Mycoviruses in Entomopathogenic Fungi
Abstract
1. Introduction
2. Incidence of Mycoviruses in Entomopathogenic Fungi
2.1. Cordycipitaceae: Beauveria and Cordyceps
2.2. Clavicipitaceae: Metarhizium
2.3. Hypocreaceae: Trichoderma
2.4. Entomophthoraceae: Entomophthora
3. The EPF Virome
3.1. dsRNA Viruses
3.1.1. Pseudototiviridae and Orthototiviridae
3.1.2. Amalgaviridae
3.1.3. Fusagraviridae
3.1.4. Partitiviridae
3.1.5. Curvulaviridae
3.1.6. Chrysoviridae
3.1.7. Alternaviridae
3.1.8. Polymycoviridae
3.2. ssRNA Viruses
4. Effects of Mycoviruses on the Fungal Host
4.1. Beauveria spp. and Cordyceps spp. Biological Effects
4.2. Metarhizium spp. Biological Effects
4.3. Trichoderma spp. Biological Effects
4.4. Entomophthora spp. Biological Effects
5. Knowledge Gaps and Future Perspectives in EPF Mycovirology
5.1. Molecular Advances on Mycovirology
5.2. Environmental Implications on Mycoviruses Transmission
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hollings, M. Viruses associated with a die-back disease of cultivated mushroom. Nature 1962, 196, 962–965. [Google Scholar] [CrossRef]
- Choi, G.H.; Nuss, D.L. Hypovirulence of chestnut blight fungus conferred by an infectious viral cDNA. Science 1992, 257, 800–803. [Google Scholar] [CrossRef]
- Sabanadzovic, S.; Abergel, C.; Ayllón, M.A.; Botella, L.; Canuti, M.; Chiba, Y.; Claverie, J.; Coutts, R.H.A.; Daghino, S.; Donaire, L.; et al. Summary of taxonomy changes ratified by the International Committee on Taxonomy of Viruses (ICTV) from the Fungal and Protist Viruses Subcommittee, 2025. J. Gen. Virol. 2025, 106, 002115. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Castón, J.R.; Hillman, B.I.; Kim, D.-H.; Kondo, H.; Nibert, M.L.; Lanza, D.; Sabanadzovic, S.; Stenger, D.; Wu, M.; et al. Reorganize the Order Ghabrivirales to Create Three New Suborders, 15 New Families, 12 New Genera, and 176 New Species. 2023. Available online: https://ictv.global/ictv/proposals/2023.015F.Ghabrivirales_reorg.zip (accessed on 11 August 2025).
- Simmonds, P.; Adriaenssens, E.M.; Lefkowitz, E.J.; Oksanen, H.M.; Siddell, S.G.; Zerbini, F.M.; Alfenas-Zerbini, P.; Aylward, F.O.; Dempsey, D.M.; Dutilh, B.E.; et al. Changes to Virus Taxonomy and the ICTV Statutes Ratified by the International Committee on Taxonomy of Viruses (2024). Arch. Virol. 2024, 169, 236. [Google Scholar] [CrossRef] [PubMed]
- Billerbeck, S.; Walker, R.S.K.; Pretorius, I.S. Killer Yeasts: Expanding Frontiers in the Age of Synthetic Biology. Trends Biotechnol. 2024, 42, 1081–1096. [Google Scholar] [CrossRef]
- Lee, K.M.; Yu, J.; Son, M.; Lee, Y.W.; Kim, K.H. Transmission of Fusarium boothii Mycovirus via Protoplast Fusion Causes Hypovirulence in Other Phytopathogenic Fungi. PLoS ONE 2011, 6, e21629. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Cheng, J.; Tang, J.; Fu, Y.; Jiang, D.; Baker, T.S.; Ghabrial, S.A.; Xie, J. A Novel Partitivirus That Confers Hypovirulence on Plant Pathogenic Fungi. J. Virol. 2014, 88, 10120–10133. [Google Scholar] [CrossRef]
- Zhong, J.; Chen, D.; Zhu, H.J.; Gao, B.D.; Zhou, Q. Hypovirulence of Sclerotium rolfsii Caused by Associated RNA Mycovirus. Front. Microbiol. 2016, 7, 1798. [Google Scholar] [CrossRef]
- Muñoz-Adalia, E.J.; Fernández, M.M.; Diez, J.J. The Use of Mycoviruses in the Control of Forest Diseases. Biocontrol Sci. Technol. 2016, 26, 577–604. [Google Scholar] [CrossRef]
- van de Sande, W.W.J.; Vonk, A.G. Mycovirus Therapy for Invasive Pulmonary Aspergillosis? Med. Mycol. 2019, 57, S179–S188. [Google Scholar] [CrossRef]
- Rocha, M.C.; Lerer, V.; Adeoye, J.; Hayby, H.; Fabre, M.L.; Barber, A.E.; Shlezinger, N. Aspergillus fumigatus DsRNA Virus Promotes Fungal Fitness and Pathogenicity in the Mammalian Host. Nat. Microbiol. 2025, 10, 2179–2193. [Google Scholar] [CrossRef] [PubMed]
- Kotta-Loizou, I.; Coutts, R.H.A. Mycoviruses in Aspergilli: A Comprehensive Review. Front. Microbiol. 2017, 8, 1699. [Google Scholar] [CrossRef] [PubMed]
- Battersby, J.L.; Stevens, D.A.; Coutts, R.H.A.; Havlíček, V.; Hsu, J.L.; Sass, G.; Kotta-Loizou, I. The Expanding Mycovirome of Aspergilli. J. Fungi 2024, 10, 585. [Google Scholar] [CrossRef]
- Kvakkestad, V.; Sundbye, A.; Gwynn, R.; Klingen, I. Authorization of Microbial Plant Protection Products in the Scandinavian Countries: A Comparative Analysis. Environ. Sci. Policy 2020, 106, 115–124. [Google Scholar] [CrossRef]
- Schaffner, U.; Heimpel, G.E.; Mills, N.J.; Muriithi, B.W.; Thomas, M.B.; Gc, Y.D.; Wyckhuys, K.A.G. Biological Control for One Health. Sci. Total Environ. 2024, 951, 175800. [Google Scholar] [CrossRef]
- Wyckhuys, K.A.G.; Lu, Y.; Zhou, W.; Cock, M.J.W.; Naranjo, S.E.; Fereti, A.; Williams, F.E.; Furlong, M.J. Ecological Pest Control Fortifies Agricultural Growth in Asia–Pacific Economies. Nat. Ecol. Evol. 2020, 4, 1522–1530. [Google Scholar] [CrossRef]
- de Faria, M.R.; Wraight, S.P. Mycoinsecticides and Mycoacaricides: A Comprehensive List with Worldwide Coverage and International Classification of Formulation Types. Biol. Control 2007, 43, 237–256. [Google Scholar] [CrossRef]
- Olson, S. An Analysis of the Biopesticide Market Now and Where It Is Going. Outlooks Pest Manag. 2015, 26, 203–206. [Google Scholar] [CrossRef]
- Muñiz-Paredes, F.; Miranda-Hernández, F.; Loera, O. Production of Conidia by Entomopathogenic Fungi: From Inoculants to Final Quality Tests. World J. Microbiol. Biotechnol. 2017, 33, 57. [Google Scholar] [CrossRef]
