On the Trail of the Longest Plant RNA Virus: Citrus Tristeza Virus
Abstract
:1. Introduction
2. My First Encounter with CTV
3. Phase 1: Reliance on Biological Procedures for Disease Identification and Disease-Free Budwood Production
4. Phase 2: Development and Adoption of Novel Technologies for Rapid and Large-Scale Diagnosis of CTV and Other Plant Disease Agents
5. Natural Spread and the CTV Suppression Program in Israel
6. Short-Sightedness Regarding the Commercialization of ELISA for Plant Viruses
7. Establishing a Collection of Israeli CTV Isolates
8. Molecular Advances in CTV Characterization
9. Double-Stranded RNAs (dsRNAs)
10. Cloning CTV cDNA
11. Genetic Analysis of the Coat Protein of Israeli CTV Isolates
12. Oligonucleotides and PCR
13. Defective RNAs and the CTV-VT Complete Genome
14. Transgenic Resistance
15. Retirement Years
16. Discussion
Funding
Conflicts of Interest
References
- Tatineni, S.; Hein, G.L. Plant Viruses of Agricultural Importance: Current and Future Perspectives of Virus Disease Management Strategies. Phytopathology 2023, 113, 117–141. [Google Scholar] [CrossRef] [PubMed]
- Bar-Joseph, M.; Dawson, W.O. Citrus tristeza Virus. In Encyclopedia of Virology; Mahy, B.W.J., Van Regenmortel, M.H.V., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2008; pp. 520–525. [Google Scholar] [CrossRef]
- Bar-Joseph, M.; Marcus, R.; Lee, R.F. The continuous challenge of Citrus tristeza virus control. Ann. Rev. Phytopathol. 1989, 27, 291–316. [Google Scholar] [CrossRef]
- Bar-Joseph, M.; Batuman, O.; Roistacher, C.N. The history of Citrus Tristeza Virus-Revisited in Citrus Tristeza Virus Complex and Tristeza Diseases; Karasev, A.V., Hilf, M.E., Eds.; APS Press—The American Phytopathological Society: St. Paul, MN, USA, 2010. [Google Scholar]
- Dawson, W.O.; Bar-Joseph, M.; Garnsey, S.M.; Moreno, P. Citrus tristeza virus: Making an ally from an enemy. Annu. Rev. Phytopathol. 2015, 53, 137–155. [Google Scholar] [CrossRef] [PubMed]
- Khalilzadeh, M.; Aldrich, D.J.; Maree, H.J.; Levy, A. Complex interplay: The interactions between Citrus tristeza virus and its host. Virology 2025, 603, 110388. [Google Scholar] [CrossRef] [PubMed]
- Moreno, P.; Ambrós, S.; Albiach-Martí, M.R.; Guerri, J.; Peña, L. Citrus tristeza virus: A pathogen that changed the course of the citrus industry. Mol. Plant Pathol. 2008, 9, 251–268. [Google Scholar] [CrossRef]
- Sun, Y.; Yokomi, R.K.; Folimonova, S. Citrus tristeza virus: A century-long challenge for the world’s citrus industries. Ann. Appl. Biol. 2024, 185, 304–322. [Google Scholar] [CrossRef]
- Wallace, J.M. Virus and virus-like diseases. In The Citrus Industry; Reuther, W., Calavan, E.C., Carman, G.E., Eds.; Division of Agricultural Sciences, University of California: Berkeley, CA, USA, 1978; Volume 4, pp. 67–184. [Google Scholar]
- Agranovsky, A.A. Principles of molecular organization, expression, and evolution of closteroviruses: Over the barriers. Adv. Virus Res. 1996, 47, 119–158. [Google Scholar] [PubMed]
- Bar-Joseph, M.; Garnsey, S.M.; Gonsalves, D. The closteroviruses: A distinct group of elongated plant viruses. Adv. Virus Res. 1979, 25, 93–168. [Google Scholar] [PubMed]
- Dolja, V.V.; Karasev, A.V.; Koonin, E.V. Molecular biology and evolution of closteroviruses: Sophisticated build-up of large RNA genomes. Annu. Rev. Phytopathol. 1994, 32, 261–285. [Google Scholar] [CrossRef]
