Different HLA Alleles Frequencies and Their Association with Clinical Phenotypes of Acute Respiratory Infections in Children
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical Data Collection and Patients Selection
2.2. RT-PCR Screening Procedure
2.3. HLA Genotyping
2.4. HLA Allele Frequencies
2.5. Determining the Relationship Between a Patient’s HLA Genotype and the Course of a Respiratory Disease
- All the patients of the study, 0–16 years old, PCR both +/− (children and adolescents with ARI)
- Children 9 years old and younger, PCR both +/− (children with ARI)
- Children 9 years old and younger, PCR + (children with ARVI)
2.6. Statistical Analysis
3. Results
3.1. Clinical Data Analysis
3.2. HLA Alleles Diversity and Frequencies
3.3. Search for HLA Allelic Variants Associated with Different Clinical Phenotypes of ARI
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| HLA | Human leukocyte antigens |
| ARVI | Acute respiratory viral infection |
| ARI | Acute respiratory infection |
References
- The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 7 August 2025).
- Hon, K.L.; Leung, A.K. Severe childhood respiratory viral infections. Adv. Pediatr. 2009, 56, 47–73. [Google Scholar] [CrossRef]
- Troshina, E.A.; Yukina, M.Y.; Nuralieva, N.F.; Mokrysheva, N.G. The role of HLA genes: From autoimmune diseases to COVID-19. Probl. Endocrinol. 2020, 66, 9–15. (In Russian) [Google Scholar] [CrossRef]
- Manczinger, M.; Boross, G.; Kemény, L.; Müller, V.; Lenz, T.L.; Papp, B.; Pál, C. Pathogen diversity drives the evolution of generalist MHC-II alleles in human populations. PLoS Biol. 2019, 17, e3000131. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Y.; Shao, C.; Huang, J.; Gan, J.; Huang, X.; Bucci, E.; Piacentini, M.; Ippolito, G.; Melino, G. COVID-19 infection: The perspectives on immune responses. Cell Death Differ. 2020, 27, 1451–1454. [Google Scholar] [CrossRef] [PubMed]
- Traherne, J.A. Human MHC architecture and evolution: Implications for disease association studies. Int. J. Immunogenet. 2008, 35, 179–192. [Google Scholar] [CrossRef]
- Robinson, J.; Halliwell, J.A.; McWilliam, H.; Lopez, R.; Parham, P.; Marsh, S.G. The IMGT/HLA database. Nucleic Acids Res. 2013, 41, D1222–D1227. [Google Scholar] [CrossRef]
- Blackwell, J.M.; Jamieson, S.E.; Burgner, D. HLA and infectious diseases. Clin. Microbiol. Rev. 2009, 22, 370–385. [Google Scholar] [CrossRef]
- Bailey, J.R.; Williams, T.M.; Siliciano, R.F.; Blankson, J.N. Maintenance of viral suppression in HIV-1-infected HLA-B*57+ elite suppressors despite CTL escape mutations. J. Exp. Med. 2006, 203, 1357–1369. [Google Scholar] [CrossRef]
- Thursz, M.R.; Thomas, H.C.; Greenwood, B.M.; Hill, A.V. Heterozygote advantage for HLA class-II type in hepatitis B virus infection. Nat. Genet. 1997, 17, 11–12. [Google Scholar] [CrossRef] [PubMed]
- Tarbaeva, D.A.; Belokrinitskaya, T.E. Genetic predictors of severe complicated influenza A(H1N1) in pregnant women. Acta Biomed. Sci. 2015, 100–106. (In Russian). Available online: https://www.actabiomedica.ru/jour/article/view/124 (accessed on 7 August 2025).
