Mechanisms of Cell–Cell Fusion in SARS-CoV-2: An Evolving Strategy for Transmission and Immune Evasion
Abstract
1. Introduction
| Factors | Viral Cell Entry | Cell–Cell Fusion |
|---|---|---|
| Variants | Infectivity: Omicron BA.1, BA.2, BA.5 > Delta > Omicron BA.1.1.529 > Gamma > Alpha > Beta > WT [25] BA.2.87.2~BA.2 > JN.1~WT [26] | Fusion activity: Early in infection: D614G > Alpha > Gamma > Beta > BA.1, BA.4/5 > BA.2 [27] Late in infection: Delta > D614G > Gamma > Alpha > Beta > BA.4/5 > BA.2 > BA.1 [27] |
| Mutations | Infectivity ↓: E484K mutant [28] Infectivity ↑: D614G and V367F mutant [29] | Syncytia ↓: D839Y and D839N mutant [30] T356K mutant [31] H1271K [32] Syncytia ↑: P1263L mutant [30] N354 glycosylation [31] ΔH69/V70 mutant [33] |
| Cleavage | Furin-mediated S1/S2 cleavage promotes entry but not required [34] | |
| Spike location | Surface of SARS-CoV-2 virions [30] | Surface of infected cells [30] |
| Spike–receptor interaction | Main receptor: ACE2 [30] Other receptors: CD147, AXL, KREMEN1, ASGR1 [35] | Main receptor: ACE2 [30] Other receptors: possibility of ACE2 independent entry and antibody-mediated cell–cell fusion via FcγRI [36] |
| Binding Affinity | High affinity interactions between S and ACE2 [37] | |
| Energy Barriers | High kinetic barriers due to repulsive hydration forces on phospholipid plasma membranes and viral envelope [38] | |
| Tethering/Docking | S2′ cleavage required for exposure of fusion peptide, mediated by TMPRSS2 [39] and cathepsins [40] in plasma membrane and endosomal entry routes | S2′ cleavage also required for fusion peptide exposure through TMPRSS2 mediated plasma entry pathway [39] |
| NRP1 | ↑ Infection [41,42] and syncytia [22] | |
| Integrins | Do not play a role in virus syncytia formation | Syncytia ↑: integrins α5β1 [43] and αVβ3 [44] |
2. Multinucleated Cells in COVID-19
3. Evolutionary History of SAR-CoV-2: Altering the Balance Between Fusogenicity and Transmissibility
4. Mechanisms and Kinetics of Fusion
4.1. Cell Surface Expression of Spike
4.2. Post-Translational Modifications of the Spike Protein
| Model | Method | Fusion Mediator(s) | Result | References | |
|---|---|---|---|---|---|
| Ex vivo | |||||
| Human bronchial cartilage chondrocytes and para-bronchial gland epithelial cells | Post-mortem histological analysis | ACE2+ and TMEM16F+ staining | Syncytia found in 67% of patients (n = 27) | [72] | |
| Human lung tissue pneumocytes | Post-mortem histological analysis | Not reported | Syncytia found in 87% of patients (n = 41) | [16] | |
| In vivo | |||||
| Mice hippocampal and cortical neurons | Fluorescence fusion assay | ACE2 > TMPRSS2, NRP1 | Neural fusion in up to 15% of hippocampal neurons | [22] | |
| C. elegans mechanosensory neurons | Split-GFP and p15 under control of mec-4 promoter | ACE2 | Fusogens observed in head, mid-body and tail being the most prevalent in ALN neurons | ||
| Bronchoalveolar fluids of COVID-19 patients | PAP cytosmear, immunofluorescence, scanning electron microscopy, and transmission electron microscopy of bronchoalveolar fluid | Not reported | Syncytia formation between type II pneumocytes, and between monocytes and neutrophils in moderately infected patients | [17] | |
| Organoids | |||||
| Human-derived brain organoids: neurons | Fluorescence fusion assay | ACE2 > TMPRSS2, NRP1 | Neuronal fusion between soma and neurites | [22] | |
| Human-derived brain organoids | Fluorescence fusion assay | ACE2 > TMPRSS2, NRP1 |
Neuronal fusion between soma and neurites