- Flores, R.; Moreno, P.; Falk, B.; Martelli, G.P.; Dawson, W.O. e-Book on Closteroviridae. Front. Microbiol. 2013, 4, 411. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fuchs, M.; Bar-Joseph, M.; Candresse, T.; Maree, H.J.; Martelli, G.P.; Melzer, M.J.; Menzel, W.; Minafra, A.; Sabanadzovic, S.; ICTV Report Consortium. ICTV Virus Taxonomy Profile: Closteroviridae. J. Gen. Virol. 2020, 101, 364–365. [Google Scholar] [CrossRef]
- Karasev, A.V. Genetic diversity and evolution of closterovirus. Annu. Rev. Phytopathol. 2000, 38, 293–324. [Google Scholar]
- Fraser, L. Disease of citrus trees in Australia—The fist hundreds years. Aust. Plant Pathol. Soc. Newsl. 1976, 5, 37–42. [Google Scholar] [CrossRef]
- Toxopeus, H.J. Stock-action incompatibility in citrus and its cause. J. Pomol. Hortc. Sci. 1937, 14, 360–367. [Google Scholar]
- Moreira, S. Observacoes sobre a “tristeza” dos citrus ou “podridao dos radicelas”. Biologico 1942, 8, 269–272. [Google Scholar]
- Webber, H.J. The tristeza disease of sour-orange rootstock. Am. Soc. Hort. Sci. 1943, 43, 160–167. [Google Scholar]
- Hughes, W.A.; Lister, C.A. Lime Disease in the Gold Coast. Nature 1949, 164, 880. [Google Scholar] [CrossRef]
- Wallace, J.M. Tristeza and seedling yellows. In Indexing Procedures for 15 Virus Diseases of Citrus; Agric. Handb. No. 333. Agric. Res. Ser.; USDA: Washington, DC, USA, 1968. [Google Scholar]
- Reichert, I.; Bental, A. Additional tristeza-infected citrus varieties found in Israel. FAO Plant Prot. Bull. 1957, 5, 129–130. [Google Scholar]
- Corbett, M.K.; Sisler, D. (Eds.) Plant Virology; University of Florida Press: Gainesville, FL, USA, 1964; p. XVIII_527. [Google Scholar]
- Hull, R. Matthews’ Plant Virology, 4th ed.; Academic Press: New York, NY, USA, 2002; p. 1001. [Google Scholar]
- Scholthof, K.B. Making a Virus Visible: Francis O. Holmes and a biological assay for Tobacco mosaic virus. J. Hist. Biol. 2014, 47, 107–145. [Google Scholar] [CrossRef] [PubMed]
- McKinney, H.H. Mosaic disease in the Canary Islands, West Africa, and Gibraltar. J. Agric. Res. 1929, 39, 557–578. [Google Scholar]
- Goelet, A.; Lomenick, M.P.; Cease, K.B.; Lee, K.A.W.; Tizard, R.; Young, N.D.; Beachy, R.N. Nucleotide sequence of Tobacco mosaic virus, RNA. Nature 1982, 299, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Dawson, W.O.; Beck, D.L.; Knorr, D.A.; Grantham, G.L. cDNA cloning of the complete genome of Tobacco mosaic virus and production of infectious transcripts. Proc. Natl. Acad. Sci. USA 1986, 83, 1832–1836. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, E.W.; Silva, D.M.; Oliveira, A.R.; Mueller, G.W.; Costa, A.S. Thread-like particles associated with tristeza disease of citrus. Nature 1964, 201, 1011–1012. [Google Scholar] [PubMed]
- Bental, A.; Yaffe, A. The impietratura disease of citrus fruits. FAO Plant Prot. Bull. 1967, 16, 64–65. [Google Scholar]
- Catara, A.; Scaramuzzi, G. Impietratura. In Description and Illustration of Virus and Virus-like Diseases of Citrus. A Collection of Colour Slides; Bové, J.M., Vogel, R., Eds.; I.R.F.A. SETCO-FRUITS: Paris, France, 1980. [Google Scholar]
- Belabess, Z.; Sagouti, T.; Rhallabi, N.; Tahiri, A.; Massart, S.; Tahzima, R.; Lahlali, R.; Jijakli, M.H. Citrus Psorosis Virus: Current Insights on a Still Poorly Understood Ophiovirus. Microorganisms 2020, 8, 1197. [Google Scholar] [CrossRef]