- Dutta, M.; Dutta, P.; Medhi, S.; Borkakoty, B.; Biswas, D. Polymorphism of HLA class I and class II alleles in influenza A(H1N1)pdm09 virus infected population of Assam, Northeast India. J. Med. Virol. 2018, 90, 854–860. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Tseng, H.K.; Trejaut, J.A.; Lee, H.L.; Loo, J.H.; Chu, C.C.; Chen, P.J.; Su, Y.W.; Lim, K.H.; Tsai, Z.U.; et al. Association of HLA class I with severe acute respiratory syndrome coronavirus infection. BMC Med. Genet. 2003, 4, 9. [Google Scholar] [CrossRef]
- Baek, I.C.; Choi, E.J.; Shin, D.H.; Kim, H.J.; Choi, H.; Shin, H.S.; Lim, D.G.; Kim, T.G. Association of HLA class I and II genes with Middle East Respiratory Syndrome coronavirus infection in Koreans. Immun. Inflamm. Dis. 2022, 10, 111–116. [Google Scholar] [CrossRef]
- Nguyen, A.; David, J.K.; Maden, S.K.; Wood, M.A.; Weeder, B.R.; Nellore, A.; Thompson, R.F. Human leukocyte antigen susceptibility map for SARS-CoV-2. J. Virol. 2020, 94, e00510-20. [Google Scholar] [CrossRef]
- Triunfol, M. HLA-B*15:01 allele and asymptomatic SARS-CoV-2 infection. Lancet Respir. Med. 2023, 11, e83. [Google Scholar] [CrossRef] [PubMed]
- Khor, S.S.; Omae, Y.; Nishida, N.; Sugiyama, M.; Kinoshita, N.; Suzuki, T.; Suzuki, M.; Suzuki, S.; Izumi, S.; Hojo, M.; et al. HLA-A*11:01:01:01, HLA-C*12:02:02:01-HLA-B*52:01:02:02, Age and Sex Are Associated with Severity of Japanese COVID-19 with Respiratory Failure. Front. Immunol. 2021, 12, 658570. [Google Scholar] [CrossRef] [PubMed]
- Anzurez, A.; Naka, I.; Miki, S.; Nakayama-Hosoya, K.; Isshiki, M.; Watanabe, Y.; Nakamura-Hoshi, M.; Seki, S.; Matsumura, T.; Takano, T.; et al. Association of HLA-DRB1*09:01 with severe COVID-19. HLA 2021, 98, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Shkurnikov, M.; Nersisyan, S.; Jankevic, T.; Galatenko, A.; Gordeev, I.; Vechorko, V.; Tonevitsky, A. Association of HLA Class I Genotypes with Severity of Coronavirus Disease-19. Front. Immunol. 2021, 12, 641900. [Google Scholar] [CrossRef]
- Khamaganova, E.G.; Leonov, E.A.; Abdrakhimova, A.R.; Khizhinskiy, S.P.; Gaponova, T.V.; Savchenko, V.G. HLA diversity in the Russian population assessed by next generation sequencing. Med. Immunol. 2021, 23, 509–522. (In Russian) [Google Scholar] [CrossRef]
- Medstatistic. Available online: https://medstatistic.ru/calculators/calcodds.html (accessed on 7 April 2024).
- Stephens, H.A. HLA and other gene associations with dengue disease severity. Curr. Top. Microbiol. Immunol. 2010, 338, 99–114. [Google Scholar] [CrossRef]
- Tomita, Y.; Ikeda, T.; Sato, R.; Sakagami, T. Association between HLA gene polymorphisms and mortality of COVID-19: An in silico analysis. Immun. Inflamm. Dis. 2020, 8, 684–694. [Google Scholar] [CrossRef]
