Hoebe, K.; Yan, M.; Beutler, B.; Zhang, D.E. Enhanced antibacterial potential in UBP43-deficient mice against Salmonella typhimurium infection by up-regulating type I IFN signaling. J. Immunol. 2005, 175, 847–854. [Google Scholar]
- Lenschow, D.J.; Giannakopoulos, N.V.; Gunn, L.J.; Johnston, C.; O’Guin, A.K.; Schmidt, R.E.; Levine, B.; Virgin, H.W.t. Identification of interferon-stimulated gene 15 as an antiviral molecule during Sindbis virus infection in vivo. J. Virol. 2005, 79, 13974–13983. [Google Scholar] [CrossRef] [PubMed]
- Tecalco-Cruz, A.C.; Zepeda-Cervantes, J. Protein ISGylation: A posttranslational modification with implications for malignant neoplasms. Explor. Target. Anti-Tumor Ther. 2023, 4, 699–715. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, D.E. Interferon-stimulated gene 15 and the protein ISGylation system. J. Interferon Cytokine Res. 2011, 31, 119–130. [Google Scholar] [CrossRef]
- Mathieu, N.A.; Paparisto, E.; Barr, S.D.; Spratt, D.E. HERC5 and the ISGylation Pathway: Critical Modulators of the Antiviral Immune Response. Viruses 2021, 13, 1102. [Google Scholar] [CrossRef]
- Malakhov, M.P.; Malakhova, O.A.; Kim, K.I.; Ritchie, K.J.; Zhang, D.E. UBP43 (USP18) specifically removes ISG15 from conjugated proteins. J. Biol. Chem. 2002, 277, 9976–9981. [Google Scholar] [CrossRef]
- Ketscher, L.; Hannss, R.; Morales, D.J.; Basters, A.; Guerra, S.; Goldmann, T.; Hausmann, A.; Prinz, M.; Naumann, R.; Pekosz, A.; et al. Selective inactivation of USP18 isopeptidase activity in vivo enhances ISG15 conjugation and viral resistance. Proc. Natl. Acad. Sci. USA 2015, 112, 1577–1582. [Google Scholar] [CrossRef] [PubMed]
- Ketscher, L.; Knobeloch, K.P. ISG15 uncut: Dissecting enzymatic and non-enzymatic functions of USP18 in vivo. Cytokine 2015, 76, 569–571. [Google Scholar] [CrossRef]
- Freitas, B.T.; Scholte, F.E.M.; Bergeron, E.; Pegan, S.D. How ISG15 combats viral infection. Virus Res. 2020, 286, 198036. [Google Scholar] [PubMed]
- Chiang, C.; Liu, G.; Gack, M.U. Viral Evasion of RIG-I-Like Receptor-Mediated Immunity through Dysregulation of Ubiquitination and ISGylation. Viruses 2021, 13, 182. [Google Scholar] [CrossRef] [PubMed]
- Knobeloch, K.P. In vivo functions of isgylation. Subcell. Biochem. 2010, 54, 215–227. [Google Scholar]
- Chiok, K.; Pokharel, S.M.; Mohanty, I.; Miller, L.G.; Gao, S.J.; Haas, A.L.; Tran, K.C.; Teng, M.N.; Bose, S. Human Respiratory Syncytial Virus NS2 Protein Induces Autophagy by Modulating Beclin1 Protein Stabilization and ISGylation. mBio 2022, 13, e03528-21. [Google Scholar] [CrossRef]
- Perng, Y.C.; Lenschow, D.J. ISG15 in antiviral immunity and beyond. Nat. Rev. Microbiol. 2018, 16, 423–439. [Google Scholar] [PubMed]
- Zhao, C.; Hsiang, T.Y.; Kuo, R.L.; Krug, R.M. ISG15 conjugation system targets the viral NS1 protein in influenza A virus-infected cells. Proc. Natl. Acad. Sci. USA 2010, 107, 2253–2258. [Google Scholar]