- Roistacher, C.N. Directory of Major Citrus Virus and Virus-like Diseases. Historical Review and Bibliography; Mediterranean Fruit Crop Improvement Council-FAO: Rome, Italy, 1988. [Google Scholar]
- Mardis, E.R. Next-generation DNA sequencing methods. Annu. Rev. Genom. Hum. Genet. 2008, 9, 387–402. [Google Scholar] [CrossRef]
- Roistacher, C.N. Graft-Transmissible Diseases of Citrus: Handbook for Detection and Diagnosis; IOCV, FAO: Rome, Italy, 1991; pp. 214–286. [Google Scholar]
- Bar-Joseph, M.; Loebenstein, G. Leaf flecking on indicator seedlings with citrus in Israel. A possible indexing method. Plant Dis. Rep. 1970, 54, 643–646. [Google Scholar]
- Navarro, L.; Roistacher, C.N.; Murashige, T. Improvement of shoot-tip grafting in vitro for virus-free citrus. J. Am. Soc. Hortic. Sci. 1975, 100, 471–479. [Google Scholar]
- Gooding, G.V., Jr.; Hebert, T.T. A simple technique for purification of Tobacco mosaic virus in large quantities. Phytopathology 1967, 57, 1285. [Google Scholar] [PubMed]
- Bar-Joseph, M.; Loebenstein, G.; Cohen, J. Partial purification of virus-like particles associated with the Citrus tristeza disease. Phytopathology 1970, 60, 75–78. [Google Scholar] [CrossRef]
- Bar-Joseph, M.; Smookler, M. Purification, properties, and serology of carnation yellow fleck virus. Phytopathology 1976, 66, 835–838. [Google Scholar] [CrossRef]
- Bar-Joseph, M.; Loebenstein, G. Rapid diagnosis of the Citrus tristeza disease by electron microscope of partially purified preparations. Phytopathology 1970, 60, 1510–1512. [Google Scholar] [CrossRef]
- Bar-Joseph, M.; Loebenstein, G.; Oren, Y. Use of electron microscopy in eradication of tristeza sources recently found in Israel. Int. Organ. Citrus Virol. Conf. Proc. (1957–2010) 1974, 6, 83–85. [Google Scholar] [CrossRef]
- Bar-Joseph, M.; Loebenstein, G. Effects of strain, source plant and temperature on the transmissibility of Citrus tristeza virus by the melon aphid. Phytopathology 1973, 63, 716–720. [Google Scholar]
- Raccah, B.; Loebenstein, G.; Bar-Joseph, M. Transmission of tristeza virus by the melon aphid. Phytopathology 1976, 66, 1102–1104. [Google Scholar] [CrossRef]
- Bar-Joseph, M.; Che, X.; Piestun, D.; Batuman, O.; Gofman, R.; Ben-Shalom, Y.; Guang, Y.; Mawassi, M. Citrus tristeza virus biology revisited: Quick decline and seedling yellows—The cost of sour orange resistance gene(s). In Proceedings of the International Citrus Congress (9th), Orlando, FL, USA, 3–7 December 2000; Volume 2, pp. 963–965. [Google Scholar]
- Bar-Joseph, M.; Catara, A.F.; Licciardello, G. The Puzzling Phenomenon of Seedling Yellows Recovery and Natural Spread of Asymptomatic Infections of Citrus tristeza Virus: Two Sides of the Same Coin. Hortic. Rev. 2021, 48, 339–362. [Google Scholar] [CrossRef]
- Clark, M.F.; Adams, A.N. Characteristics of the microplate method of enzyme-linked immunosorbent, assay for the detection of plant viruses. J. Gen. Virol. 1977, 34, 475–483. [Google Scholar] [CrossRef]
- Bar-Joseph, M.; Garnsey, S.M.; Gonsalves, D.; Moscovits, M.; Purcifull, D.E.; Clark, M.F.; Loebenstein, G. The use of enzyme linked immunosorbent assay for detection of Citrus tristeza virus. Phytopathology 1979, 69, 190–194. [Google Scholar] [CrossRef]