- Kuzmich, E.V.; Pavlova, I.E.; Bubnova, L.N. Genetic distances between Russians from different country regions and other populations of Russia. Med. Immunol. 2025, 27, 519–530. (In Russian) [Google Scholar] [CrossRef]
- Choo, S.Y. The HLA system: Genetics, immunology, clinical testing, and clinical implications. Yonsei Med. J. 2007, 48, 11–23. [Google Scholar] [CrossRef]
- Kolyubaeva, S.N.; Kondratenko, A.A.; Alkhazhe, K.; Kryukov, E.V.; Чирский, B.C.; Kachnov, V.A.; Glushakov, R.I.; Sveklina, T.S.; Myakoshina, L.A.; Tyuryupov, M.S.; et al. Investigation of HLA-DRB1 and IL28 gene polymorphism in patients with varying severity of COVID-19 infection. Genes Cells 2021, 16, 86–90. [Google Scholar] [CrossRef]
- Khoshbakht, S.; Başkurt, D.; Vural, A.; Vural, S. Behçet’s Disease: A Comprehensive Review on the Role of HLA-B*51, Antigen Presentation, and Inflammatory Cascade. Int. J. Mol. Sci. 2023, 24, 16382. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.C.; Shen, C.H.; Lin, G.C.; Chen, Y.M.; Chen, I.C. Association of HLA alleles with cephalosporin allergy in the Taiwanese population. Sci. Rep. 2024, 14, 17167. [Google Scholar] [CrossRef] [PubMed]
| Diagnoses | Decoding Diagnoses | Number of Patients | % |
|---|---|---|---|
| Main diagnoses | |||
| J20.8 | Acute bronchitis due to other specified agents | 47 | 24.1 |
| J20.9 | Acute bronchitis, unspecified | 32 | 16.4 |
| J06.9 | Acute upper respiratory tract infection, unspecified | 23 | 11.8 |
| J12.1 | Respiratory syncytial virus pneumonia | 17 | 8.7 |
| J20.5 | Acute bronchitis due to respiratory syncytial virus | 17 | 8.7 |
| J18.9 | Pneumonia, unspecified | 13 | 6.7 |
| U07.1 | COVID-19, virus identified | 7 | 3.6 |
| J10.1 | Influenza with other respiratory manifestations due to seasonal influenza virus | 8 | 4.1 |
| J06.8 | Other acute upper respiratory tract infection of multiple sites | 7 | 3.6 |
| J12.8 | Other viral pneumonia | 7 | 3.6 |
| J05.0 | Acute obstructive laryngitis [croup] | 6 | 3.1 |
| J20.6 | Acute bronchitis due to rhinovirus | 5 | 2.6 |
| J12.3 | Human metapneumovirus pneumonia | 4 | 2.1 |
| J12.9 | Viral pneumonia, unspecified | 4 | 2.1 |
| J09 | Influenza due to identified zoonotic or pandemic influenza virus | 2 | 1.0 |
| J12.0 | Adenoviral pneumonia | 2 | 1.0 |
| J20.4 | Acute bronchitis due to parainfluenza virus | 1 | 0.5 |
| J21.0 | Acute bronchiolitis due to respiratory syncytial virus | 1 | 0.5 |
| Concomitant diagnoses | |||
| J45.0 | Asthma, predominantly allergic | 5 | 2.6 |
| H66.9 | Otitis media, unspecified | 10 | 5.1 |
| H10.9 | Unspecified conjunctivitis | 1 | 0.5 |
| G40.9 | Unspecified epilepsy | 1 | 0.5 |
| K29.9 | Unspecified gastroduodenitis | 1 | 0.5 |
| K59.9 | Unspecified functional disorder of intestine | 1 | 0.5 |