Complete loss of neural activity | ||
| Neurons | Glia | ||||
| Glia | Glia | Fluorescence fusion assay | ACE2 > TMPRSS2, NRP1 | Neuronal fusion between soma and neurites | |
| In vitro | |||||
| HEK293T-ACE2-TMPRSS2 | CHO-S | Radiometric Ca2+ probe | TMEM16 | Ca2+ ↑ | [73] |
| HEK293T expressing GFP1-10 | VeroE6 expressing GFP11 | Split-GFP assay | ACE2 and TMPRSS2 | Fusion: Delta S > WT S; poor fusion for Omicron S | [52] |
|
α- and ω-expressing
HEK293T | Alpha complementation assay | ACE2 and TMPRSS2 | SΔ19- and S-expressing virus-like particles induced fusion quantified by luminescence reaction | [74] | |
| S-transfected HEK293T | HEK293T transfected with hACE2, CMV-Tat and HIV-LTR-FFLUC | Split lentiviral cassette (transient) | ACE2 | Cell fusion detected on luminometry | [75] |
| S-expressing TZM-bl cell line | hACE2-expressing HOS-3734 or -3742 cells expressing hACE2 | Split lentiviral cassette (stable cell line) | ACE2 | Cell fusion detected on luminometry | [75] |
| HEK293T expressing Jun-S | HEK293T expressing Fos-ACE2 and Renilla Luciferase | BiMuC complementation | ACE2 | Cell fusion detected by fluorescence measurement and altered by small molecules | [76] |
| HEK293T expressing VP16 activation domain | HEK293T expressing Gal4 DNA-binding domain | VP16-Gal4 transcription factor assay | ACE2 and TMPRSS2 | Cell fusion impacted by mutations in S1/S2 or S2′ proteolytic cleavage; metalloproteases promote cell fusion | [39] |
| HEK293T-ACE2 | Split-GFP assay | ACE2 and TMPRSS2 | Large syncytia | [77] | |
| A549-ACE2 | Split-GFP assay | ACE2 and TMPRSS2 | Large syncytia | ||
| Vero E6 | Split-GFP assay | ACE2 and TMPRSS2 | No fusion upon infection but fuse when encountering Spike-expressing cells | ||
| Caco2 | Split-GFP assay | ACE2 and TMPRSS2 | No fusion upon infection | ||
| U2OS-ACE2 | Split-GFP assay | ACE2 and TMPRSS2 | Large syncytia | ||
| Vero E6 | Nucleus counting | ACE2 and TMPRSS2 | Syncytia | [78] | |
| Vero E6, split into two populations containing two non-functional fragments of luciferase | NanoBiT complementation assay | ACE2 | Cell fusion detected on luminescence; fusion promotes TP53 stabilization | [79] | |
| Human-induced pluripotent stem cell-derived cardiomyocytes | Immunofluorescence microscopy | ACE2; cathepsin > TMPRSS2 | Syncytia; Ca2+ tsunamis | [47] | |
| HEK293T | Split-GFP assay | ACE2 | Syncytia; activation of cGAS-STING-IFN pathway | [24] | |
| HEK293T | Cellular electrical impedance assay | ACE2 and TMPRSS2 | Cell fusion correlated with cell index value and impacted by protease inhibitors | [80] | |
| Huh-7 undergoing 20 serial passages | Split-GFP and Sanger sequencing | Furin cleavage site | A372T, E484D and Q493R substitution mutations arise increasing syncytia formation | [81] | |
| Human Umbilical Vein Endothelial Cells | Immunofluorescence microscopy | Myosin light chain kinase | Syncytia; Loss of VE-cadherin at adherens junctions | [82] | |
4.3. Tethering, Docking and Fusion: Overcoming Energy Barriers
5. Viral Factors That Influence Cell–Cell Fusion
5.1. ACE2-Dependent Fusion
5.2. ACE2-Independent Fusion
6. Host Factors That Influence Cell–Cell Fusion
6.1. Impact of IFITMs on Cell–Cell Fusion
6.2. Impact of Temperature and Circadian Rhythm on Cell–Cell Fusion
7. Indirect Methods of Measuring Cell–Cell Fusion
8. Direct Methods of Measuring Cell–Cell Fusion
8.1. Split-GFP Assay
8.2. Split Lentiviral Cassette Assay
8.3. Alpha Complementation Assay
8.4. Bimolecular Multicellular (BiMuC) Complementation Assay