- Mascarin, G.M.; Lopes, R.B.; Delalibera, Í.; Fernandes, É.K.K.; Luz, C.; Faria, M. Current Status and Perspectives of Fungal Entomopathogens Used for Microbial Control of Arthropod Pests in Brazil. J. Invertebr. Pathol. 2018, 165, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Bogo, M.R.; Queiroz, M.V.; Silva, D.M.; Giménez, M.P.; Azevedo, J.L.; Schrank, A. Double-Stranded RNA and Isometric Virus-like Particles in the Entomopathogenic Fungus Metarhizium anisopliae. Mycol. Res. 1996, 100, 1468–1472. [Google Scholar] [CrossRef]
- Leal, S.C.M.; Bertioli, D.J.; Ball, B.V.; Butt, T.M. Presence of Double-stranded RNAs and Virus-like Particles in the Entomopathogenic Fungus Metarhizium anisopliae. Biocontrol Sci. Technol. 1994, 4, 89–94. [Google Scholar] [CrossRef]
- de la Paz Giménez-Pecci, M.; Bogo, M.R.; Santi, L.; de Moraes, C.K.; Corrêa, C.T.; Henning Vainstein, M.; Schrank, A. Characterization of Mycoviruses and Analyses of Chitinase Secretion in the Biocontrol Fungus Metarhizium anisopliae. Curr. Microbiol. 2002, 45, 334–339. [Google Scholar] [CrossRef]
- Herrero, N.; Dueñas, E.; Quesada-Moraga, E.; Zabalgogeazcoa, I. Prevalence and Diversity of Viruses in the Entomopathogenic Fungus Beauveria bassiana. Appl. Environ. Microbiol. 2012, 78, 8523–8530. [Google Scholar] [CrossRef]
- Herrero, N. Identification and Sequence Determination of a New Chrysovirus Infecting the Entomopathogenic Fungus Isaria javanica. Arch. Virol. 2017, 162, 1113–1117. [Google Scholar] [CrossRef]
- Lee, S.H.; Yun, S.-H.; Chun, J.; Kim, D.-H. Characterization of a Novel DsRNA Mycovirus of Trichoderma atroviride NFCF028. Arch. Virol. 2017, 162, 1073–1077. [Google Scholar] [CrossRef]
- Nibert, M.; Debat, H.; Manny, A.; Grigoriev, I.; De Fine Licht, H. Mitovirus and Mitochondrial Coding Sequences from Basal Fungus Entomophthora muscae. Viruses 2019, 11, 351. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Yang, G.; Shi, N.; Huang, B. Molecular Characterization of a New Partitivirus, MbPV1, Isolated from the Entomopathogenic Fungus Metarhizium brunneum in China. Arch. Virol. 2020, 165, 765–769. [Google Scholar] [CrossRef]
- Rehner, S.A.; Minnis, A.M.; Sung, G.H.; Luangsa-ard, J.J.; Devotto, L.; Humber, R.A. Phylogeny and Systematics of the Anamorphic, Entomopathogenic Genus Beauveria. Mycologia 2011, 103, 1055–1073. [Google Scholar] [CrossRef] [PubMed]
- Boomsma, J.J.; Jensen, A.B.; Meyling, N.V.; Eilenberg, J. Evolutionary Interaction Networks of Insect Pathogenic Fungi. Annu. Rev. Entomol. 2014, 59, 467–485. [Google Scholar] [CrossRef]
- Rohrlich, C.; Merle, I.; Hassani, I.M.; Verger, M.; Zuin, M.; Besse, S.; Robène, I.; Nibouche, S.; Costet, L. Variation in Physiological Host Range in Three Strains of Two Species of the Entomopathogenic Fungus Beauveria. PLoS ONE 2018, 13, e0199199. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, G. Review on Safety of the Entomopathogenic Fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci. Technol. 2007, 17, 553–596. [Google Scholar] [CrossRef]
- Melzer, M.J.; Bidochka, M.J. Diversity of Double-Stranded RNA Viruses within Populations of Entomopathogenic Fungi and Potential Implications for Fungal Growth and Virulence. Mycologia 1998, 90, 586. [Google Scholar] [CrossRef]
- Dalzoto, P.R.; Glienke-Blanco, C.; Kava-Cordeiro, V.; Ribeiro, J.Z.; Kitajima, E.W.; Azevedo, J.L. Horizontal Transfer and Hypovirulence Associated with Double-Stranded RNA in Beauveria bassiana. Mycol. Res. 2006, 110, 1475–1481. [Google Scholar] [CrossRef]
- Yie, S.W.; Khalifa, M.E.; Hahn, T.; Pearson, M.N. Molecular Characterization of a Novel Victorivirus from the Entomopathogenic Fungus Beauveria bassiana. Arch. Virol. 2014, 159, 1321–1327. [Google Scholar] [CrossRef]
- Kotta-Loizou, I.; Coutts, R.H.A. Studies on the Virome of the Entomopathogenic Fungus Beauveria bassiana Reveal Novel dsRNA Elements and Mild Hypervirulence. PLoS Pathog. 2017, 13, e1006183. [Google Scholar] [CrossRef]
- Filippou, C.; Garrido-Jurado, I.; Meyling, N.V.; Quesada-Moraga, E.; Coutts, R.H.A.; Kotta-Loizou, I. Mycoviral Population Dynamics in Spanish Isolates of the Entomopathogenic Fungus Beauveria bassiana. Viruses 2018, 10, 665. [Google Scholar] [CrossRef]
- Ning, S.; Kang, Q.; Liu, H.; Lu, Y.; Sui, L.; Xu, W.; Shi, W.; Li, Q.; Zhang, Z. Interspecific Spread of dsRNA Mycoviruses in Entomogenous Fungi Beauveria spp. Virus Res. 2022, 322, 198933. [Google Scholar] [CrossRef] [PubMed]
- Shi, N.; Zhu, Q.; Yang, G.; Wang, P.; Huang, B. Prevalence and Species Diversity of DsRNA Mycoviruses from Beauveria bassiana Strains in the China’s Guniujiang Nature. Heliyon 2024, 10, e30186. [Google Scholar] [CrossRef] [PubMed]
- Hwang, D.Y.; Kim, S.; Woo, S.D.; Shin, T.Y.; Coutts, R.H.A.; Kotta-Loizou, I. Incidence of Putative RNA Mycoviruses in Entomopathogenic Fungi in Korea. Arch. Virol. 2023, 168, 145. [Google Scholar] [CrossRef]
- Zimmermann, G. The Entomopathogenic Fungi Isaria farinosa (Formerly Paecilomyces farinosus) and the Isaria fumosorosea Species Complex (Formerly Paecilomyces fumosoroseus): Biology, Ecology and Use in Biological Control. Biocontrol. Sci. Technol. 2008, 18, 865–901. [Google Scholar] [CrossRef]
- Kepler, R.M.; Luangsa-ard, J.J.; Hywel-Jones, N.L.; Quandt, C.A.; Sung, G.-H.; Rehner, S.A.; Aime, M.C.; Henkel, T.W.; Sanjuan, T.; Zare, R.; et al. A Phylogenetically-Based Nomenclature for Cordycipitaceae (Hypocreales). IMA Fungus 2017, 8, 335–353. [Google Scholar] [CrossRef]