| K83.9 | Unspecified diseases of biliary tract | 1 | 0.5 |
| L80 | Vitiligo | 1 | 0.5 |
| K83.8 | Other specified diseases of biliary tract | 2 | 1.0 |
| Virus 1 Detected | Number of Patients | Fever | Cough | Malaise | Headache | Otitis | Sore Throat | Intestinal Symptoms | Dyspnea | Hypoxia | Nasal Congestion |
|---|---|---|---|---|---|---|---|---|---|---|---|
| hRSv | 40 | 38 | 40 | 27 | 1 | 2 | 2 | 2 | 25 | 30 | 8 |
| hMpv | 22 | 21 | 22 | 14 | 0 | 2 | 0 | 0 | 11 | 13 | 4 |
| hCov | 15 | 15 | 14 | 11 | 0 | 1 | 1 | 0 | 8 | 10 | 2 |
| hBov | 15 | 15 | 15 | 6 | 1 | 1 | 1 | 0 | 5 | 8 | 5 |
| hAdv | 12 | 11 | 12 | 9 | 1 | 1 | 0 | 1 | 8 | 6 | 3 |
| H3N2 | 11 | 11 | 8 | 9 | 1 | 1 | 0 | 0 | 6 | 5 | 3 |
| hRv | 11 | 10 | 11 | 4 | 0 | 0 | 0 | 0 | 5 | 4 | 8 |
| SARS-CoV-2 | 7 | 7 | 7 | 4 | 0 | 1 | 0 | 0 | 3 | 5 | 1 |
| Influenza A | 6 | 6 | 6 | 6 | 0 | 1 | 0 | 0 | 2 | 4 | 1 |
| hPiv | 6 | 6 | 6 | 1 | 0 | 0 | 0 | 0 | 4 | 3 | 3 |
| Influenza B | 3 | 3 | 3 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | 1 |
| Enterovirus | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| Alleles | Number of Patients | Frequencies, % | Homozygotes | Comments |
|---|---|---|---|---|
| A*02:01:01G | 86 | 42.36 | 13 | |
| A*01:01:01G | 49 | 24.14 | 4 | |
| A*24:02:01G | 49 | 24.14 | 1 | |
| A*03:01:01G | 46 | 22.66 | 2 | We have identified the course of ARVI without hypoxia 1 |
| A*11:01:01G | 24 | 11.82 | 1 | Severe course of COVID-19 [17,18], Severe course of influenza H1N1 [12] We have identified a severe course of ARVI 1 |
| A*26:01:01G | 21 | 10.34 | 0 | |
| A*25:01:01G | 19 | 9.36 | 1 | |
| A*32:01:01G | 17 | 8.37 | 0 | |
| A*31:01:02G | 16 | 7.88 | 0 | |
| A*33:03:01G | 11 | 5.42 | 0 | |
| A*68:01:02G | 10 | 4.93 | 0 | |
| A*23:01:01G | 9 | 4.43 | 0 | |
| A*30:01:01G | 6 | 2.96 | 0 | |
| A*29:01:01G | 5 | 2.46 | 0 | |
| A*03:02:01G | 5 | 2.46 | 0 | |
| A*02:05:01G | 3 | 1.48 | 0 | |
| A*29:02:01G | 3 | 1.48 | 0 | |
| A*68:02:01G | 3 | 1.48 | 0 | |
| A*24:03:01G | 1 | 0.49 | 0 | |
| A*33:01:01G | 1 | 0.49 | 0 | |
| A*66:01:01G | 1 | 0.49 | 0 | |
| A*68:01:01G | 1 | 0.49 | 0 | |
| A*02:17:01G | 1 | 0.49 | 0 | |
| A*01:02:01G | 1 | 0.49 | 0 | |
| A*30:04:01G | 1 | 0.49 | 0 | |
| A*02:06:01G | 1 | 0.49 | 0 | |
| B*07:02:01G | 37 | 18.23 | 5 | |
| B*18:01:01G | 29 | 14.29 | 1 | |
| B*35:01:01G | 26 | 12.81 | 2 | Severe course of influenza H1N1 [3,12] |
| B*08:01:01G | 21 | 10.34 | 3 | |
| B*27:05:02G | 24 | 11.82 | 0 | |
| B*44:02:01G | 22 | 10.84 | 1 | |
| B*13:02:01G | 21 | 10.34 | 2 | |
| B*51:01:01G | 20 | 9.85 | 1 | Asymptomatic course of SARS-CoV-2 [16] We have identified a severe course of ARI 1 |
| B*38:01:01G | 19 | 9.36 | 0 | |
| B*57:01:01G | 14 | 6.90 | 0 | |
| B*15:01:01G | 13 | 6.40 | 0 | |