8.5. NanoBiT Complementation Assay
8.6. VP16-Gal4 Transcription Factor Assay
8.7. Cell–Cell Electrical Impedance (CEI)
9. Spike-Mediated Cell–Cell Fusion in Immune Escape, Virus Dissemination and Persistence, and Sustained Type I Interferon Production
9.1. Immune Escape and Immunosuppression
9.2. Syncytia Formation in Acute and Chronic Inflammation
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| COVID-19 | coronavirus disease 2019 |
| SARS-CoV-2 | severe acute respiratory syndrome coronavirus2 |
| S | spike |
| ACE2 | angiotensin-converting enzyme 2 |
| TMPRSS2 | transmembrane serine protease 2 |
| FCS | furin cleavage site |
| NRP1 | neuropilin-1 |
| GFP | green fluorescent protein |
| CEI | cell–cell electrical impedance |
| COPI | coat protein complex I |
| RBD | receptor-binding domain |
| RBM | receptor-binding motif |
| ADE | antibody-dependent enhancement |
| NTD | N-terminal domain |
| CMV-Tat | cytomegalovirus promoter-driven Tat |
| HIV-LTR-FFLUC | HIV long terminal repeat driving firefly luciferase |
| VFP | venous fluorescent proteins |
| BiMuC | bimolecular multicellular |
| PBMC | polymorphonuclear cells |
| HR | heptapeptide repeat |
| WT | wild-type |
| IFITM | interferon-induced transmembrane proteins |
| IL | interleukin |
| IFN | interferon |
| PGE2 | prostaglandinE2 |
References
- Reinholm, A.; Maljanen, S.; Jalkanen, P.; Altan, E.; Tauriainen, S.; Belik, M.; Skön, M.; Haveri, A.; Österlund, P.; Iakubovskaia, A.; et al. Neutralizing antibodies after the third COVID-19 vaccination in healthcare workers with or without breakthrough infection. Commun. Med. 2024, 4, 28. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Gong, Y.; Jiao, S. Neutralization heterogeneity of circulating SARS-CoV-2 variants to sera elicited by a vaccinee or convalescent. Future Virol. 2022, 17, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Lamers, M.M.; Haagmans, B.L. SARS-CoV-2 pathogenesis. Nat. Rev. Microbiol. 2022, 20, 270–284. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. [Google Scholar] [CrossRef]
- Schaefer, S.L.; Jung, H.; Hummer, G. Binding of SARS-CoV-2 Fusion Peptide to Host Endosome and Plasma Membrane. J. Phys. Chem. B 2021, 125, 7732–7741. [Google Scholar] [CrossRef]
- Li, X.; Yuan, H.; Li, X.; Wang, H. Spike protein mediated membrane fusion during SARS-CoV-2 infection. J. Med. Virol. 2023, 95, e28212. [Google Scholar] [CrossRef]
- Mangeney, M.; Renard, M.; Schlecht-Louf, G.; Bouallaga, I.; Heidmann, O.; Letzelter, C.; Richaud, A.; Ducos, B.; Heidmann, T. Placental syncytins: Genetic disjunction between the fusogenic and immunosuppressive activity of retroviral envelope proteins. Proc. Natl. Acad. Sci. USA 2007, 104, 20534–20539. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, H.; Yang, X.; Fan, L.; Tian, S.; Niu, R.; Yan, M.; Zheng, M.; Zhang, S. Cell Fusion-Related Proteins and Signaling Pathways, and Their Roles in the Development and Progression of Cancer. Front. Cell Dev. Biol. 2022, 9, 809668. [Google Scholar] [CrossRef]
- Duelli, D.; Lazebnik, Y. Cell-to-cell fusion as a link between viruses and cancer. Nat. Rev. Cancer 2007, 7, 968–976. [Google Scholar] [CrossRef]
- Bratt, M.A.; Gallaher, W.R. Comparison of Fusion from within and Fusion from without by Newcastle Disease Virus. Vitr. Cell. Dev. Biol. Plant 1970, 6, 3–14. [Google Scholar] [CrossRef]
