Codon Usage Bias Analysis of Citrus Leaf Blotch Virus
Abstract
1. Introduction
2. Materials and Methods
2.1. Virus Isolates
2.2. Recombination and Phylogenetic Analysis
2.3. Nucleotide Compostion Analysis
2.4. Relative Synonymous Codon Usage (RSCU) Analysis
2.5. Effective Number of Codons (ENC) Analysis
2.6. ENC-Plot Analysis and Selection Pressure Analysis
2.7. Parity Rule 2 Analysis
2.8. Neutrality Analysis
2.9. Codon Adaptation Index (CAI) Analysis
3. Results
3.1. Recombination Analysis
3.2. Phylogenetic Analysis
3.3. Nucleotide Composition Analysis
3.4. RSCU Analysis of CLBV
3.5. Codon Usage Bias of CLBV
3.6. ENC-Plot and Neutrality Analysis
3.7. PR2 Analysis
3.8. CAI Analysis of Sequences to Different Hosts
4. Discussion
4.1. Recombinant Event Analysis
4.2. Host-Driven Divergence Predominates over Geographic Structuring in CLBV Phylogeny
4.3. Genome-Wide and Gene-Specific Nucleotide Signatures Reflect Host-Driven Selection in CLBV
4.4. Codon Adaptation Index
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guardo, M.; Sorrentino, G.; Marletta, T.; Caruso, A. First report of Citrus leaf blotch virus on Kumquat in Italy. Plant Dis. 2007, 91, 1054. [Google Scholar] [CrossRef]
- Xuan, Z.Y.; Xie, J.X.; Yu, H.D.; Zhang, S.; Li, R.H.; Cao, M.J. Mulberry (Morus alba) is a new natural host of Citrus leaf blotch virus in China. Plant Dis. 2021, 105, 716. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, D.; Tan, Y.; Zong, X.; Wei, H.; Liu, Q. First report of Citrus leaf blotch virus in Sweet Cherry. Plant Dis. 2016, 100, 1027. [Google Scholar] [CrossRef]
- Gress, J.C.; Smith, S.; Tzanetakis, I.E. First report of Citrus leaf blotch virus in Peony in the USA. Plant Dis. 2017, 101, 637. [Google Scholar] [CrossRef]
- Li, H.F.; Zhao, Q.; Gray, S.M.; Xu, Y. Viral Small RNA-Based Screening of Malus spp. reveals Citrus leaf blotch virus infection of kaido crab apple in China. Plant Dis. 2020, 104, 3272. [Google Scholar] [CrossRef]
- Liu, H.; Song, S.; Wu, W.; Mi, W.; Shen, C.; Bai, B.; Wu, Y. Distribution and molecular characterization of Citrus leaf blotch virus from actinidia in Shaanxi province, China. Eur. J. Plant Pathol. 2019, 154, 855–862. [Google Scholar] [CrossRef]
- Velázquez, K.; Agüero, J.; Vives, M.C.; Aleza, P.; Pina, J.A.; Moreno, P.; Navarro, L.; Guerri, J. Precocious flowering of juvenile Citrus induced by a viral vector based on Citrus leaf blotch virus: A new tool for genetics and breeding. Plant Biotechnol. J. 2016, 14, 1976–1985. [Google Scholar] [CrossRef]
- Niu, E.; Liu, H.; Zhou, H.; Luo, L.; Wu, Y.; Andika, I.B.; Sun, L. Autophagy inhibits intercellular transport of Citrus leaf blotch virus by targeting viral movement protein. Viruses 2021, 13, 2189. [Google Scholar] [CrossRef]
- Umer, M.; Liu, J.; You, H.; Xu, C.; Dong, K.; Luo, N.; Kong, L.; Li, X.; Hong, N.; Wang, G.; et al. Genomic, morphological and biological traits of the viruses infecting major fruit trees. Viruses 2019, 11, 515. [Google Scholar] [CrossRef]
- Chavan, R.R.; Blouin, A.G.; Cohen, D.; Pearson, M.N. Characterization of the complete genome of a novel citrivirus infecting Actinidia chinensis. Arch. Virol. 2013, 158, 1679–1686. [Google Scholar] [CrossRef]