- van Leur, S.W.; Heunis, T.; Munnur, D.; Sanyal, S. Pathogenesis and virulence of flavivirus infections. Virulence 2021, 12, 2814–2838. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Sridharan, H.; Chen, R.; Baker, D.P.; Wang, S.; Krug, R.M. Influenza B virus non-structural protein 1 counteracts ISG15 antiviral activity by sequestering ISGylated viral proteins. Nat. Commun. 2016, 7, 12754. [Google Scholar]
- Munoz-Moreno, R.; Martinez-Romero, C.; Garcia-Sastre, A. Induction and Evasion of Type-I Interferon Responses during Influenza A Virus Infection. Cold Spring Harb. Perspect. Med. 2021, 11, a038414. [Google Scholar]
- Speer, S.D.; Li, Z.; Buta, S.; Payelle-Brogard, B.; Qian, L.; Vigant, F.; Rubino, E.; Gardner, T.J.; Wedeking, T.; Hermann, M.; et al. ISG15 deficiency and increased viral resistance in humans but not mice. Nat. Commun. 2016, 7, 11496. [Google Scholar]
- Kim, M.J.; Yoo, J.Y. Inhibition of hepatitis C virus replication by IFN-mediated ISGylation of HCV-NS5A. J. Immunol. 2010, 185, 4311–4318. [Google Scholar] [PubMed]
- Abdou, A.G.; Asaad, N.Y.; Ehsan, N.; Eltahmody, M.; El-Sabaawy, M.M.; Elkholy, S.; Elnaidany, N.F. The role of IL-28, IFN-gamma, and TNF-alpha in predicting response to pegylated interferon/ribavirin in chronic HCV patients. APMIS 2015, 123, 18–27. [Google Scholar]
- Bourke, N.M.; O’Neill, M.T.; Sarwar, S.; Norris, S.; Stewart, S.; Hegarty, J.E.; Stevenson, N.J.; O’Farrelly, C. In vitro blood cell responsiveness to IFN-alpha predicts clinical response independently of IL28B in hepatitis C virus genotype 1 infected patients. J. Transl. Med. 2014, 12, 206. [Google Scholar] [PubMed]
- Wang, Y.; Li, J.; Wang, X.; Ye, L.; Zhou, Y.; Thomas, R.M.; Ho, W. Hepatitis C virus impairs TLR3 signaling and inhibits IFN-lambda 1 expression in human hepatoma cell line. Innate Immun. 2014, 20, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Lee, J.H.; Parker, Z.M.; Acharya, D.; Chiang, J.J.; van Gent, M.; Riedl, W.; Davis-Gardner, M.E.; Wies, E.; Chiang, C.; et al. ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity. Nat. Microbiol. 2021, 6, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ren, K.; Li, S.; Yang, C.; Chen, L. Interferon stimulated gene 15 promotes Zika virus replication through regulating Jak/STAT and ISGylation pathways. Virus Res. 2020, 287, 198087. [Google Scholar] [PubMed]
- Ren, W.; Fu, C.; Zhang, Y.; Ju, X.; Jiang, X.; Song, J.; Gong, M.; Li, Z.; Fan, W.; Yao, J.; et al. Zika virus NS5 protein inhibits type I interferon signaling via CRL3 E3 ubiquitin ligase-mediated degradation of STAT2. Proc. Natl. Acad. Sci. USA 2024, 121, e2403235121. [Google Scholar] [CrossRef] [PubMed]
- Gomes, J.A.; Sgarioni, E.; Kowalski, T.W.; Giudicelli, G.C.; Recamonde-Mendoza, M.; Fraga, L.R.; Schuler-Faccini, L.; Vianna, F.S.L. Downregulation of Microcephaly-Causing Genes as a Mechanism for ZIKV Teratogenesis: A Meta-analysis of RNA-Seq Studies. J. Mol. Neurosci. 2023, 73, 566–577. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, Q.; Zhou, J.; Xie, W.; Chen, C.; Wang, Z.; Yang, H.; Cui, J. Zika virus evades interferon-mediated antiviral response through the co-operation of multiple nonstructural proteins in vitro. Cell Discov. 2017, 3, 17006. [Google Scholar] [CrossRef]