- Leroy, H.; Han, M.; Woottum, M.; Bracq, L.; Bouchet, J.; Xie, M.; Benichou, S. Virus-Mediated Cell-Cell Fusion. Int. J. Mol. Sci. 2020, 21, 9644. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yeh, A.Y.; Guo, Y.; Mohri, H.; Yu, J.; Ho, D.D.; Liu, L. Impaired potency of neutralizing antibodies against cell–cell fusion mediated by SARS-CoV-2. Emerg. Microbes Infect. 2023, 12, 2210237. [Google Scholar] [CrossRef] [PubMed]
- Blank, H.; Burgoon, C.F.; Baldridge, G.D.; Mc, C.P.; Urbach, F. CYTOLOGIC SMEARS IN DIAGNOSIS OF HERPES SIMPLEX, HERPES ZOSTER, AND VARICELLA. J. Am. Med. Assoc. 1951, 146, 1410–1412. [Google Scholar] [CrossRef] [PubMed]
- Bracq, L.; Xie, M.; Lambelé, M.; Vu, L.-T.; Matz, J.; Schmitt, A.; Delon, J.; Zhou, P.; Randriamampita, C.; Bouchet, J.; et al. T Cell-Macrophage Fusion Triggers Multinucleated Giant Cell Formation for HIV-1 Spreading. J. Virol. 2017, 91, e01237-17. [Google Scholar] [CrossRef]
- Teo, I.; Veryard, C.; Barnes, H.; An, S.F.; Jones, M.; Lantos, P.L.; Luthert, P.; Shaunak, S. Circular forms of unintegrated human immunodeficiency virus type 1 DNA and high levels of viral protein expression: Association with dementia and multinucleated giant cells in the brains of patients with AIDS. J. Virol. 1997, 71, 2928–2933. [Google Scholar] [CrossRef]
- Bussani, R.; Schneider, E.; Zentilin, L.; Collesi, C.; Ali, H.; Braga, L.; Volpe, M.C.; Colliva, A.; Zanconati, F.; Berlot, G.; et al. Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology. eBioMedicine 2020, 61, 103104. [Google Scholar] [CrossRef]
- Chaudhary, S.; Yadav, R.P.; Kumar, S.; Yadav, S.C. Ultrastructural study confirms the formation of single and heterotypic syncytial cells in bronchoalveolar fluids of COVID-19 patients. Virol. J. 2023, 20, 97. [Google Scholar] [CrossRef]
- Amidei, A.; Dobrovolny, H.M. Virus-mediated cell fusion of SARS-CoV-2 variants. Math. Biosci. 2024, 369, 109144. [Google Scholar] [CrossRef]
- Lustig, G.; Ganga, Y.; Rodel, H.; Tegally, H.; Jackson, L.; Cele, S.; Khan, K.; Jule, Z.; Reedoy, K.; Karim, F.; et al. SARS-CoV-2 evolves increased infection elicited cell death and fusion in an immunosuppressed individual. medRxiv 2022. [Google Scholar] [CrossRef]
- Chippa, V.; Aleem, A.; Anjum, F. Postacute Coronavirus (COVID-19) Syndrome; StatPearls Publishing LLC: Treasure Island, FL, USA, 2024. [Google Scholar]
- Tsai, E.J.; Čiháková, D.; Tucker, N.R. Cell-Specific Mechanisms in the Heart of COVID-19 Patients. Circ. Res. 2023, 132, 1290–1301. [Google Scholar] [CrossRef]
- Martínez-Mármol, R.; Giordano-Santini, R.; Kaulich, E.; Cho, A.N.; Przybyla, M.; Riyadh, M.A.; Robinson, E.; Chew, K.Y.; Amor, R.; Meunier, F.A.; et al. SARS-CoV-2 infection and viral fusogens cause neuronal and glial fusion that compromises neuronal activity. Sci. Adv. 2023, 9, eadg2248. [Google Scholar] [CrossRef]
- Queiroz, M.A.F.; Brito, W.R.d.S.; Pereira, K.A.S.; Pereira, L.M.S.; Amoras, E.d.S.G.; Lima, S.S.; Santos, E.F.d.; Costa, F.P.d.; Sarges, K.M.L.d.; Cantanhede, M.H.D.; et al. Severe COVID-19 and long COVID are associated with high expression of STING, cGAS and IFN-α. Sci. Rep. 2024, 14, 4974. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wei, L.; Xu, F.; Zhao, F.; Huang, Y.; Fan, Z.; Mei, S.; Hu, Y.; Zhai, L.; Guo, J.; et al. SARS-CoV-2 spike protein–induced cell fusion activates the cGAS-STING pathway and the interferon response. Sci. Signal. 2022, 15, eabg8744. [Google Scholar] [CrossRef] [PubMed]