- Olatunji, O.J.; Tang, J.; Tola, A.; Auberon, F.; Oluwaniyi, O.; Ouyang, Z. The Genus Cordyceps: An Extensive Review of Its Traditional Uses, Phytochemistry and Pharmacology. Fitoterapia 2018, 129, 293–316. [Google Scholar] [CrossRef]
- Das, G.; Shin, H.-S.; Leyva-Gómez, G.; Del Prado-Audelo, M.L.; Cortes, H.; Singh, Y.D.; Panda, M.K.; Mishra, A.P.; Nigam, M.; Saklani, S.; et al. Cordyceps spp.: A Review on Its Immune-Stimulatory and Other Biological Potentials. Front. Pharmacol. 2021, 11, 602364. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.K.; Sridhar, J.; Murali-Baskaran, R.K.; Senthil-Nathan, S.; Kaushal, P.; Dara, S.K.; Arthurs, S. Microbial Biopesticides for Insect Pest Management in India: Current Status and Future Prospects. J. Invertebr. Pathol. 2019, 165, 74–81. [Google Scholar] [CrossRef]
- Sani, I.; Ismail, S.I.; Abdullah, S.; Jalinas, J.; Jamian, S.; Saad, N. A Review of the Biology and Control of Whitefly, Bemisia babaci (Hemiptera: Aleyrodidae), with Special Reference to Biological Control Using Entomopathogenic Fungi. Insects 2020, 11, 619. [Google Scholar] [CrossRef] [PubMed]
- Wraight, S.P.; Carruthers, R.I.; Jaronski, S.T.; Bradley, C.A.; Garza, C.J.; Galaini-Wraight, S. Evaluation of the Entomopathogenic Fungi Beauveria bassiana and Paecilomyces fumosoroseus for Microbial Control of the Silverleaf Whitefly, Bemisia argentifolii. Biol. Control 2000, 17, 203–217. [Google Scholar] [CrossRef]
- Inglis, P.W.; Valadares-Inglis, M.C. Rapid Isolation of Double-Stranded RNAs from Entomopathogenic Species of the Fungus Paecilomyces Using a Commercial Minicolumn System. J. Virol. Methods 1997, 67, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Tiago, P.V.; Fungaro, M.H.P.; De Faria, M.R.; Furlaneto, M.C. Effects of Double-Stranded RNA in Metarhizium anisopliae var. acridum and Paecilomyces fumosoroseus on Protease Activities, Conidia Production, and Virulence. Can. J. Microbiol. 2004, 50, 335–339. [Google Scholar] [CrossRef]
- Bischoff, J.F.; Rehner, S.A.; Humber, R.A. A Multilocus Phylogeny of the Metarhizium anisopliae Lineage. Mycologia 2009, 101, 512–530. [Google Scholar] [CrossRef]
- Kepler, R.M.; Humber, R.A.; Bischoff, J.F.; Rehner, S.A. Clarification of Generic and Species Boundaries for Metarhizium and Related Fungi through Multigene Phylogenetics. Mycologia 2014, 106, 811–829. [Google Scholar] [CrossRef]
- Iwanicki, N.S.; Pereira, A.A.; Botelho, A.B.R.Z.; Rezende, J.M.; Moral, R.d.A.; Zucchi, M.I.; Delalibera Júnior, I. Monitoring of the Field Application of Metarhizium anisopliae in Brazil Revealed High Molecular Diversity of Metarhizium spp. in Insects, Soil and Sugarcane Roots. Sci. Rep. 2019, 9, 4443. [Google Scholar] [CrossRef] [PubMed]
- Tiago, P.V.; de Oliveira, N.T.; Lima, E.Á.d.L.A. Biological Insect Control Using Metarhizium anisopliae: Morphological, Molecular, and Ecological Aspects. Ciência Rural 2014, 44, 645–651. [Google Scholar] [CrossRef]
- Zimmermann, G. Review on Safety of the Entomopathogenic Fungus Metarhizium anisopliae. Biocontrol. Sci. Technol. 2007, 17, 879–920. [Google Scholar] [CrossRef]
- Hu, X.; Xiao, G.; Zheng, P.; Shang, Y.; Su, Y.; Zhang, X.; Liu, X.; Zhan, S.; St Leger, R.J.; Wang, C.; et al. Trajectory and Genomic Determinants of Fungal-Pathogen Speciation and Host Adaptation. Proc. Natl. Acad. Sci. USA 2014, 111, 16796–16801. [Google Scholar] [CrossRef]
- Bidochka, M.J.; Melzer, M.V.; Lavender, T.M.; Kamp, A.M. Genetically Related Isolates of the Entomopathogenic Fungus Metarhizium anisopliae Harbour Homologous DsRNA Viruses. Mycol. Res. 2000, 104, 1094–1097. [Google Scholar] [CrossRef]
- Perinotto, W.M.S.; Golo, P.S.; Coutinho Rodrigues, C.J.B.; Sá, F.A.; Santi, L.; Beys da Silva, W.O.; Junges, A.; Vainstein, M.H.; Schrank, A.; Salles, C.M.C.; et al. Enzymatic Activities and Effects of Mycovirus Infection on the Virulence of Metarhizium anisopliae in Rhipicephalus microplus. Vet. Parasitol. 2014, 203, 189–196. [Google Scholar] [CrossRef]
- Santos, V.; Mascarin, G.M.; da Silva Lopes, M.; Alves, M.C.D.F.; Rezende, J.M.; Gatti, M.S.V.; Dunlap, C.A.; Delalibera Júnior, Í. Identification of Double-Stranded RNA Viruses in Brazilian Strains of Metarhizium anisopliae and Their Effects on Fungal Biology and Virulence. Plant Gene 2017, 11, 49–58. [Google Scholar] [CrossRef]
- Poveda, J. Trichoderma as Biocontrol Agent against Pests: New Uses for a Mycoparasite. Biol. Control 2021, 159, 104634. [Google Scholar] [CrossRef]
- Dwisandi, R.F.; Miranti, M.; Prismantoro, D.; Alizadeh, M.; Mispan, M.S.; Hermawan, W.; Mohamed, Z.; Doni, F.; Joshi, R.C. Trichoderma for Managing Lepidopteran Insect Pests: Current Understanding and Future Directions. Biol. Control 2024, 197, 105604. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Mendoza-Mendoza, A.; Zeilinger, S.; Horwitz, B.A. Mycoparasitism as a Mechanism of Trichoderma-Mediated Suppression of Plant Diseases. Fungal Biol. Rev. 2022, 39, 15–33. [Google Scholar] [CrossRef]
- Basińska-Barczak, A.; Błaszczyk, L.; Szentner, K. Plant Cell Wall Changes in Common Wheat Roots as a Result of Their Interaction with Beneficial Fungi of Trichoderma. Cells 2020, 9, 2319. [Google Scholar] [CrossRef]
- Oszust, K.; Cybulska, J.; Frąc, M. How Do Trichoderma Genus Fungi Win a Nutritional Competition Battle against Soft Fruit Pathogens? A Report on Niche Overlap Nutritional Potentiates. Int. J. Mol. Sci. 2020, 21, 4235. [Google Scholar] [CrossRef]