- Malakhova, O.A.; Zhang, D.E. ISG15 inhibits Nedd4 ubiquitin E3 activity and enhances the innate antiviral response. J. Biol. Chem. 2008, 283, 8783–8787. [Google Scholar] [CrossRef]
- Okumura, A.; Pitha, P.M.; Harty, R.N. ISG15 inhibits Ebola VP40 VLP budding in an L-domain-dependent manner by blocking Nedd4 ligase activity. Proc. Natl. Acad. Sci. USA 2008, 105, 3974–3979. [Google Scholar]
- Basler, C.F.; Mikulasova, A.; Martinez-Sobrido, L.; Paragas, J.; Muhlberger, E.; Bray, M.; Klenk, H.D.; Palese, P.; Garcia-Sastre, A. The Ebola virus VP35 protein inhibits activation of interferon regulatory factor 3. J. Virol. 2003, 77, 7945–7956. [Google Scholar]
- Feng, Z.; Cerveny, M.; Yan, Z.; He, B. The VP35 protein of Ebola virus inhibits the antiviral effect mediated by double-stranded RNA-dependent protein kinase PKR. J. Virol. 2007, 81, 182–192. [Google Scholar] [CrossRef]
- Okumura, A.; Lu, G.; Pitha-Rowe, I.; Pitha, P.M. Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15. Proc. Natl. Acad. Sci. USA 2006, 103, 1440–1445. [Google Scholar] [PubMed]
- Osei Kuffour, E.; Schott, K.; Jaguva Vasudevan, A.A.; Holler, J.; Schulz, W.A.; Lang, P.A.; Lang, K.S.; Kim, B.; Haussinger, D.; Konig, R.; et al. USP18 (UBP43) Abrogates p21-Mediated Inhibition of HIV-1. J. Virol. 2018, 92, 10–1128. [Google Scholar]
- Jacobs, S.R.; Stopford, C.M.; West, J.A.; Bennett, C.L.; Giffin, L.; Damania, B. Kaposi’s Sarcoma-Associated Herpesvirus Viral Interferon Regulatory Factor 1 Interacts with a Member of the Interferon-Stimulated Gene 15 Pathway. J. Virol. 2015, 89, 11572–11583. [Google Scholar] [PubMed]
- Kim, J.H.; Luo, J.K.; Zhang, D.E. The level of hepatitis B virus replication is not affected by protein ISG15 modification but is reduced by inhibition of UBP43 (USP18) expression. J. Immunol. 2008, 181, 6467–6472. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, J.; Zhang, H.; Zhu, M.; Chen, F.; Hu, Y.; Liu, H.; Zhu, H. Interferon-stimulated gene 15 (ISG15) is a trigger for tumorigenesis and metastasis of hepatocellular carcinoma. Oncotarget 2014, 5, 8429–8441. [Google Scholar] [PubMed]
- Qiu, X.; Hong, Y.; Yang, D.; Xia, M.; Zhu, H.; Li, Q.; Xie, H.; Wu, Q.; Liu, C.; Zuo, C. ISG15 as a novel prognostic biomarker for hepatitis B virus-related hepatocellular carcinoma. Int. J. Clin. Exp. Med. 2015, 8, 17140–17150. [Google Scholar]
- Hoan, N.X.; Van Tong, H.; Giang, D.P.; Toan, N.L.; Meyer, C.G.; Bock, C.T.; Kremsner, P.G.; Song, L.H.; Velavan, T.P. Interferon-stimulated gene 15 in hepatitis B-related liver diseases. Oncotarget 2016, 7, 67777–67787. [Google Scholar] [CrossRef]
- Hashemi, S.M.A.; Sarvari, J.; Fattahi, M.R.; Dowran, R.; Ramezani, A.; Hosseini, S.Y. Comparison of ISG15, IL28B and USP18 mRNA levels in peripheral blood mononuclear cells of chronic hepatitis B virus infected patients and healthy individuals. Gastroenterol. Hepatol. Bed Bench 2019, 12, 38–45. [Google Scholar]