- Sultana, N.; Nagesha, S.N.; Reddy, C.N.L.; Ramesh, B.N.; Shyamalamma, S.; Shashidhara, K.S.; Satish, K.M.; Pradeep, C.; Vidyadhar, G.D. Computational analysis of affinity dynamics between the variants of SARS-CoV-2 spike protein (RBD) and human ACE-2 receptor. Virol. J. 2024, 21, 88. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Liu, Y.; Faraone, J.N.; Hsu, C.C.; Chamblee, M.; Zheng, Y.-M.; Carlin, C.; Bednash, J.S.; Horowitz, J.C.; Mallampalli, R.K.; et al. Distinct patterns of SARS-CoV-2 BA.2.87.1 and JN.1 variants in immune evasion, antigenicity, and cell-cell fusion. mBio 2024, 15, e00751-24. [Google Scholar] [CrossRef]
- Furnon, W.; Cowton, V.M.; De Lorenzo, G.; Orton, R.; Herder, V.; Cantoni, D.; Ilia, G.; Mendonca, D.C.; Kerr, K.; Allan, J.; et al. Phenotypic evolution of SARS-CoV-2 spike during the COVID-19 pandemic. Nat. Microbiol. 2025, 10, 77–93. [Google Scholar] [CrossRef]
- Collier, D.A.; De Marco, A.; Ferreira, I.A.T.M.; Meng, B.; Datir, R.P.; Walls, A.C.; Kemp, S.A.; Bassi, J.; Pinto, D.; Silacci-Fregni, C.; et al. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature 2021, 593, 136–141. [Google Scholar] [CrossRef]
- Ou, J.; Zhou, Z.; Dai, R.; Zhang, J.; Zhao, S.; Wu, X.; Lan, W.; Ren, Y.; Cui, L.; Lan, Q.; et al. V367F Mutation in SARS-CoV-2 Spike RBD Emerging during the Early Transmission Phase Enhances Viral Infectivity through Increased Human ACE2 Receptor Binding Affinity. J Virol. 2021, 95, e0061721. [Google Scholar] [CrossRef]
- Barrett, C.T.; Neal, H.E.; Edmonds, K.; Moncman, C.L.; Thompson, R.; Branttie, J.M.; Boggs, K.B.; Wu, C.Y.; Leung, D.W.; Dutch, R.E. Effect of clinical isolate or cleavage site mutations in the SARS-CoV-2 spike protein on protein stability, cleavage, and cell-cell fusion. J. Biol. Chem. 2021, 297, 100902. [Google Scholar] [CrossRef]
- Liu, P.; Yue, C.; Meng, B.; Xiao, T.; Yang, S.; Liu, S.; Jian, F.; Zhu, Q.; Yu, Y.; Ren, Y.; et al. Spike N354 glycosylation augments SARS-CoV-2 fitness for human adaptation through structural plasticity. Natl. Sci. Rev. 2024, 11, nwae206. [Google Scholar] [CrossRef]
- Cattin-Ortolá, J.; Welch, L.G.; Maslen, S.L.; Papa, G.; James, L.C.; Munro, S. Sequences in the cytoplasmic tail of SARS-CoV-2 Spike facilitate expression at the cell surface and syncytia formation. Nat. Commun. 2021, 12, 5333. [Google Scholar] [CrossRef]
- Meng, B.; Kemp, S.A.; Papa, G.; Datir, R.; Ferreira, I.A.T.M.; Marelli, S.; Harvey, W.T.; Lytras, S.; Mohamed, A.; Gallo, G.; et al. Recurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the Alpha variant B.1.1.7. Cell Rep. 2021, 35, 109292. [Google Scholar] [CrossRef]
- Papa, G.; Mallery, D.L.; Albecka, A.; Welch, L.G.; Cattin-Ortolá, J.; Luptak, J.; Paul, D.; McMahon, H.T.; Goodfellow, I.G.; Carter, A.; et al. Furin cleavage of SARS-CoV-2 Spike promotes but is not essential for infection and cell-cell fusion. PLoS Pathog. 2021, 17, e1009246. [Google Scholar] [CrossRef] [PubMed]
- Barthe, M.; Hertereau, L.; Lamghari, N.; Osman-Ponchet, H.; Braud, V.M. Receptors and Cofactors That Contribute to SARS-CoV-2 Entry: Can Skin Be an Alternative Route of Entry? Int. J. Mol. Sci. 2023, 24, 6253. [Google Scholar] [CrossRef] [PubMed]
- Kibria, M.G.; Lavine, C.L.; Tang, W.; Wang, S.; Gao, H.; Shi, W.; Zhu, H.; Voyer, J.; Rits-Volloch, S.; Keerti; et al. Antibody-mediated SARS-CoV-2 entry in cultured cells. EMBO Rep. 2023, 24, e57724. [Google Scholar] [CrossRef]
- Shum, M.H.-H.; Lee, Y.; Tam, L.; Xia, H.; Chung, O.L.-W.; Guo, Z.; Lam, T.T.-Y. Binding affinity between coronavirus spike protein and human ACE2 receptor. Comput. Struct. Biotechnol. J. 2024, 23, 759–770. [Google Scholar] [CrossRef]
- Rand, R.P.; Parsegian, V.A. Physical force considerations in model and biological membranes. Can. J. Biochem. Cell Biol. 1984, 62, 752–759. [Google Scholar] [CrossRef]