- Błaszczyk, L.; Siwulski, M.; Sobieralski, K.; Lisiecka, J.; Jędryczka, M. Trichoderma spp.—Application and Prospects for Use in Organic Farming and Industry. J. Plant Prot. Res. 2014, 54, 309–317. [Google Scholar] [CrossRef]
- Rush, T.A.; Shrestha, H.K.; Gopalakrishnan Meena, M.; Spangler, M.K.; Ellis, J.C.; Labbé, J.L.; Abraham, P.E. Bioprospecting Trichoderma: A Systematic Roadmap to Screen Genomes and Natural Products for Biocontrol Applications. Front. Fungal Biol. 2021, 2, 716511. [Google Scholar] [CrossRef]
- Li, Y.; Steenwyk, J.L.; Chang, Y.; Wang, Y.; James, T.Y.; Stajich, J.E.; Spatafora, J.W.; Groenewald, M.; Dunn, C.W.; Hittinger, C.T.; et al. A Genome-Scale Phylogeny of the Kingdom Fungi. Curr. Biol. 2021, 31, 1653–1665.e5. [Google Scholar] [CrossRef]
- Spatafora, J.W.; Chang, Y.; Benny, G.L.; Lazarus, K.; Smith, M.E.; Berbee, M.L.; Bonito, G.; Corradi, N.; Grigoriev, I.; Gryganskyi, A.; et al. A Phylum-Level Phylogenetic Classification of Zygomycete Fungi Based on Genome-Scale Data. Mycologia 2016, 108, 1028–1046. [Google Scholar] [CrossRef] [PubMed]
- Elya, C.; De Fine Licht, H.H. The Genus Entomophthora: Bringing the Insect Destroyers into the Twenty-First Century. IMA Fungus 2021, 12, 34. [Google Scholar] [CrossRef] [PubMed]
- de Bekker, C.; Beckerson, W.C.; Elya, C. Mechanisms behind the Madness: How Do Zombie-Making Fungal Entomopathogens Affect Host Behavior To Increase Transmission? mBio 2021, 12, e0187221. [Google Scholar] [CrossRef]
- Gryganskyi, A.P.; Humber, R.A.; Stajich, J.E.; Mullens, B.; Anishchenko, I.M.; Vilgalys, R. Sequential Utilization of Hosts from Different Fly Families by Genetically Distinct, Sympatric Populations within the Entomophthora muscae Species Complex. PLoS ONE 2013, 8, e71168. [Google Scholar] [CrossRef] [PubMed]
- Licht, H.H.D.F.; Edwards, S.; Elya, C. Evolutionary Ecology of an Obligate and Behaviorally Manipulating Insect- Pathogenic Fungus, Entomophthora muscae. Authorea, 2023. [Google Scholar] [CrossRef]
- Stajich, J.E.; Lovett, B.; Lee, E.; Macias, A.M.; Hajek, A.E.; de Bivort, B.L.; Kasson, M.T.; De Fine Licht, H.H.; Elya, C. Signatures of Transposon-Mediated Genome Inflation, Host Specialization, and Photoentrainment in Entomophthora muscae and Allied Entomophthoralean Fungi. Elife 2024, 12, RP92863. [Google Scholar] [CrossRef] [PubMed]
- Becher, P.G.; Jensen, R.E.; Natsopoulou, M.E.; Verschut, V.; De Fine Licht, H.H. Infection of Drosophila suzukii with the Obligate Insect-Pathogenic Fungus Entomophthora muscae. J. Pest Sci. 2018, 91, 781–787. [Google Scholar] [CrossRef]
- Tobin, P.C.; Hajek, A.E. Release, Establishment, and Initial Spread of the Fungal Pathogen Entomophaga maimaiga in Island Populations of Lymantria dispar. Biol. Control 2012, 63, 31–39. [Google Scholar] [CrossRef]
- Myers, J.M.; Bonds, A.E.; Clemons, R.A.; Thapa, N.A.; Simmons, D.R.; Carter-House, D.; Ortanez, J.; Liu, P.; Miralles-Durán, A.; Desirò, A.; et al. Survey of Early-Diverging Lineages of Fungi Reveals Abundant and Diverse Mycoviruses. mBio 2020, 11, e02027-20. [Google Scholar] [CrossRef]
- Jo, Y.; Choi, H.; Chu, H.; Cho, W.K. Unveiling Mycoviromes Using Fungal Transcriptomes. Int. J. Mol. Sci. 2022, 23, 10926. [Google Scholar] [CrossRef]
- Coyle, M.C.; Elya, C.N.; Bronski, M.J.; Eisen, M.B. Entomophthovirus: An Insect-Derived Iflavirus That Infects a Behavior-Manipulating Fungal Pathogen of Dipterans. G3 Genes Genomes Genet. 2024, 14, jkae198. [Google Scholar] [CrossRef]
- Edwards, S.; Nielsen, K.N.; Will, I.; de Bekker, C.; Kotta-Loizou, I.; De Fine Licht, H.H. Pathogenic Fungus Expresses Effector Proteins in Combination with a Symbiotic Virus to Behaviourally Manipulate Housefly Hosts. Evol. Biol. 2024. [Google Scholar]
- Zhu, Q.; Shi, N.; Zhang, Y.; Peng, F.; Yang, G.; Huang, B. Complete Genome Sequence of a Novel Victorivirus Infecting Cicada Flower (Cordyceps chanhua). Arch. Virol. 2023, 168, 4. [Google Scholar] [CrossRef] [PubMed]
- da Silva Camargo, M.; Geremia, F.; Sbaraini, N.; Staats, C.C.; Filho, M.S.; Schrank, A. Molecular Characterization of a Novel Victorivirus (Order Ghabrivirales, Family Totiviridae) Infecting Metarhizium anisopliae. Arch. Virol. 2023, 168, 83. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, M.E.; MacDiarmid, R.M. A Novel Totivirus Naturally Occurring in Two Different Fungal Genera. Front. Microbiol. 2019, 10, 2318. [Google Scholar] [CrossRef]
- Kotta-Loizou, I.; Sipkova, J.; Coutts, R.H.A. Identification and Sequence Determination of a Novel Double-Stranded RNA Mycovirus from the Entomopathogenic Fungus Beauveria bassiana. Arch. Virol. 2015, 160, 873–875. [Google Scholar] [CrossRef]
- da Silva Camargo, M.; Wisnieswski, L.; Lasch, Í.; Gonçalves, E.P.; Kotta-Loizou, I.; Schrank, A. Genomic Characterisation of a Novel Unirnavirus Isolated from the Entomopathogenic Fungus Metarhizium acridum. Arch. Virol. 2025, 170, 218. [Google Scholar] [CrossRef]
- Liu, C.; Li, M.; Redda, E.T.; Mei, J.; Zhang, J.; Wu, B.; Jiang, X. A Novel Double-Stranded RNA Mycovirus Isolated from Trichoderma harzianum. Virol. J. 2019, 16, 113. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, J.; Zhang, H.; Qiu, D.; Guo, L. Two Novel Relative Double-Stranded RNA Mycoviruses Infecting Fusarium poae Strain SX63. Int. J. Mol. Sci. 2016, 17, 641. [Google Scholar] [CrossRef]
- Liu, H.; Fu, Y.; Xie, J.; Cheng, J.; Ghabrial, S.A.; Li, G.; Peng, Y.; Yi, X.; Jiang, D. Evolutionary Genomics of Mycovirus-Related DsRNA Viruses Reveals Cross-Family Horizontal Gene Transfer and Evolution of Diverse Viral Lineages. BMC Evol. Biol. 2012, 12, 91. [Google Scholar] [CrossRef] [PubMed]