- Chen, L.; Sun, J.; Meng, L.; Heathcote, J.; Edwards, A.M.; McGilvray, I.D. ISG15, a ubiquitin-like interferon-stimulated gene, promotes hepatitis C virus production in vitro: Implications for chronic infection and response to treatment. J. Gen. Virol. 2010, 91, 382–388. [Google Scholar] [CrossRef] [PubMed]
Pathway | PRRs Involved | PAMPs Recognized | Key Adaptor Protein | Main Signaling Components | Main Outcome | References |
---|---|---|---|---|---|---|
1. MyD88-Dependent pathway | TLR7, TLR8, | ssRNA (TLR7/8) | MyD88 | IRAK1/4, TRAF6, TAK1, NF-κB, MAPKs | Pro-inflammatory cytokine (TNF-α, IL-6, IL-1β) production | [24,25,26] |
2. TRIF-Dependent pathway | TLR3 | Viral dsRNA (TLR3) | TRIF | TRAF3, TBK1, IKKε, IRF3, IRF7, NF-κB | Type I interferon (IFN-α, IFN-β) production and some pro-inflammatory cytokines | [27,28,29] |
3. RLR Pathway | RIG-I, MDA5 | Viral 5′-triphosphate ssRNA (RIG-I), dsRNA (MDA5) | MAVS (mitochondrial antiviral signaling) | TRAF3, TBK1, IRF3, IRF7, NF-κB | Type I interferons (IFN-α/β) and pro-inflammatory cytokines | [31] |
4. cGAS-STING Pathway | cGAS (Cyclic GMP-AMP synthase) | Cytosolic double-stranded DNA (dsDNA) | STING | TBK1, IRF3, NF-κB | Type I interferons (IFN-α/β), cGAMP production, antiviral responses | [36,37,38] |
5. NLRP3 Inflammasome | NLRs, NOD2 | Viral proteins (e.g., ORF3a, E and M of SARS-CoV-2, NS2A, M, E, and NS2B of DENV) | ASC (apoptosis-associated speck-like protein), RIP2 | Caspase-1, IL-1β, IL-18, NF-κB, MAPK (JNK, p38) | Inflammasome activation, pyroptosis, IL-1β and IL-18 production | [35,39,40,41] |
Pathway | Key Components | Mechanism of Action | ISG Activation Process |
---|---|---|---|
1. JAK-STAT Pathway | JAK1, TYK2, STAT1, STAT2, IRF9 | IFN-I binds to IFNARs, activating JAK1 and TYK2, which phosphorylate STAT1/STAT2. These form the ISGF3 complex with IRF9, which translocates to the nucleus to activate ISG transcription. | ISGF3 binds to the IFN-stimulated response element (ISRE) in ISG promoters, driving their transcription. |
2. PI3K-AKT-mTOR Pathway | PI3K, AKT, mTOR | IFN-I activates PI3K, leading to activation of AKT and mTOR, which modulates cellular metabolism and protein synthesis, indirectly influencing ISG expression. | mTOR activation affects translation of ISG mRNAs and enhances the antiviral response. |
3. MAPK Pathway (ERK, p38, JNK) | ERK, p38, JNK | IFN-I activates MAPKs, which modulate transcription factors like AP-1 that are involved in ISG transcription. | MAPKs activate transcription factors that enhance the expression of a subset of ISGs involved in antiviral defense. |
4. NF-κB Pathway | IKK complex, NF-κB | IFN-I induces the IKK complex, leading to the activation of NF-κB, which translocates to the nucleus and promotes ISG expression. | NF-κB binds to ISG promoters and synergizes with other transcription factors to activate ISG transcription. |