| B*40:01:01G | 11 | 5.42 | 1 | |
| B*52:01:01G | 11 | 5.42 | 0 | |
| B*35:03:01G | 10 | 4.93 | 1 | |
| B*58:01:01G | 10 | 4.93 | 0 | |
| B*41:02:01G | 10 | 4.93 | 0 | |
| B*27:02:01G | 7 | 3.45 | 0 | |
| B*27:02:01G | 7 | 3.45 | 0 | |
| B*40:02:01G | 7 | 3.45 | 0 | |
| B*55:01:01G | 7 | 3.45 | 0 | |
| B*39:01:01G | 6 | 2.96 | 1 | |
| B*44:03:01G | 6 | 2.96 | 0 | |
| B*49:01:01G | 6 | 2.96 | 0 | |
| B*56:01:01G | 5 | 2.46 | 0 | |
| B*50:01:01G | 5 | 2.46 | 0 | |
| B*15:17:01G | 4 | 1.97 | 0 | |
| B*07:05:01G | 4 | 1.97 | 0 | |
| B*37:01:01G | 4 | 1.97 | 0 | |
| B*14:02:01G | 3 | 1.48 | 0 | |
| B*40:06:01G | 3 | 1.48 | 0 | |
| B*48:01:01G | 2 | 0.99 | 0 | |
| B*13:01:01G | 2 | 0.99 | 0 | |
| B*35:02:01G | 2 | 0.99 | 0 | |
| B*39:06:02G | 2 | 0.99 | 0 | |
| B*44:03:02G | 2 | 0.99 | 0 | |
| B*53:01:01G | 2 | 0.99 | 0 | |
| B*45:01:01G | 1 | 0.49 | 0 | |
| B*15:16:01G | 1 | 0.49 | 0 | |
| B*35:08:01G | 1 | 0.49 | 0 | |
| B*15:02:01G | 1 | 0.49 | 0 | |
| B*07:10 | 1 | 0.49 | 0 | |
| B*27:14 | 1 | 0.49 | 0 | |
| B*15:191 | 1 | 0.49 | 0 | |
| B*15:29:01G | 1 | 0.49 | 0 | |
| B*14:01:01G | 1 | 0.49 | 0 | |
| B*39:24:01G | 1 | 0.49 | 0 | |
| B*41:01:01G | 1 | 0.49 | 0 | |
| B*55:02:01G | 1 | 0.49 | 0 | |
| C*07:01:01G | 43 | 21.18 | 7 | |
| C*07:02:01G | 43 | 21.18 | 4 | |
| C*06:02:01G | 44 | 21.67 | 3 | |
| C*04:01:01G | 42 | 20.69 | 3 | |
| C*12:03:01G | 41 | 20.20 | 4 | High predicted SARS-CoV-2 binding capacity [15] |
| C*02:02:02G | 24 | 11.82 | 1 | |
| C*01:02:01G | 22 | 10.84 | 0 | Low predicted SARS-CoV-2 binding capacity [15] We have identified a severe course of ARI 1 |
| C*03:04:01G | 17 | 8.37 | 0 | |
| C*07:04:01G | 15 | 7.39 | 0 | |
| C*03:03:01G | 15 | 7.39 | 0 | |
| C*17:01:01G | 11 | 5.42 | 0 | |
| C*12:02:01G | 11 | 5.42 | 0 | |
| C*05:01:01G | 10 | 4.93 | 2 | |
| C*03:02:01G | 10 | 4.93 | 0 | |
| C*15:02:01G | 9 | 4.43 | 0 | |
| C*14:02:01G | 5 | 2.46 | 0 | |
| C*08:02:01G | 4 | 1.97 | 0 | |
| C*08:01:01G | 4 | 1.97 | 0 | |
| C*15:05:01G | 3 | 1.48 | 0 | |
| C*08:03:01G | 2 | 0.99 | 0 | |
| C*16:02:01G | 2 | 0.99 | 0 | |
| C*03:54 | 1 | 0.49 | 0 | |
| C*04:03:01G | 1 | 0.49 | 0 | |
| C*16:01:01G | 1 | 0.49 | 0 |
| Alleles | Number of Patients | Frequencies, % | Homozygotes | Comments |
|---|---|---|---|---|
| DRB1*15:01:01G | 40 | 19.70 | 6 | |
| DRB1*01:01:01G | 41 | 20.20 | 4 | May be a predictor of the development of severe forms of influenza [11] |
| DRB1*07:01:01G | 41 | 20.20 | 2 | |
| DRB1*03:01:01G | 30 | 14.78 | 2 | |
| DRB1*13:01:01G | 29 | 14.29 | 3 | |
| DRB1*11:01:01G | 22 | 10.84 | 0 | |
| DRB1*16:01:01G | 20 | 9.85 | 0 | |
| DRB1*13:02:01G | 17 | 8.37 | 0 | |
| DRB1*11:04:01G | 17 | 8.37 | 0 | |
| DRB1*15:02:01G | 17 | 8.37 | 0 | |
| DRB1*13:03:01G | 15 | 7.39 | 0 | |