- Vives, M.C.; Martín, S.; Ambrós, S.; Renovell, A.; Navarro, L.; Pina, J.A.; Moreno, P.; Guerri, J. Development of a full-genome cDNA clone of Citrus leaf blotch virus and infection of citrus plants. Mol. Plant Pathol. 2008, 9, 787–797. [Google Scholar] [CrossRef] [PubMed]
- Renovell, A.; Vives, M.C.; Ruiz-Ruiz, S.; Navarro, L.; Moreno, P.; Guerri, J. The Citrus leaf blotch virus movement orotein acts as silencing suppressor. Virus Genes 2012, 44, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Ning, J.; Xu, Q.; Yang, T.; Wang, Y.; Zheng, T.; Zhuang, Q.; Xi, D. Development and application of a reverse transcription loop-mediated isothermal amplification combined with lateral flow dipstick for rapid and visual detection of Citrus leaf blotch virus in kiwifruit. Crop Prot. 2021, 143, 105555. [Google Scholar] [CrossRef]
- Yi, L.; Chen, Y.Q.; Chen, B.; Zhou, J. Occurrence and molecular characteristics of Citrus leaf blotch virus from citrus in China based on coat protein genes. Trop. Plant Pathol. 2021, 46, 714–718. [Google Scholar] [CrossRef]
- Hershberg, R.; Petrov, D.A. Selection on codon bias. Annu. Rev. Genet. 2008, 42, 287–299. [Google Scholar] [CrossRef]
- Grantham, R.; Gautier, C.; Gouy, M.; Mercier, R.; Pavé, A. Codon catalog usage and the genome hypothesis. Nucleic Acids Res. 1980, 8, r49–r62. [Google Scholar] [CrossRef]
- Bulmer, M. The selection-mutation-drift theory of synonymous codon usage. Genetics 1991, 128, 897–907. [Google Scholar] [CrossRef]
- Reis, M.; Savva, R.; Wernisch, L. Solving the riddle of codon usage preferences: A test for translational selection. Nucleic Acids Res. 2004, 32, 5036–5044. [Google Scholar] [CrossRef]
- Sharp, P.M.; Emery, L.R.; Zeng, K. Forces that influence the evolution of codon bias. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 1203–1212. [Google Scholar] [CrossRef]
- Bennetzen, J.L.; Hall, B.D. Codon selection in yeast. J. Biol. Chem. 1982, 257, 3026–3031. [Google Scholar] [CrossRef]
- van Hemert, F.; van der Kuyl, A.C.; Berkhout, B. Impact of the biased nucleotide composition of viral RNA genomes on RNA structure and codon usage. J. Gen. Virol. 2016, 97, 2608–2619. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Rasool, S.T. Analysis of synonymous codon usage in Zika virus. Acta Trop. 2017, 173, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Gómez, M.M.; Volotão, E.M.; Assandri, I.R.; Peyrou, M.; Cristina, J. Analysis of codon usage bias in potato virus Y non-recombinant strains. Virus Res. 2020, 286, 198077. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Ding, S.; Wang, Z.; Jiang, R.; He, Z. Host plants shape the codon usage pattern of turnip mosaic virus. Viruses 2022, 14, 2267. [Google Scholar] [CrossRef]
- Wang, Y.; Chi, C.; Zhang, J.; Zhang, K.; Deng, D.; Zheng, W.; Chen, N.; Meurens, F.; Zhu, J. Systematic analysis of the codon usage patterns of African swine fever virus genome coding sequences reveals its host adaptation phenotype. Microb. Genom. 2024, 10, 001186. [Google Scholar] [CrossRef]
- Sharp, P.M.; Li, W.-H. An evolutionary perspective on synonymous codon usage in unicellular organisms. J. Mol. Evol. 1986, 24, 28–38. [Google Scholar] [CrossRef]