- Gonsalves, D.; Purcifull, D.E.; Garnsey, S.M. Purification and serology of Citrus tristeza virus. Phytopathology 1978, 68, 553–559. [Google Scholar]
- Bar-Joseph, M.; Malkinson, M. Hen egg yolk as a source of antiviral antibodies in the enzyme-linked immunosorbent assay (ELISA): A comparison of two plant viruses. J. Virol. Methods 1980, 1, 179–183. [Google Scholar] [CrossRef]
- Bar-Joseph, M.; Filatov, V.; Gofman, R.; Guang, Y.; Hadjinicolis, A.; Mawassi, M.; Gootwine, E.; Weisman, Y.; Malkinson, M. Booster immunization with a partially purified Citrus tristeza virus (CTV) preparation after priming with recombinant CTV coat protein enhances the binding capacity of capture antibodies by ELISA. J. Virol. Methods 1997, 67, 19–22. [Google Scholar] [CrossRef]
- Shalitin, D.; Mawassi, M.; Gafny, R.; Cabilly, S.; Eshar, Z.; Bar-Joseph, M. Serological characterization of Citrus tristeza virus isolates from Israel. Ann. Appl. Biol. 1994, 125, 105–113. [Google Scholar] [CrossRef]
- Da Graca, J.V.; Maharaj, S.B. Citrus Vein Enation Virus, a Probable Luteovirus. Int. Organ. Citrus Virol. Conf. Proc. (1957–2010) 1991, 11, 391–394. [Google Scholar] [CrossRef]
- Bar-Joseph, M.; Sacks, J.M.; Garnsey, S.M. Detection and estimation of Citrus tristeza Virus infection rates based on Elisa Assays of packing house fruit samples. Phytoparasitica 1978, 6, 145–149. [Google Scholar] [CrossRef]
- Ben-Ze’ev, I.S.; Bar-Joseph, M.; Nitzan, Y.; Marcus, R.A. A severe Citrus tristeza virus isolate causing collapse of trees of sour orange before virus is detectable throughout the canopy. Ann. Appl. Biol. 1989, 114, 293–300. [Google Scholar] [CrossRef]
- Bar-Joseph, M.; Loebenstein, G.; Cohen, J. Further purification and characterization of threadlike particles associated with the Citrus tristeza disease. Virology 1972, 50, 821–828. [Google Scholar] [CrossRef]
- Sekiya, M.E.; Lawrence, S.D.; McCaffery, M.; Cline, K. Molecular cloning and nucleotide sequencing of the coat protein gene of Citrus tristeza virus. J Gen Virol. 1991, 72, 1013–1020. [Google Scholar] [CrossRef]
- Bar-Joseph, M.; Hull, R. Purification and partial characterization of sugar beet yellows virus. Virology 1974, 62, 552–562. [Google Scholar] [CrossRef]
- Bar-Joseph, M.; Josephs, R.; Cohen, J. Carnation yellow fleck virus particles “in vivo”: A structural analysis. Virology 1977, 81, 144–151. [Google Scholar] [CrossRef]
- Bar-Joseph, M.; Gumpf, D.J.; Dodds, J.A.; Rosner, A.; Ginzburg, I. A Simple Purification Method for Citrus tristeza Virus and Estimation of its Genome Size. Phytopathology 1985, 75, 195–198. [Google Scholar] [CrossRef]
- Morris, T.J.; Dodds, J.A. Isolation and analysis of double stranded RNA from virus infected plant and fungal tissue. Phytopathology 1979, 69, 854–858. [Google Scholar] [CrossRef]
- Dodds, J.A.; Tamaki, S.J.; Roistacher, C.N. Indexing of Citrus tristeza virus double-stranded RNA in field trees. Int. Organ. Citrus Virol. Conf. Proc. (1957–2010) 1983, 9, 327–329. [Google Scholar]
- Derrick, K.S.; French, R.C.; Clark, C.A.; Gabriel, C.J. Detection of double-stranded RNA by serologically specific electron microscopy. J. Virol. Methods 1984, 9, 293–299. [Google Scholar] [PubMed]
- Dodds, J.A.; Bar-Joseph, M. Double-stranded RNA from plants infected with closteroviruses. Phytopathology 1983, 73, 419–423. [Google Scholar]