- Kozlakidis, Z.; Hacker, C.V.; Bradley, D.; Jamal, A.; Phoon, X.; Webber, J.; Brasier, C.M.; Buck, K.W.; Coutts, R.H.A. Molecular Characterisation of Two Novel Double-Stranded RNA Elements from Phlebiopsis gigantea. Virus Genes 2009, 39, 132–136. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Hisano, S.; Eusebio-Cope, A.; Kondo, H.; Suzuki, N. A Transfectable Fusagravirus from a Japanese Strain of Cryphonectria carpinicola with Spherical Particles. Viruses 2022, 14, 1722. [Google Scholar] [CrossRef]
- Chun, J.; Na, B.; Kim, D.-H. Characterization of a Novel DsRNA Mycovirus of Trichoderma atroviride NFCF377 Reveals a Member of “Fusagraviridae” with Changes in Antifungal Activity of the Host Fungus. J. Microbiol. 2020, 58, 1046–1053. [Google Scholar] [CrossRef]
- Ghabrial, S.A.; Castón, J.R.; Jiang, D.; Nibert, M.L.; Suzuki, N. 50-plus Years of Fungal Viruses. Virology 2015, 479–480, 356–368. [Google Scholar] [CrossRef]
- Vainio, E.J.; Chiba, S.; Ghabrial, S.A.; Maiss, E.; Roossinck, M.; Sabanadzovic, S.; Suzuki, N.; Xie, J.; Nibert, M. ICTV Virus Taxonomy Profile: Partitiviridae. J. Gen. Virol. 2018, 99, 17–18. [Google Scholar] [CrossRef]
- Nibert, M.L.; Ghabrial, S.A.; Maiss, E.; Lesker, T.; Vainio, E.J.; Jiang, D.; Suzuki, N. Taxonomic Reorganization of Family Partitiviridae and Other Recent Progress in Partitivirus Research. Virus Res. 2014, 188, 128–141. [Google Scholar] [CrossRef]
- Chun, J.; Yang, H.-E.; Kim, D.-H. Identification of a Novel Partitivirus of Trichoderma harzianum NFCF319 and Evidence for the Related Antifungal Activity. Front. Plant Sci. 2018, 9, 1699. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Wang, P.; Sun, J.; Yin, Y.; Yang, G.; Huang, B. A Novel Betapartitivirus Isolated from Cordyceps militaris, an Edible-Medicinal Mushroom. Arch. Virol. 2024, 169, 159. [Google Scholar] [CrossRef]
- Zhu, Q.; Shi, N.; Wang, P.; Zhang, Y.; Peng, F.; Yang, G.; Huang, B. A Novel Gammapartitivirus That Causes Changes in Fungal Development and Multi-Stress Tolerance to Important Medicinal Fungus Cordyceps chanhua. J. Fungi 2022, 8, 1309. [Google Scholar] [CrossRef]
- Wang, P.; Yang, G.; Shi, N.; Huang, B. A Novel Gammapartitivirus from the Entomopathogenic Fungus Metarhizium brunneum. Arch. Virol. 2021, 166, 977–981. [Google Scholar] [CrossRef]
- Chun, J.; Yang, H.-E.; Kim, D.-H. Identification and Molecular Characterization of a Novel Partitivirus from Trichoderma atroviride NFCF394. Viruses 2018, 10, 578. [Google Scholar] [CrossRef]
- Xu, M.; Liu, H.; Jia, X.; Zou, X.; Lu, Y.; Sui, L.; Li, Q.; Zhang, Z.; Liu, J. The Complete Genome Sequences of a Negative Single-Stranded RNA Virus and a Double-Stranded RNA Virus Coinfecting the Entomopathogenic Fungus Beauveria bassiana Vuillemin. Arch. Virol. 2024, 169, 42. [Google Scholar] [CrossRef] [PubMed]
- Ghabrial, S.A. Chrysoviruses. In Encyclopedia of Virology; Elsevier: Amsterdam, The Netherlands, 2008; pp. 503–513. [Google Scholar]
- Kotta-Loizou, I.; Castón, J.R.; Coutts, R.H.A.; Hillman, B.I.; Jiang, D.; Kim, D.-H.; Moriyama, H.; Suzuki, N. ICTV Virus Taxonomy Profile: Chrysoviridae. J. Gen. Virol. 2020, 101, 143–144. [Google Scholar] [CrossRef]
- Gilbert, K.B.; Holcomb, E.E.; Allscheid, R.L.; Carrington, J.C. Hiding in Plain Sight: New Virus Genomes Discovered via a Systematic Analysis of Fungal Public Transcriptomes. PLoS ONE 2019, 14, e0219207. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Kang, Q.; Zhang, S.; Hai, D.; Lu, Y.; Sui, L.; Zhang, Z.; Li, Q. The Complete Genome Sequence of a Novel Chrysovirus from the Entomopathogenic Fungus Beauveria bassiana Vuillemin. Arch. Virol. 2021, 166, 3443–3447. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, N.; Wang, P.; Zhu, Q.; Yang, G.; Huang, B. Molecular Characterization of a Novel Alternavirus Infecting the Entomopathogenic Fungus Cordyceps chanhua. Arch. Virol. 2022, 167, 1467–1470. [Google Scholar] [CrossRef]
- Kotta-Loizou, I.; Coutts, R.H.A. ICTV Virus Taxonomy Profile: Polymycoviridae 2022. J. Gen. Virol. 2022, 103, 001747. [Google Scholar] [CrossRef]
- He, L.; Wang, P.; Yang, G.; Chen, X.; Huang, B. A Novel Polymycovirus Infecting the Entomopathogenic Fungus Metarhizium brunneum. Arch. Virol. 2023, 168, 6. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Yang, G.; Lu, H.; Huang, B. Infection with a Novel Polymycovirus Enhances Growth, Conidiation and Sensitivity to UV-B Irradiation of the Entomopathogenic Fungus Metarhizium anisopliae. Front. Microbiol. 2023, 14, 1214133. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Jiang, X.; Tan, Z.; Wang, R.; Shang, Q.; Li, H.; Xu, S.; Aranda, M.A.; Wu, B. An Outstandingly Rare Occurrence of Mycoviruses in Soil Strains of the Plant-Beneficial Fungi from the Genus Trichoderma and a Novel Polymycoviridae Isolate. Microbiol. Spectr. 2023, 11, e0522822. [Google Scholar] [CrossRef]
- Hillman, B.I.; Cai, G. The Family Narnaviridae: Simplest of RNA Viruses. Adv. Virus Res. 2013, 86, 149–176. [Google Scholar]
- Wang, J.; Li, C.; Song, P.; Qiu, R.; Song, R.; Li, X.; Ni, Y.; Zhao, H.; Liu, H.; Li, S. Molecular and Biological Characterization of the First Mymonavirus Identified in Fusarium oxysporum. Front. Microbiol. 2022, 13, 870204. [Google Scholar] [CrossRef]