- Bansal, S.; Mallikarjuna, M.G.; Balamurugan, A.; Nayaka, S.C.; Prakash, G. Composition and codon usage pattern results in divergence of the zinc binuclear cluster (Zn(II)2Cys6) sequences among ascomycetes plant pathogenic fungi. J. Fungi 2022, 8, 1134. [Google Scholar] [CrossRef]
- Buitrago, S.P.; Garzón-Ospina, D. Genetic diversity of SARS-CoV-2 in South America: Demographic history and structuration signals. Arch. Virol. 2021, 166, 3357–3371. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Y.; Zhang, Y.; Shan, X.F. Codon usage characterization and phylogenetic analysis of the mitochondrial genome in Hemerocallis citrina. BMC Genom. Data 2024, 25, 6. [Google Scholar] [CrossRef]
- Patil, S.S.; Indrabalan, U.B.; Suresh, K.P.; Shome, B.R. Analysis of codon usage bias of classical swine fever virus. Vet. World 2021, 14, 1450–1458. [Google Scholar] [CrossRef]
- Li, J.; Guo, Y.; Roellig, D.M.; Li, N.; Feng, Y.; Xiao, L. Cryptosporidium felis differs from other Cryptosporidium spp. in codon usage. Microb. Genom. 2021, 7, 000711. [Google Scholar] [CrossRef]
- Fang, J.; Zheng, L.; Liu, G.; Zhu, H. Comparative analysis of chloroplast genomes in Cephaleuros and its related genus (Trentepohlia): Insights into adaptive evolution. Genes 2024, 15, 839. [Google Scholar] [CrossRef] [PubMed]
- Sharp, P.M.; Li, W.-H. The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987, 15, 1281–1295. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Cui, X.; Cai, X.; An, T. Recombination in positive-strand RNA viruses. Front. Microbiol. 2022, 13, 870759. [Google Scholar] [CrossRef] [PubMed]
- Bull, R.A.; Hansman, G.S.; Clancy, L.E.; Tanaka, M.M.; Rawlinson, W.D.; White, P.A. Norovirus recombination in ORF1/ORF2 overlap. Emerg. Infect. Dis. 2005, 11, 1079–1085. [Google Scholar] [CrossRef]
- Lefeuvre, P.; Moriones, E. Recombination as a motor of host switches and virus emergence: Geminiviruses as case studies. Curr. Opin. Virol. 2015, 10, 14–19. [Google Scholar] [CrossRef]
- Cui, J.; Li, F.; Shi, Z.-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019, 17, 181–192. [Google Scholar] [CrossRef]
- Maachi, A.; Donaire, L.; Hernando, Y.; Aranda, M.A. Genetic differentiation and migration fluxes of viruses from melon crops and crop edge weeds. J. Virol. 2022, 96, e00421-22. [Google Scholar] [CrossRef]
- He, Z.; Qin, L.; Xu, X.; Ding, S. Evolution and host adaptability of plant RNA viruses: Research insights on compositional biases. Comput. Struct. Biotechnol. J. 2022, 20, 2600–2610. [Google Scholar] [CrossRef]
- Qin, L.; Ding, S.; He, Z. Compositional biases and evolution of the largest plant RNA virus order Patatavirales. Int. J. Biol. Macromol. 2023, 240, 124403. [Google Scholar] [CrossRef]
- Anderson, B.R.; Muramatsu, H.; Jha, B.K.; Silverman, R.H.; Weissman, D.; Karikó, K. Nucleoside modifications in RNA limit activation of 2′-5′-oligoadenylate synthetase and increase resistance to cleavage by RNase L. Nucleic Acids Res. 2011, 39, 9329–9338. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, B. SARS-CoV-2 nsp15 preferentially degrades AU-rich dsRNA via its dsRNA nickase activity. Nucleic Acids Res. 2024, 52, 5257–5272. [Google Scholar] [CrossRef] [PubMed]