- Bar-Joseph, M.; Rosner, A.; Moscovitz, M.; Hull, R. A simple procedure for the extraction of double-stranded RNA from virus-infected plants. J. Virol. Methods 1983, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Dulieu, P.; Bar-Joseph, M. Rapid isolation of double stranded RNA segments from disulphide crosslinked polyacrylamide gels. J. Virol. Methods 1989, 24, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Dulieu, P.; Bar-Joseph, M. In vitro translation of the Citrus tristeza virus coat protein from a 0.8 kbp double-stranded RNA segment. J. Gen. Virol. 1990, 71, 443–447. [Google Scholar]
- Rosner, A.; Ginzburg, I.; Bar-Joseph, M. Molecular cloning of complementary DNA sequences of Citrus tristeza virus RNA. J. Gen. Virol. 1983, 64, 1757–1763. [Google Scholar]
- Rosner, A.; Bar-Joseph, M. Diversity of Citrus tristeza virus strains indicated by hybridization with cloned cDNA sequences. Virology 1984, 139, 189–193. [Google Scholar]
- Costa, A.S.; Muller, G.W. Tristeza controlled by cross protection, a, U.S.-Brazil cooperative success. Plant Dis. 1980, 64, 538–541. [Google Scholar]
- Broadbent, P.; Bevington, K.B.; Coote, B.G. Control of stem pitting of grapefruit in Australia by mild strain protection. Int. Organ. Citrus Virol. Conf. Proc. (1957–2010) 1991, 11, 64–70. [Google Scholar]
- Folimonova, S.Y.; Robertson, C.J.; Shilts, T.; Folimonov, A.S.; Hilf, M.E.; Garnsey, S.M.; Dawson, W.O. Infection with strains of Citrus tristeza virus does not exclude superinfection by other strains of the virus. J. Virol. 2010, 84, 1314–1325. [Google Scholar] [CrossRef]
- Folimonova, S.Y.; Achor, D.; Bar-Joseph, M. Walking Together: Cross-Protection, Genome Conservation, and the Replication Machinery of Citrus tristeza virus. Viruses 2020, 12, 1353. [Google Scholar] [CrossRef]
- Bar-Joseph, M. A historical note on two unreported obstacles for cross-protecting mature citrus trees against severe Citrus tristeza virus isolates. J. Citrus Pathol. 2015, 2, 1–4. [Google Scholar] [CrossRef]
- Mawassi, M.; Gafny, R.; Bar-Joseph, M. Nucleotide sequence of the coat protein gene of Citrus tristeza virus: Comparison of biologically diverse isolates collected in Israel. Virus Genes 1993, 7, 265–275. [Google Scholar] [PubMed]
- Olson, E.M.; Sleeth, B. Tristeza virus carried by some Meyer lemon trees in South Texas. Proc. Rio Gd. Val. Hortic. Soc. 1954, 8, 84–88. [Google Scholar]
- Symons, R.H. Avocado sunblotch viroid: Primary sequence and proposed secondary structure. Nucleic Acids Res. 1981, 9, 6527–6537. [Google Scholar] [CrossRef]
- Bar-Joseph, M.; Segev, D.; Twizer, S.; Rosner, A. Detection of avocado sunblotch viroid by hybridization with synthetic oligonucleotide probes. J. Virol. Methods 1985, 10, 69–73. [Google Scholar]
- Wexler, A.; Mawassi, M.; Lachman, O.; Amit, A.; Wortzel, A.; Bar-Joseph, M. A procedure to amplify cDNA from dsRNA templates using the polymerase chain reaction. Methods Mol. Cell. Biol. 1991, 2, 273–279. [Google Scholar]
- Gafny, R.; Wexler, A.; Mawassi, M.; Israeli, Y.; Bar-Joseph, M. Natural infection of banana by a satellite-containing strain of cucumber mosaic virus: Nucleotide sequence of the coat protein gene and the satellite RNA. Phytoparasitica 1996, 24, 49–56. [Google Scholar]
- Ashulin, L.; Mawassi, M.; Bar-Joseph, M. Procedure to amplify cDNA from viroid RNA templates using the polymerase chain reaction. Methods Mol. Cell. Biol. 1992, 3, 83–89. [Google Scholar]