- Jiāng, D.; Ayllón, M.A.; Marzano, S.-Y.L.; Kondō, H.; Turina, M. ICTV Virus Taxonomy Profile: Mymonaviridae 2022. J. Gen. Virol. 2022, 103, 001787. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Xie, J.; Cheng, J.; Fu, Y.; Li, G.; Yi, X.; Jiang, D. Fungal Negative-Stranded RNA Virus That Is Related to Bornaviruses and Nyaviruses. Proc. Natl. Acad. Sci. USA 2014, 111, 12205–12210. [Google Scholar] [CrossRef]
- Cao, X.; Liu, B.; Wang, Z.; Pang, T.; Sun, L.; Kondo, H.; Li, J.; Andika, I.B.; Chi, S. Identification of a Novel Member of the Genus Laulavirus (Family Phenuiviridae) from the Entomopathogenic Ascomycete Fungus Cordyceps javanica. Arch. Virol. 2024, 169, 166. [Google Scholar] [CrossRef] [PubMed]
- Bertazzon, N.; Chitarra, W.; Angelini, E.; Nerva, L. Two New Putative Plant Viruses from Wood Metagenomics Analysis of an Esca Diseased Vineyard. Plants 2020, 9, 835. [Google Scholar] [CrossRef] [PubMed]
- Tokarz, R.; Sameroff, S.; Tagliafierro, T.; Jain, K.; Williams, S.H.; Cucura, D.M.; Rochlin, I.; Monzon, J.; Carpi, G.; Tufts, D.; et al. Identification of Novel Viruses in Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis Ticks. mSphere 2018, 3, e00614-17. [Google Scholar] [CrossRef]
- You, J.; Zhou, K.; Liu, X.; Wu, M.; Yang, L.; Zhang, J.; Chen, W.; Li, G. Defective RNA of a Novel Mycovirus with High Transmissibility Detrimental to Biocontrol Properties of Trichoderma spp. Microorganisms 2019, 7, 507. [Google Scholar] [CrossRef]
- Edwards, S.; Naundrup, A.; Becher, P.G.; De Fine Licht, H.H. Patterns of Genotype-Specific Interactions in an Obligate Host-Specific Insect Pathogenic Fungus. J. Evol. Biol. 2025, 38, 225–239. [Google Scholar] [CrossRef]
- Webster, C.L.; Waldron, F.M.; Robertson, S.; Crowson, D.; Ferrari, G.; Quintana, J.F.; Brouqui, J.-M.; Bayne, E.H.; Longdon, B.; Buck, A.H.; et al. The Discovery, Distribution, and Evolution of Viruses Associated with Drosophila melanogaster. PLoS Biol. 2015, 13, e1002210. [Google Scholar] [CrossRef]
- Andika, I.B.; Cao, X.; Kondo, H.; Sun, L. The Intriguing Phenomenon of Cross-Kingdom Infections of Plant and Insect Viruses to Fungi: Can Other Animal Viruses Also Cross-Infect Fungi? PLoS Pathog. 2023, 19, e1011726. [Google Scholar] [CrossRef]
- Li, Z.; Su, S.; Hamilton, M.; Yan, L.; Chen, Y. The Ability to Cause Infection in a Pathogenic Fungus Uncovers a New Biological Feature of Honey Bee Viruses. J. Invertebr. Pathol. 2014, 120, 18–22. [Google Scholar] [CrossRef]
- Samal, I.; Bhoi, T.K.; Mahanta, D.K.; Komal, J. Molecular Basis of Entomopathogenesis and the Way Forward. In Entomopathogenic Fungi; Springer Nature: Singapore, 2024; pp. 481–505. [Google Scholar]
- Wu, S.; Toews, M.D.; Oliveira-Hofman, C.; Behle, R.W.; Simmons, A.M.; Shapiro-Ilan, D.I. Environmental Tolerance of Entomopathogenic Fungi: A New Strain of Cordyceps javanica Isolated from a Whitefly Epizootic versus Commercial Fungal Strains. Insects 2020, 11, 711. [Google Scholar] [CrossRef]
- Zaki, O.; Weekers, F.; Thonart, P.; Tesch, E.; Kuenemann, P.; Jacques, P. Limiting Factors of Mycopesticide Development. Biol. Control 2020, 144, 104220. [Google Scholar] [CrossRef]
- Qayyum, M.A.; Saeed, S.; Wakil, W.; Nawaz, A.; Iqbal, N.; Yasin, M.; Chaurdhry, M.A.; Bashir, M.A.; Ahmed, N.; Riaz, H.; et al. Diversity and Correlation of Entomopathogenic and Associated Fungi with Soil Factors. J. King Saud Univ. Sci. 2021, 33, 101520. [Google Scholar] [CrossRef]
- Fernandes, É.K.K.; Rangel, D.E.N.; Moraes, Á.M.L.; Bittencourt, V.R.E.P.; Roberts, D.W. Cold Activity of Beauveria and Metarhizium, and Thermotolerance of Beauveria. J. Invertebr. Pathol. 2008, 98, 69–78. [Google Scholar] [CrossRef]
- Fernandes, É.K.K.; Rangel, D.E.N.; Braga, G.U.L.; Roberts, D.W. Tolerance of Entomopathogenic Fungi to Ultraviolet Radiation: A Review on Screening of Strains and Their Formulation. Curr. Genet. 2015, 61, 427–440. [Google Scholar] [CrossRef]
- Sbaraini, N.; Junges, Â.; de Oliveira, E.S.; Webster, A.; Vainstein, M.H.; Staats, C.C.; Schrank, A. The Deletion of ChiMaD1, a Horizontally Acquired Chitinase of Metarhizium anisopliae, Led to Higher Virulence towards the Cattle Tick (Rhipicephalus microplus). FEMS Microbiol. Lett. 2021, 368, fnab066. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.; Dong, G.; Chen, F. Development of Cordyceps javanica BE01 with Enhanced Virulence against Hyphantria cunea Using Polyethylene Glycol-Mediated Protoplast Transformation. Front. Microbiol. 2022, 13, 972425. [Google Scholar] [CrossRef]
- Hu, Y.; Wu, Y.; Song, J.; Ma, M.; Xiao, Y.; Zeng, B. Advancing Cordyceps militaris Industry: Gene Manipulation and Sustainable Biotechnological Strategies. Bioengineering 2024, 11, 783. [Google Scholar] [CrossRef]
- Wang, C.; St Leger, R.J. A Scorpion Neurotoxin Increases the Potency of a Fungal Insecticide. Nat. Biotechnol. 2007, 25, 1455–1456. [Google Scholar] [CrossRef]
- McCabe, P.M.; Pfeiffer, P.; Van Alfen, N.K. The Influence of dsRNA Viruses on the Biology of Plant Pathogenic Fungi. Trends Microbiol. 1999, 7, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Lerer, V.; Shlezinger, N. Inseparable Companions: Fungal Viruses as Regulators of Fungal Fitness and Host Adaptation. Front. Cell. Infect. Microbiol. 2022, 12, 1020608. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.K.; Furlaneto, M.C.; Sosa-Gomez, D.R.; Faria, M.R.; Pelegrinelli Fungaro, M.H. Double-Stranded RNA in the Entomopathogenic Fungus Metarhizium flavoviride. Curr. Genet. 1999, 36, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.A.; Baig, D.I.; Bhatti, M.F. An Overview of Mycoviral Curing Strategies Used in Evaluating Fungal Host Fitness. Mol. Biotechnol. 2023, 65, 1547–1564. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, W.; Lu, Y.; Kang, Q.; Sui, L.; Liu, H.; Zhao, Y.; Zou, X.; Li, Q. Hypovirulence-Associated Mycovirus Epidemics Cause Pathogenicity Degeneration of Beauveria bassiana in the Field. Virol. J. 2023, 20, 255. [Google Scholar] [CrossRef]