- Bera, B.C.; Virmani, N.; Kumar, N.; Anand, T.; Pavulraj, S.; Rash, A.; Elton, D.; Rash, N.; Bhatia, S.; Sood, R.; et al. Genetic and codon usage bias analyses of polymerase genes of equine influenza virus and its relation to evolution. BMC Genom. 2017, 18, 652. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, N.; Sardar, R.; Gupta, D. Natural selection plays a significant role in governing the codon usage bias in the novel SARS-CoV-2 variants of concern (VOC). PeerJ 2022, 10, e13562. [Google Scholar] [CrossRef] [PubMed]
- Kustin, T.; Stern, A. Biased mutation and selection in RNA viruses. Mol. Biol. Evol. 2021, 38, 575–588. [Google Scholar] [CrossRef]
- Lo, R.; Gonçalves-Carneiro, D. Sensing nucleotide composition in virus RNA. Biosci. Rep. 2023, 43, BSR20230372. [Google Scholar] [CrossRef]
- Gonçalves-Carneiro, D.; Takata, M.A.; Ong, H.; Shilton, A.; Bieniasz, P.D. Origin and evolution of the zinc finger antiviral protein. PLoS Pathog. 2021, 17, e1009545. [Google Scholar] [CrossRef]
- Xiong, B.; Wang, T.; Huang, S.; Liao, L.; Wang, X.; Deng, H.; Zhang, M.; He, J.; Sun, G.; He, S.; et al. Analysis of codon usage bias in xyloglucan endotransglycosylase (XET) genes. Int. J. Mol. Sci. 2023, 24, 6108. [Google Scholar] [CrossRef]
- Hockenberry, A.J.; Sirer, M.I.; Amaral, L.A.N.; Jewett, M.C. Quantifying qosition-dependent codon usage bias. Mol. Biol. Evol. 2014, 31, 1880–1892. [Google Scholar] [CrossRef]
- Zhou, J.; Xing, Y.; Zhou, Z.; Wang, S. A comprehensive analysis of Usutu virus (USUV) genomes revealed lineage-specific codon usage patterns and host adaptations. Front. Microbiol. 2023, 13, 967999. [Google Scholar] [CrossRef]






| Recombinant Isolates | Major Parent | Minor Parent | Breaking Point Position (bp) | Coding Protein |
|---|---|---|---|---|
| Nandina (MT078932) | Malus (MW713062) | Citrus (OL871235) | 7008–8786 | MP, CP |
| Morus (MT767171) | Actinidia (OK513339) | Citrus (OL871235) | 7274–8161 | MP, CP |
| Actinidia (MG604237) | Actinidia (OK513347) | Actinidia (OK513324) | 1–2229 | Polyprotein |
| Prunus (KR023647) | Citrus (LC758583) | Malus (MW713062) | 7567–8762 | CP |
| Morus (OP971103) | Malus (MW713062) | Citrus (AJ318061) | 7280–8617 | CP |
| Viburnum (OP751940) | Citrus (OR838782) | Actinidia (OK513336) | 8246–8817 | CP |
| Malus (MW713062) | Actinidia (OK513339) | Citrus (OL871235) | 7259–8491 | CP |
| Actinidia (MK135436) | Nandina (MT078932) | Actinidia (JN900477) | 6889–8678 | MP, CP |
| Citrus (MH558590) | Actinidia (OK513326) | Citrus (LC758583) | 6279–6577 | MP, CP |
| Malus (OR855671) | Citrus (OR838782) | Viburnum (OP751940) | 8205–8787 | CP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, X.; Xu, L.; Yan, Y.; Wang, Y.; Huang, A. Codon Usage Bias Analysis of Citrus Leaf Blotch Virus. Viruses 2025, 17, 1497. https://doi.org/10.3390/v17111497
Ren X, Xu L, Yan Y, Wang Y, Huang A. Codon Usage Bias Analysis of Citrus Leaf Blotch Virus. Viruses. 2025; 17(11):1497. https://doi.org/10.3390/v17111497
Chicago/Turabian StyleRen, Xin, Lifang Xu, Yuqian Yan, Ying Wang, and Aijun Huang. 2025. "Codon Usage Bias Analysis of Citrus Leaf Blotch Virus" Viruses 17, no. 11: 1497. https://doi.org/10.3390/v17111497
APA StyleRen, X., Xu, L., Yan, Y., Wang, Y., & Huang, A. (2025). Codon Usage Bias Analysis of Citrus Leaf Blotch Virus. Viruses, 17(11), 1497. https://doi.org/10.3390/v17111497