- Adams, C.A.; Kron, S.J. Method for Performing Amplification of Nucleic Acid with Two Primers Bound to a Single Solid Support. U.S. Patent 5641658(A), 24 June 1997. [Google Scholar]
- Karasev, A.V.; Boyko, V.P.; Gowda, S.; Nikolaeva, O.V.; Hilf, M.E.; Koonin, E.V.; Niblett, C.L.; Cline, K.; Gumpf, D.J.; Lee, R.F.; et al. Complete sequence of the Citrus tristeza virus RNA genome. Virology 1995, 208, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Mawassi, M.; Karasev, A.V.; Mietkiewska, E.; Gafny, R.; Lee, R.F.; Dawson, W.O.; Bar-Joseph, M. Defective RNA molecules associated with Citrus tristeza virus. Virology 1995, 208, 383–387. [Google Scholar] [PubMed]
- Mawassi, M.; Mietkiewska, E.; Hilf, M.E.; Ashoulin, L.; Karasev, A.V.; Gafny, R.; Lee, R.F.; Garnsey, S.M.; Dawson, W.O.; Bar-Joseph, M. Multiple species of defective RNAs in plants infected with Citrus tristeza virus. Virology 1995, 214, 264–268. [Google Scholar]
- Yang, G.; Mawassi, M.; Gofman, R.; Gafny, R.; Bar-Joseph, M. Involvement of a subgenomic mRNA in the generation of a variable population of defective Citrus tristeza virus molecules. J. Virol. 1997, 71, 9800–9802. [Google Scholar]
- Bar-Joseph, M.; Guang, Y.; Gafny, R.; Mawassi, M. Subgenomic RNAs: The Possible Building Blocks for Modular Recombination of Closteroviridae Genomes. Semin. Virol. 2003, 8, 113–119. [Google Scholar]
- Che, X.; Mawassi, M.; Bar-Joseph, M. A novel class of large and infectious defective RNAs of Citrus tristeza virus. Virology 2002, 298, 133–145. [Google Scholar]
- Che, X.; Dawson, W.O.; Bar-Joseph, M. Defective RNAs of Citrus tristeza virus analogous to Crinivirus genomic RNAs. Virology 2003, 310, 298–309. [Google Scholar]
- Guang, Y.; Che, X.B.; Gofman, R.; Ben-Shalom, Y.; Piestun, D.; Gafny, R.; Mawassi, M.; Bar-Joseph, M. D-RNA molecules associated with subisolates of the VT strain of Citrus tristeza virus which induce different seedling-yellows reactions. Virus Genes 1999, 19, 5–13. [Google Scholar]
- Batuman, O.; Che, X.; Yang, G.; Mawassi, M.; Bar-Joseph, M. Interference or Insurance? More Questions than Answers on the Roles of the Multiple Defective RNAs of Citrus tristeza Virus. In Citrus tristeza Virus; Karasev, A.V., Hilf, M., Eds.; APS Press: St. Paul, MN, USA, 2010; pp. 73–94. [Google Scholar]
- Mawassi, M.; Mietkiewska, E.; Gofman, R.; Yang, G.; Bar-Joseph, M. Unusual sequence relationships between two isolates of Citrus tristeza virus. J. Gen. Virol. 1996, 77, 2359–2364. [Google Scholar]
- Che, X.; Piestun, D.; Mawassi, M.; Yang, G.; Satyanarayana, T.; Gowda, S.; Dawson, W.O.; Bar-Joseph, M. 5′ coterminal subgenomic RNAs in Citrus tristeza virus-infected cells. Virology 2001, 283, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Gowda, S.; Ayllon, M.A.; Satyanarayana, T.; Bar-Joseph, M.; Dawson, W.O. Transcription strategy in a Closterovirus: A novel 5′-proximal controller element of Citrus tristeza virus produces 5′ and 3′-terminal subgenomic RNAs and differs from 3′ open reading frame controller elements. J. Virol. 2003, 77, 340–352. [Google Scholar] [CrossRef]