- Rueda-Maíllo, F.; Garrido-Jurado, I.; Kotta-Loizou, I.; Quesada-Moraga, E. A Mycoviral Infection Drives Virulence and Ecological Fitness of the Entomopathogenic Fungus Beauveria bassiana. J. Invertebr. Pathol. 2025, 209, 108251. [Google Scholar] [CrossRef]
- Kang, Q.; Ning, S.; Sui, L.; Lu, Y.; Zhao, Y.; Shi, W.; Li, Q.; Zhang, Z. Transcriptomic Analysis of Entomopathogenic Fungus Beauveria bassiana Infected by a Hypervirulent Polymycovirus BbPmV-4. Fungal Biol. 2023, 127, 958–967. [Google Scholar] [CrossRef]
- Filippou, C.; Diss, R.M.; Daudu, J.O.; Coutts, R.H.A.; Kotta-Loizou, I. The Polymycovirus-Mediated Growth Enhancement of the Entomopathogenic Fungus Beauveria bassiana Is Dependent on Carbon and Nitrogen Metabolism. Front. Microbiol. 2021, 12, 606366. [Google Scholar] [CrossRef] [PubMed]
- Sui, L.; Lu, Y.; Xu, M.; Liu, J.; Zhao, Y.; Li, Q.; Zhang, Z. Insect Hypovirulence-Associated Mycovirus Confers Entomopathogenic Fungi with Enhanced Resistance against Phytopathogens. Virulence 2024, 15, 2401978. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Yang, G.; Shi, N.; Zhao, C.; Hu, F.; Coutts, R.H.A.; Kotta-Loizou, I.; Huang, B. A Novel Partitivirus Orchestrates Conidiation, Stress Response, Pathogenicity, and Secondary Metabolism of the Entomopathogenic Fungus Metarhizium majus. PLoS Pathog. 2023, 19, e1011397. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, P.; Wu, N.; Liu, W.; Liu, Y.; Jin, H.; Francis, F.; Wang, X. Transfection of Entomopathogenic Metarhizium Species with a Mycovirus Confers Hypervirulence against Two Lepidopteran Pests. Proc. Natl. Acad. Sci. USA 2024, 121, e2320572121. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.-H.; Lee, S.H.; So, K.-K.; Kim, J.-M.; Kim, D.-H. Incidence of Diverse DsRNA Mycoviruses in Trichoderma spp. Causing Green Mold Disease of Shiitake Lentinula Edodes. FEMS Microbiol. Lett. 2016, 363, fnw220. [Google Scholar] [CrossRef]
- You, J.; Hu, Z.; Li, C.; Yang, H.; Zhu, L.; Cao, B.; Song, R.; Gu, W. The Effect of Trichoderma harzianum hypovirus 1 (ThHV1) and Its Defective RNA ThHV1-S on the Antifungal Activity and Metabolome of Trichoderma koningiopsis T-51. J. Fungi 2023, 9, 175. [Google Scholar] [CrossRef]
- Wang, R.; Liu, C.; Jiang, X.; Tan, Z.; Li, H.; Xu, S.; Zhang, S.; Shang, Q.; Deising, H.B.; Behrens, S.-E.; et al. The Newly Identified Trichoderma harzianum partitivirus (ThPV2) Does Not Diminish Spore Production and Biocontrol Activity of Its Host. Viruses 2022, 14, 1532. [Google Scholar] [CrossRef] [PubMed]
- Ros, V.I.D.; van Houte, S.; Hemerik, L.; van Oers, M.M. Baculovirus-induced Tree-top Disease: How Extended Is the Role of Egt as a Gene for the Extended Phenotype? Mol. Ecol. 2015, 24, 249–258. [Google Scholar] [CrossRef]
- Dheilly, N.M.; Maure, F.; Ravallec, M.; Galinier, R.; Doyon, J.; Duval, D.; Leger, L.; Volkoff, A.-N.; Missé, D.; Nidelet, S.; et al. Who Is the Puppet Master? Replication of a Parasitic Wasp-Associated Virus Correlates with Host Behaviour Manipulation. Proc. R. Soc. B Biol. Sci. 2015, 282, 20142773. [Google Scholar] [CrossRef]
- Urayama, S.; Takaki, Y.; Nunoura, T. FLDS: A Comprehensive dsRNA Sequencing Method for Intracellular RNA Virus Surveillance. Microbes Environ. 2016, 31, 33–40. [Google Scholar] [CrossRef]
- Candresse, T.; Svanella-Dumas, L.; Marais, A.; Depasse, F.; Faure, C.; Lefebvre, M. Identification of Seven Additional Genome Segments of Grapevine-Associated Jivivirus 1. Viruses 2022, 15, 39. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, C.; Qiu, Y.; Liao, R.; Xuan, Z.; Ren, F.; Dong, Y.; Xie, X.; Han, Y.; Wu, D.; et al. Conserved Untranslated Regions of Multipartite Viruses: Natural Markers of Novel Viral Genomic Components and Tags of Viral Evolution. Virus Evol. 2024, 10, veae004. [Google Scholar] [CrossRef]
- Stone, L.B.L.; Bidochka, M.J. The Multifunctional Lifestyles of Metarhizium: Evolution and Applications. Appl. Microbiol. Biotechnol. 2020, 104, 9935–9945. [Google Scholar] [CrossRef]
- Ortiz-Urquiza, A. The Split Personality of Beauveria bassiana: Understanding the Molecular Basis of Fungal Parasitism and Mutualism. mSystems 2021, 6, e0076621. [Google Scholar] [CrossRef] [PubMed]
- Macías-Rodríguez, L.; Contreras-Cornejo, H.A.; Adame-Garnica, S.G.; del-Val, E.; Larsen, J. The Interactions of Trichoderma at Multiple Trophic Levels: Inter-Kingdom Communication. Microbiol. Res. 2020, 240, 126552. [Google Scholar] [CrossRef]
- Myers, J.M.; James, T.Y. Mycoviruses. Curr. Biol. 2022, 32, R150–R155. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; Xu, R.; Boland, G.J. Hypovirulence-Associated Double-Stranded RNA from Sclerotinia homoeocarpa Is Conspecific with Ophiostoma novo-ulmi mitovirus 3a-Ld. Phytopathology 2003, 93, 1407–1414. [Google Scholar] [CrossRef] [PubMed]
- Velasco, L.; Arjona-Girona, I.; Ariza-Fernández, M.T.; Cretazzo, E.; López-Herrera, C. A Novel Hypovirus Species From Xylariaceae Fungi Infecting Avocado. Front. Microbiol. 2018, 9, 778. [Google Scholar] [CrossRef]