5. TGF-β Pathway | TGF-β, SMADs | IFN-I can modulate TGF-β signaling, which, through SMAD proteins, influences ISG expression, particularly in immune regulation. | TGF-β/SMADs regulate ISG expression in response to tissue damage and chronic inflammation, enhancing long-term antiviral responses. |
Category | ISG Name | Function | Target Viruses | References |
---|---|---|---|---|
Direct Antiviral Effectors | PKR (EIF2AK2) | Phosphorylates eIF2α, inhibiting viral translation | Influenza, HCV, SARS-CoV-2 | [76,77,78,79] |
OAS1/RNase L | Activates RNase L, degrades viral RNA | Influenza, HCV, SARS-CoV-2 | [77,80,81] | |
MX1 (MxA) and MX2 | Blocks viral replication complexes | Influenza, HIV, VSV, HBV | [82,83,84] | |
ISG15 | Modifies host and viral proteins (ISGylation) | Influenza, SARS-CoV-2, HCV, RSV, DENV | [85,86,87,88,89,90] | |
ISG20 | Degrades viral RNA | Broad-spectrum | [91] | |
Restriction Factors Against Specific Viruses | APOBEC3G | Cytidine deaminase that mutates retroviral DNA | HIV | [92] |
TRIM5α | Binds retroviral capsids, blocking uncoating | HIV, Poxvirus | [93,94] | |
Tetherin (BST2) | Prevents viral budding from the plasma membrane | HIV, Ebola, RSV, Influenza | [95,96,97,98] | |
Immune Signaling Modulators | IRF1, IRF7, IRF9 | Regulate IFN production and ISG amplification | Broad-spectrum | Reviewed in [99] |
USP18 | Negatively regulates IFN signaling | Broad-spectrum | [100] | |
SOCS Proteins | Limit prolonged IFN responses | Broad-spectrum | [100,101] | |
Host Metabolism and Cellular Regulation | Viperin (RSAD2) | Disrupts lipid rafts and viral budding sites | Influenza, HCV | [102,103] |
IFITM1, IFITM2, IFITM3 | Inhibits viral entry by altering membrane fluidity | Influenza, WNV, DENV, SARS-CoV-2 | [104,105] | |
CH25H | Produces 25-hydroxycholesterol (25HC), disrupting viral membrane fusion | Broad-spectrum | [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhammad, I.; Contes, K.; Bility, M.T.; Tang, Q. Chasing Virus Replication and Infection: PAMP-PRR Interaction Drives Type I Interferon Production, Which in Turn Activates ISG Expression and ISGylation. Viruses 2025, 17, 528. https://doi.org/10.3390/v17040528
Muhammad I, Contes K, Bility MT, Tang Q. Chasing Virus Replication and Infection: PAMP-PRR Interaction Drives Type I Interferon Production, Which in Turn Activates ISG Expression and ISGylation. Viruses. 2025; 17(4):528. https://doi.org/10.3390/v17040528
Chicago/Turabian StyleMuhammad, Imaan, Kaia Contes, Moses T. Bility, and Qiyi Tang. 2025. "Chasing Virus Replication and Infection: PAMP-PRR Interaction Drives Type I Interferon Production, Which in Turn Activates ISG Expression and ISGylation" Viruses 17, no. 4: 528. https://doi.org/10.3390/v17040528
APA StyleMuhammad, I., Contes, K., Bility, M. T., & Tang, Q. (2025). Chasing Virus Replication and Infection: PAMP-PRR Interaction Drives Type I Interferon Production, Which in Turn Activates ISG Expression and ISGylation. Viruses, 17(4), 528. https://doi.org/10.3390/v17040528