- Kang, S.H.; Sun, Y.D.; Atallah, O.O.; Huguet-Tapia, J.C.; Noble, J.D.; Folimonova, S.Y. A Long Non-Coding RNA of Citrus tristeza virus: Role in the Virus Interplay with the Host Immunity. Viruses 2019, 11, 436. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.H.; Aknadibossian, V.; Kharel, L.; Mudiyanselage, S.D.D.; Wang, Y.; Folimonova, S.Y. The Intriguing Conundrum of a Nonconserved Multifunctional Protein of Citrus tristeza Virus That Interacts with a Viral Long Non-Coding RNA. Viruses 2021, 13, 2129. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Y.; Folimonova, S.Y. Long Noncoding RNAs in Plant-Pathogen Interactions. Phytopathology 2023, 113, 1380–1386. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Beachy, R.N. Coat-protein-mediated resistance to Tobacco mosaic virus: Discovery mechanisms and exploitation. Philos Trans R Soc Lond B Biol Sci. 1999, 354, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Piestun, D.; Batuman, O.; Che, X.; Gofman, R.; Filatov, V.; Zypman, S.; Gafny, R.; Bar-Joseph, M. Truncated versions of the Citrus tristeza virus (CTV) replicase and Basta resistance genes incorporated in transgenic troyer citrange. Acta Hortic. 2000, 535, 223–230. [Google Scholar] [CrossRef]
- Batuman, O.; Mawassi, M.; Bar-Joseph, M. Transgenes consisting of a dsRNA of an RNAi suppressor plus the 3′ UTR provide resistance to Citrus tristeza virus sequences in Nicotiana benthamiana but not in Citrus. Virus Genes 2003, 33, 319–327. [Google Scholar]
- Bar-Joseph, M.; Robertson, C.; Hilf, M.; Dawson, W.O. A novel method for Citrus propagation: Seed grafting. J. Hortic. Sci. Biotechnol. 2011, 86, 616–618. [Google Scholar] [CrossRef]
- Agranovsky, A.A.; Boyko, V.P.; Karasev, A.V.; Lunina, N.A.; Koonin, E.V.; Dolja, V.V. Nucleotide Sequence of the 3′-terminal Half of Beet Yellows Closterovirus RNA Genome: Unique Arrangement of Eight Virus Genes. J. Gen. Virol. 1991, 72, 15–23. [Google Scholar] [CrossRef]
- Agranovsky, A.A.; Folimonov, A.S.; Folimonova, S.Y.; Morozov, S.Y.; Schiemann, J.; Lesemann, D.E. Complete sequence of the beet yellows closterovirus genome. Virology 1996, 219, 23–36. [Google Scholar]
- Dawson, W.O.; Folimonova, S.Y. Virus-based transient expression vectors for woody crops: A new frontier for vector design and use. Annu. Rev. Phytopathol. 2013, 51, 321–337. [Google Scholar] [CrossRef] [PubMed]
- Folimonova, S.Y.; Sun, Y.D. Citrus tristeza Virus: From Pathogen to Panacea. Annu. Rev. Virol. 2022, 9, 417–435. [Google Scholar] [CrossRef] [PubMed]
- Killiny, N. Better together: The use of virus-induced gene silencing technique to repress the expression of two endogenous citrus genes simultaneously. Plant Signal Behav. 2022, 17, 2106079. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tolkowsky, S. Hesperides: A History of the Culture and Use of Citrus Fruit; Vale& Curnow: London, UK, 1938. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bar-Joseph, M. On the Trail of the Longest Plant RNA Virus: Citrus Tristeza Virus. Viruses 2025, 17, 508. https://doi.org/10.3390/v17040508
Bar-Joseph M. On the Trail of the Longest Plant RNA Virus: Citrus Tristeza Virus. Viruses. 2025; 17(4):508. https://doi.org/10.3390/v17040508
Chicago/Turabian StyleBar-Joseph, Moshe. 2025. "On the Trail of the Longest Plant RNA Virus: Citrus Tristeza Virus" Viruses 17, no. 4: 508. https://doi.org/10.3390/v17040508
APA StyleBar-Joseph, M. (2025). On the Trail of the Longest Plant RNA Virus: Citrus Tristeza Virus. Viruses, 17(4), 508. https://doi.org/10.3390/v17040508