- Mu, F.; Xie, J.; Cheng, S.; You, M.P.; Barbetti, M.J.; Jia, J.; Wang, Q.; Cheng, J.; Fu, Y.; Chen, T.; et al. Virome Characterization of a Collection of S. sclerotiorum from Australia. Front. Microbiol. 2018, 8, 2540. [Google Scholar] [CrossRef]
- Hai, D.; Li, J.; Jiang, D.; Cheng, J.; Fu, Y.; Xiao, X.; Yin, H.; Lin, Y.; Chen, T.; Li, B.; et al. Plants Interfere with Non-Self Recognition of a Phytopathogenic Fungus via Proline Accumulation to Facilitate Mycovirus Transmission. Nat. Commun. 2024, 15, 4748. [Google Scholar] [CrossRef]
- Nerva, L.; Varese, G.C.; Falk, B.W.; Turina, M. Mycoviruses of an Endophytic Fungus Can Replicate in Plant Cells: Evolutionary Implications. Sci. Rep. 2017, 7, 1908. [Google Scholar] [CrossRef]
- Liu, S.; Xie, J.; Cheng, J.; Li, B.; Chen, T.; Fu, Y.; Li, G.; Wang, M.; Jin, H.; Wan, H.; et al. Fungal DNA Virus Infects a Mycophagous Insect and Utilizes It as a Transmission Vector. Proc. Natl. Acad. Sci. USA 2016, 113, 12803–12808. [Google Scholar] [CrossRef]
- Franco, F.P.; Túler, A.C.; Gallan, D.Z.; Gonçalves, F.G.; Favaris, A.P.; Peñaflor, M.F.G.V.; Leal, W.S.; Moura, D.S.; Bento, J.M.S.; Silva-Filho, M.C. Fungal Phytopathogen Modulates Plant and Insect Responses to Promote Its Dissemination. ISME J. 2021, 15, 3522–3533. [Google Scholar] [CrossRef]
- Gallan, D.Z.; Penteriche, A.B.; Henrique, M.O.; Silva-Filho, M.C. Sugarcane Multitrophic Interactions: Integrating Belowground and Aboveground Organisms. Genet. Mol. Biol. 2023, 46, e20220163. [Google Scholar] [CrossRef]
- Márquez, L.M.; Redman, R.S.; Rodriguez, R.J.; Roossinck, M.J. A Virus in a Fungus in a Plant: Three-Way Symbiosis Required for Thermal Tolerance. Science 2007, 315, 513–515. [Google Scholar] [CrossRef] [PubMed]
- Jom-in, S.; Akarapisan, A. Characterization of Double-Stranded RNA in Trichoderma spp. Isolates in Chiang Mai Province. J. Agric. Technol. 2009, 5, 261–270. [Google Scholar]
- Pagnoni, S.; Oufensou, S.; Balmas, V.; Bulgari, D.; Gobbi, E.; Forgia, M.; Migheli, Q.; Turina, M. A Collection of Trichoderma Isolates from Natural Environments in Sardinia Reveals a Complex Virome That Includes Negative-Sense Fungal Viruses with Unprecedented Genome Organizations. Virus Evol. 2023, 9, vead042. [Google Scholar] [CrossRef]
- Azevedo, A.C.S.; Sosa-Gómez, D.R.; Faria, M.R.; Fungaro, M.H.P. Effects of Double-Stranded RNA on Virulence of Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes) against the Silverleaf Whitefly, Bemisia tabaci Strain B (Homoptera: Aleyrodidae). Genet. Mol. Biol. 2000, 23, 61–63. [Google Scholar] [CrossRef]
- Shi, N.; Yang, G.; Wang, P.; Wang, Y.; Yu, D.; Huang, B. Complete Genome Sequence of a Novel Partitivirus from the Entomogenous Fungus Beauveria bassiana in China. Arch. Virol. 2019, 164, 3141–3144. [Google Scholar] [CrossRef]
- Kang, Q.; Li, L.; Li, J.; Zhang, S.; Xie, J.; Li, Q.; Zhang, Z. A Novel Polymycovirus with Defective RNA Isolated from the Entomopathogenic Fungus Beauveria bassiana Vuillemin. Arch. Virol. 2021, 166, 3487–3492. [Google Scholar] [CrossRef] [PubMed]
- Shi, N.; Hu, F.; Wang, P.; Zhang, Y.; Zhu, Q.; Yang, G.; Huang, B. Molecular Characterization of Two DsRNAs That Could Correspond to the Genome of a New Mycovirus That Infects the Entomopathogenic Fungus Beauveria bassiana. Arch. Virol. 2021, 166, 3233–3237. [Google Scholar] [CrossRef]
- Wang, P.; Yang, G.; Shi, N.; Huang, B. Molecular Characterization of a Novel Double-Stranded RNA Virus Infecting the Entomopathogenic Fungus Metarhizium brunneum. Arch. Microbiol. 2022, 204, 606. [Google Scholar] [CrossRef]
- Oliveira, C.N.; de Sousa Santos, Y.; de Rezende, R.R.; Alfenas-Zerbini, P. Identification of a Novel Polymycovirus Infecting the Entomopathogenic Fungus Metarhizium robertsii. Arch. Virol. 2025, 170, 58. [Google Scholar] [CrossRef]
- Zhang, T.; Zeng, X.; Cai, X.; Liu, H.; Zeng, Z. Molecular Characterization of a Novel Double-Stranded RNA Mycovirus of Trichoderma asperellum Strain JLM45-3. Arch. Virol. 2018, 163, 3433–3437. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, M.; Redda, E.T.; Mei, J.; Zhang, J.; Elena, S.F.; Wu, B.; Jiang, X. Complete Nucleotide Sequence of a Novel Mycovirus from Trichoderma harzianum in China. Arch. Virol. 2019, 164, 1213–1216. [Google Scholar] [CrossRef] [PubMed]
- Chun, J.; So, K.-K.; Ko, Y.-H.; Kim, D.-H. Molecular Characteristics of a Novel Hypovirus from Trichoderma harzianum. Arch. Virol. 2022, 167, 233–238. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camargo, M.d.S.; Edwards, S.; Henrique, M.O.; Solanki, U.; Shin, T.Y.; Huang, B.; De Fine Licht, H.H.; Silva-Filho, M.C.; Schrank, A.; Coutts, R.H.A.; et al. Mycoviruses in Entomopathogenic Fungi. Viruses 2025, 17, 1593. https://doi.org/10.3390/v17121593
Camargo MdS, Edwards S, Henrique MO, Solanki U, Shin TY, Huang B, De Fine Licht HH, Silva-Filho MC, Schrank A, Coutts RHA, et al. Mycoviruses in Entomopathogenic Fungi. Viruses. 2025; 17(12):1593. https://doi.org/10.3390/v17121593
Chicago/Turabian StyleCamargo, Matheus da Silva, Sam Edwards, Maressa O. Henrique, Urja Solanki, Tae Young Shin, Bo Huang, Henrik H. De Fine Licht, Marcio C. Silva-Filho, Augusto Schrank, Robert H. A. Coutts, and et al. 2025. "Mycoviruses in Entomopathogenic Fungi" Viruses 17, no. 12: 1593. https://doi.org/10.3390/v17121593
APA StyleCamargo, M. d. S., Edwards, S., Henrique, M. O., Solanki, U., Shin, T. Y., Huang, B., De Fine Licht, H. H., Silva-Filho, M. C., Schrank, A., Coutts, R. H. A., & Kotta-Loizou, I. (2025). Mycoviruses in Entomopathogenic Fungi. Viruses, 17(12), 1593. https://doi.org/10.3390/v17121593