- Hörnich, B.F.; Großkopf, A.K.; Schlagowski, S.; Tenbusch, M.; Kleine-Weber, H.; Neipel, F.; Stahl-Hennig, C.; Hahn, A.S. SARS-CoV-2 and SARS-CoV Spike-Mediated Cell-Cell Fusion Differ in Their Requirements for Receptor Expression and Proteolytic Activation. J. Virol. 2021, 95, e00002-21. [Google Scholar] [CrossRef]
- Zhao, M.-M.; Yang, W.-L.; Yang, F.-Y.; Zhang, L.; Huang, W.-J.; Hou, W.; Fan, C.-F.; Jin, R.-H.; Feng, Y.-M.; Wang, Y.-C.; et al. Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Signal Transduct. Target. Ther. 2021, 6, 134. [Google Scholar] [CrossRef]
- Daly, J.L.; Simonetti, B.; Klein, K.; Chen, K.-E.; Williamson, M.K.; Antón-Plágaro, C.; Shoemark, D.K.; Simón-Gracia, L.; Bauer, M.; Hollandi, R.; et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science 2020, 370, 861–865. [Google Scholar] [CrossRef]
- Cantuti-Castelvetri, L.; Ojha, R.; Pedro, L.D.; Djannatian, M.; Franz, J.; Kuivanen, S.; van der Meer, F.; Kallio, K.; Kaya, T.; Anastasina, M.; et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 2020, 370, 856–860. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, Z.; Nguyen, H.T.T.; Watson, A.J.; Lao, Q.; Li, A.; Zhu, J. Integrin α5β1 contributes to cell fusion and inflammation mediated by SARS-CoV-2 spike via RGD-independent interaction. Proc. Natl. Acad. Sci. USA 2023, 120, e2311913120. [Google Scholar] [CrossRef] [PubMed]
- Sigrist, C.J.; Bridge, A.; Le Mercier, P. A potential role for integrins in host cell entry by SARS-CoV-2. Antivir. Res. 2020, 177, 104759. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef]
- Sanders, D.W.; Jumper, C.C.; Ackerman, P.J.; Bracha, D.; Donlic, A.; Kim, H.; Kenney, D.; Castello-Serrano, I.; Suzuki, S.; Tamura, T.; et al. SARS-CoV-2 requires cholesterol for viral entry and pathological syncytia formation. eLife 2021, 10, e65962. [Google Scholar] [CrossRef]
- Clemens, D.J.; Ye, D.; Zhou, W.; Kim, C.S.J.; Pease, D.R.; Navaratnarajah, C.K.; Barkhymer, A.; Tester, D.J.; Nelson, T.J.; Cattaneo, R.; et al. SARS-CoV-2 spike protein-mediated cardiomyocyte fusion may contribute to increased arrhythmic risk in COVID-19. PLoS ONE 2023, 18, e0282151. [Google Scholar] [CrossRef]
- Raman, B.; McCracken, C.; Cassar, M.P.; Moss, A.J.; Finnigan, L.; Samat, A.H.A.; Ogbole, G.; Tunnicliffe, E.M.; Alfaro-Almagro, F.; Menke, R.; et al. Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): A prospective, multicentre, observational cohort study. Lancet Respir. Med. 2023, 11, 1003–1019. [Google Scholar] [CrossRef]
- Peacock, T.P.; Goldhill, D.H.; Zhou, J.; Baillon, L.; Frise, R.; Swann, O.C.; Kugathasan, R.; Penn, R.; Brown, J.C.; Sanchez-David, R.Y.; et al. The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat. Microbiol. 2021, 6, 899–909. [Google Scholar] [CrossRef]
- Mlcochova, P.; Kemp, S.A.; Dhar, M.S.; Papa, G.; Meng, B.; Ferreira, I.A.T.M.; Datir, R.; Collier, D.A.; Albecka, A.; Singh, S.; et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 2021, 599, 114–119. [Google Scholar] [CrossRef]
- Kemp, S.A.; Collier, D.A.; Datir, R.P.; Ferreira, I.A.T.M.; Gayed, S.; Jahun, A.; Hosmillo, M.; Rees-Spear, C.; Mlcochova, P.; Lumb, I.U.; et al. SARS-CoV-2 evolution during treatment of chronic infection. Nature 2021, 592, 277–282. [Google Scholar] [CrossRef]