| DRB1*08:01:01G | 13 | 6.40 | 0 | |
| DRB1*04:01:01G | 12 | 5.91 | 0 | |
| DRB1*09:01:02G | 11 | 5.42 | 0 | |
| DRB1*04:04:01G | 10 | 4.93 | 0 | |
| DRB1*12:01:01G | 10 | 4.93 | 0 | |
| DRB1*14:01:01G | 9 | 4.43 | 0 | |
| DRB1*04:02:01G | 7 | 3.45 | 0 | |
| DRB1*10:01:01G | 4 | 1.97 | 0 | |
| DRB1*04:03:01G | 3 | 1.48 | 0 | |
| DRB1*08:03:02G | 2 | 0.99 | 0 | |
| DRB1*04:08:01G | 2 | 0.99 | 0 | |
| DRB1*04:07:01G | 2 | 0.99 | 0 | |
| DRB1*04:05:01G | 1 | 0.49 | 0 | |
| DRB1*08:02:01G | 1 | 0.49 | 0 | |
| DRB1*15:02:02G | 1 | 0.49 | 0 | |
| DRB1*01:02:01G | 1 | 0.49 | 0 | |
| DRB1*04:06:01G | 1 | 0.49 | 0 | |
| DRB1*11:03:01G | 1 | 0.49 | 0 | |
| DRB1*12:02:01G | 1 | 0.49 | 0 | |
| DRB1*14:04:01G | 1 | 0.49 | 0 | |
| DRB1*04:101 | 1 | 0.49 | 0 | |
| DRB1*01:03:01G | 1 | 0.49 | 0 | |
| DRB1*04:10:01G | 1 | 0.49 | 0 | |
| DRB1*16:02:01G | 1 | 0.49 | 0 | |
| DRB4*01:01:01G | 79 | 38.92 | 9 | |
| DRB3*02:02:01G | 72 | 35.47 | 9 | |
| DRB3*01:01:02G | 54 | 26.60 | 5 | |
| DRB5*01:01:01G | 40 | 19.70 | 6 | |
| DRB5*02:02:01G | 20 | 9.85 | 0 | |
| DRB3*03:01:01G | 17 | 8.37 | 0 | |
| DRB5*01:02:01G | 17 | 8.37 | 0 | |
| DRB4*01:02 | 3 | 1.48 | 0 | |
| DRB5*01:10N | 1 | 0.49 | 0 | |
| DRB3*02:01:01G | 1 | 0.49 | 0 | |
| DRB4*01:03:03 | 1 | 0.49 | 0 | |
| DQA1*01:02:01G | 71 | 34.98 | 13 | We have identified the course of ARI with hypoxia 1 |
| DQA1*01:01:01G | 55 | 27.09 | 7 | |
| DQA1*03:01:01G | 50 | 24.63 | 4 | |
| DQA1*01:03:01G | 46 | 22.66 | 4 | |
| DQA1*02:01:01G | 41 | 20.20 | 2 | |
| DQA1*04:01:01G | 13 | 6.40 | 0 | |
| DQA1*06:01:01G | 2 | 0.99 | 0 | |
| DQB1*03:01:01G | 69 | 33.99 | 4 | |
| DQB1*02:01:01G | 59 | 29.06 | 10 | |
| DQB1*05:01:01G | 46 | 22.66 | 7 | |
| DQB1*06:02:01G | 38 | 18.72 | 5 | |
| DQB1*06:03:01G | 29 | 14.29 | 4 | |
| DQB1*05:02:01G | 23 | 11.33 | 0 | |
| DQB1*03:02:01G | 22 | 10.84 | 2 | Associated with moderate or mild MERS-CoV disease [14] |
| DQB1*03:03:02G | 18 | 8.87 | 1 | |
| DQB1*06:01:01G | 17 | 8.37 | 1 | |
| DQB1*04:02:01G | 16 | 7.88 | 1 | |
| DQB1*06:04:01G | 11 | 5.42 | 0 | |
| DQB1*05:03:01G | 10 | 4.93 | 3 | |
| DQB1*06:09:01G | 6 | 2.96 | 0 | |
| DQB1*03:04:01G | 1 | 0.49 | 0 | |
| DQB1*03:12 | 1 | 0.49 | 0 | |
| DQB1*03:05:01G | 1 | 0.49 | 0 | |
| DQB1*05:04:01G | 1 | 0.49 | 0 | |
| DPB1*04:01:01G | 126 | 62.07 | 33 | |
| DPB1*02:01:02G | 58 | 28.57 | 3 | |
| DPB1*04:02:01G | 55 | 27.09 | 5 | We have identified the course of ARI without hypoxia 1 |
| DPB1*03:01:01G | 41 | 20.20 | 3 | |
| DPB1*01:01:01G | 14 | 6.90 | 0 | |
| DPB1*23:01:01G | 10 | 4.93 | 0 | |
| DPB1*17:01:01G | 9 | 4.43 | 0 | |
| DPB1*05:01:01G | 8 | 3.94 | 0 | |
| DPB1*14:01:01G | 7 | 3.45 | 0 | |
| DPB1*06:01:01G | 6 | 2.96 | 0 | |
| DPB1*13:01:01G | 5 | 2.46 | 0 | |
| DPB1*09:01:01G | 5 | 2.46 | 0 | |