- Meng, B.; Abdullahi, A.; Ferreira, I.A.T.M.; Goonawardane, N.; Saito, A.; Kimura, I.; Yamasoba, D.; Gerber, P.P.; Fatihi, S.; Rathore, S.; et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature 2022, 603, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Wang, L.; Jiao, F.; Yu, X.; Xu, W.; Huang, Z.; Li, X.; Wang, Q.; Zhu, Y.; Man, Q.; et al. SARS-CoV-2 Omicron subvariants exhibit distinct fusogenicity, but similar sensitivity, to pan-CoV fusion inhibitors. Emerg. Microbes Infect. 2023, 12, 2178241. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.T.K.; Altaf, M.; Castin, J.; Reuschl, A.-K.; Sievers, B.L.; Kamelian, K.; Mesner, D.; Morse, R.B.; Abdullahi, A.; Meng, B.; et al. Signatures of omicron-like adaptation in early SARS-CoV-2 variants and chronic infection. Cell Rep. 2025, 44, 116135. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Sha, Z.; Zhang, C.; Adler, J.M.; Vidal, R.M.; Langner, C.; Fu, B.; Xiong, Y.; Tan, M.; Jiang, C.; et al. A single mutation may contribute to accelerated evolution of SARS-CoV-2 toward Omicron. Nat. Commun. 2025, 16, 6951. [Google Scholar] [CrossRef]
- Martens, S.; McMahon, H.T. Mechanisms of membrane fusion: Disparate players and common principles. Nat. Rev. Mol. Cell Biol. 2008, 9, 543–556. [Google Scholar] [CrossRef]
- Duncan, R. Fusogenic Reoviruses and Their Fusion-Associated Small Transmembrane (FAST) Proteins. Annu. Rev. Virol. 2019, 6, 341–363. [Google Scholar] [CrossRef]
- Bosch, B.J.; van der Zee, R.; de Haan, C.A.; Rottier, P.J.M. The Coronavirus Spike Protein Is a Class I Virus Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex. J. Virol. 2003, 77, 8801–8811. [Google Scholar] [CrossRef]
- Sapir, A.; Avinoam, O.; Podbilewicz, B.; Chernomordik, L.V. Viral and Developmental Cell Fusion Mechanisms: Conservation and Divergence. Dev. Cell 2008, 14, 11–21. [Google Scholar] [CrossRef]
- Duprex, W.P.; Dutch, R.E. Paramyxoviruses: Pathogenesis, Vaccines, Antivirals, and Prototypes for Pandemic Preparedness. J. Infect. Dis. 2023, 228 (Suppl. 6), S390–S397. [Google Scholar] [CrossRef]
- El Najjar, F.; Schmitt, A.P.; Dutch, R.E. Paramyxovirus Glycoprotein Incorporation, Assembly and Budding: A Three Way Dance for Infectious Particle Production. Viruses 2014, 6, 3019–3054. [Google Scholar] [CrossRef]
- McBride, C.E.; Li, J.; Machamer, C.E. The Cytoplasmic Tail of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein Contains a Novel Endoplasmic Reticulum Retrieval Signal That Binds COPI and Promotes Interaction with Membrane Protein. J. Virol. 2007, 81, 2418–2428. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liu, Y.; Zhang, L. Cytoplasmic tail determines the membrane trafficking and localization of SARS-CoV-2 spike protein Review. Front. Mol. Biosci. 2022, 9, 1004036. [Google Scholar] [CrossRef] [PubMed]
- Burkova, E.E.; Bakhno, I.A. Sequences in the Cytoplasmic Tail Contribute to the Intracellular Trafficking and the Cell Surface Localization of SARS-CoV-2 Spike Protein. Biomolecules 2025, 15, 280. [Google Scholar] [CrossRef] [PubMed]
- Dey, D.; Qing, E.; He, Y.; Chen, Y.; Jennings, B.; Cohn, W.; Singh, S.; Gakhar, L.; Schnicker, N.J.; Pierce, B.G.; et al. A single C-terminal residue controls SARS-CoV-2 spike trafficking and incorporation into VLPs. Nat. Commun. 2023, 14, 8358. [Google Scholar] [CrossRef]
- Li, Y.; Yang, M.; Nan, Y.; Wang, J.; Wang, S.; Cui, D.; Guo, J.; He, P.; Dai, W.; Zhou, S.; et al. SARS-CoV-2 spike host cell surface exposure promoted by a COPI sorting inhibitor. Acta Pharm. Sin. B 2023, 13, 3043–3053. [Google Scholar] [CrossRef]