| DPB1*10:01:01G | 4 | 1.97 | 0 | |
| DPB1*19:01:01G | 3 | 1.48 | 0 | |
| DPB1*15:01:01G | 3 | 1.48 | 0 | |
| DPB1*11:01:01G | 2 | 0.99 | 0 | |
| DPB1*224:01 | 1 | 0.49 | 0 | |
| DPB1*02:02:01G | 1 | 0.49 | 0 | |
| DPB1*34:01:01G | 1 | 0.49 | 0 | |
| DPB1*257:01 | 1 | 0.49 | 0 | |
| DPB1*26:01:02G | 1 | 0.49 | 0 | |
| DPB1*16:01:01G | 1 | 0.49 | 0 |
| Group | Age | PCR | Alleles | Condition 1 | OR 2 | CI2 | Conclusion |
|---|---|---|---|---|---|---|---|
| Children and adolescents with ARI | 0–16 | +/− | A*11:01:01G | S/M | 5.037 | 1.717–14.776 | severe course of ARI |
| A*03:01:01G | Hyp | 0.358 | 0.178–0.72 | course without hypoxia | |||
| B*51:01:01G | S/M | 4.457 | 1.355–14.663 | severe course of ARI | |||
| C*01:02:01G | S/M | 4.743 | 1.538–14.629 | severe course of ARI | |||
| DPB1*04:02:01G | Hyp | 0.462 | 0.244–0.876 | course without hypoxia | |||
| DQA1*01:02:01G | Hyp | 1.811 | 1.003–3.268 | course with hypoxia | |||
| Children with ARI | 0–9 | +/− | A*11:01:01G | S/M | 4.444 | 1.501–13.159 | severe course of ARI |
| A*03:01:01G | Hyp | 0.301 | 0.133–0.678 | course without hypoxia | |||
| C*01:02:01G | S/M | 3.925 | 1.184–13.006 | severe course of ARI | |||
| Children with ARVI | 0–9 | + | A*11:01:01G | S/M | 5.654 | 1.631–19.600 | severe course of ARVI |
| A*03:01:01G | Hyp | 0.317 | 0.110–0.914 | course without hypoxia |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palyanova, N.V.; Ohlopkova, O.V.; Moshkin, A.D.; Stolbunova, K.A.; Stepanyuk, M.A.; Sobolev, I.A.; Kurskaya, O.G.; Shestopalov, A.M. Different HLA Alleles Frequencies and Their Association with Clinical Phenotypes of Acute Respiratory Infections in Children. Viruses 2025, 17, 1495. https://doi.org/10.3390/v17111495
Palyanova NV, Ohlopkova OV, Moshkin AD, Stolbunova KA, Stepanyuk MA, Sobolev IA, Kurskaya OG, Shestopalov AM. Different HLA Alleles Frequencies and Their Association with Clinical Phenotypes of Acute Respiratory Infections in Children. Viruses. 2025; 17(11):1495. https://doi.org/10.3390/v17111495
Chicago/Turabian StylePalyanova, Natalia V., Olesia V. Ohlopkova, Alexey D. Moshkin, Kristina A. Stolbunova, Marina A. Stepanyuk, Ivan A. Sobolev, Olga G. Kurskaya, and Alexander M. Shestopalov. 2025. "Different HLA Alleles Frequencies and Their Association with Clinical Phenotypes of Acute Respiratory Infections in Children" Viruses 17, no. 11: 1495. https://doi.org/10.3390/v17111495
APA StylePalyanova, N. V., Ohlopkova, O. V., Moshkin, A. D., Stolbunova, K. A., Stepanyuk, M. A., Sobolev, I. A., Kurskaya, O. G., & Shestopalov, A. M. (2025). Different HLA Alleles Frequencies and Their Association with Clinical Phenotypes of Acute Respiratory Infections in Children. Viruses, 17(11), 1495. https://doi.org/10.3390/v17111495