- Boson, B.; Legros, V.; Zhou, B.; Siret, E.; Mathieu, C.; Cosset, F.-L.; Lavillette, D.; Denolly, S. The SARS-CoV-2 envelope and membrane proteins modulate maturation and retention of the spike protein, allowing assembly of virus-like particles. J. Biol. Chem. 2021, 296, 100111. [Google Scholar] [CrossRef]
- Rocheleau, L.; Laroche, G.; Fu, K.; Stewart, C.M.; Mohamud, A.O.; Côté, M.; Giguère, P.M.; Langlois, M.-A.; Pelchat, M. Identification of a High-Frequency Intrahost SARS-CoV-2 Spike Variant with Enhanced Cytopathic and Fusogenic Effects. mBio 2021, 12, e0078821. [Google Scholar] [CrossRef]
- Syed, A.M.; Taha, T.Y.; Tabata, T.; Chen, I.P.; Ciling, A.; Khalid, M.M.; Sreekumar, B.; Chen, P.-Y.; Hayashi, J.M.; Soczek, K.M.; et al. Rapid assessment of SARS-CoV-2–evolved variants using virus-like particles. Science 2021, 374, 1626–1632. [Google Scholar] [CrossRef]
- Carabelli, A.M.; Peacock, T.P.; Thorne, L.G.; Harvey, W.T.; Hughes, J.; Peacock, S.J.; Barclay, W.S.; de Silva, T.I.; Towers, G.J.; Robertson, D.L. SARS-CoV-2 variant biology: Immune escape, transmission and fitness. Nat. Rev. Microbiol. 2023, 21, 162–177. [Google Scholar] [CrossRef]
- Shi, W.; Cai, Y.; Zhu, H.; Peng, H.; Voyer, J.; Rits-Volloch, S.; Cao, H.; Mayer, M.L.; Song, K.; Xu, C.; et al. Cryo-EM structure of SARS-CoV-2 postfusion spike in membrane. Nature 2023, 619, 403–409. [Google Scholar] [CrossRef]
- Bussani, R.; Zentilin, L.; Correa, R.; Colliva, A.; Silvestri, F.; Zacchigna, S.; Collesi, C.; Giacca, M. Persistent SARS-CoV-2 infection in patients seemingly recovered from COVID-19. J. Pathol. 2023, 259, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Sim, J.-R.; Shin, D.H.; Park, P.-G.; Park, S.-H.; Bae, J.-Y.; Lee, Y.; Kang, D.-Y.; Kim, Y.J.; Aum, S.; Noh, S.H.; et al. Amelioration of SARS-CoV-2 infection by ANO6 phospholipid scramblase inhibition. Cell Rep. 2022, 40, 111117. [Google Scholar] [CrossRef] [PubMed]
- Theuerkauf, S.A.; Michels, A.; Riechert, V.; Maier, T.J.; Flory, E.; Cichutek, K.; Buchholz, C.J. Quantitative assays reveal cell fusion at minimal levels of SARS-CoV-2 spike protein and fusion from without. iScience 2021, 24, 102170. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Su, P.Y.; Castro, D.A.; Tripler, T.N.; Hu, Y.; Cook, M.; Ko, A.I.; Farhadian, S.F.; Israelow, B.; Dela Cruz, C.S.; et al. Rapid, reliable, and reproducible cell fusion assay to quantify SARS-Cov-2 spike interaction with hACE2. PLoS Pathog. 2021, 17, e1009683. [Google Scholar] [CrossRef]
- García-Murria, M.J.; Gadea-Salom, L.; Moreno, S.; Rius-Salvador, M.; Zaragoza, O.; Brun, A.; Mingarro, I.; Martínez-Gil, L. Identification of small molecules capable of enhancing viral membrane fusion. Virol. J. 2023, 20, 99. [Google Scholar] [CrossRef]
- Buchrieser, J.; Dufloo, J.; Hubert, M.; Monel, B.; Planas, D.; Rajah, M.M.; Planchais, C.; Porrot, F.; Guivel--Benhassine, F.; Van der Werf, S.; et al. Syncytia formation by SARS--CoV--2--infected cells. EMBO J. 2020, 39, e106267. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, Y.; Niu, Z.; Zhang, B.; Wang, C.; Yao, X.; Peng, H.; Franca, D.N.; Wang, Y.; Zhu, Y.; et al. SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte elimination. Cell Death Differ. 2021, 28, 2765–2777. [Google Scholar] [CrossRef]
- Lee, J.D.; Menasche, B.L.; Mavrikaki, M.; Uyemura, M.M.; Hong, S.M.; Kozlova, N.; Wei, J.; Alfajaro, M.M.; Filler, R.B.; Müller, A.; et al. Differences in syncytia formation by SARS-CoV-2 variants modify host chromatin accessibility and cellular senescence via TP53. Cell Rep. 2023, 42, 113478. [Google Scholar] [CrossRef]
- Vanhulle, E.; Doijen, J.; Stroobants, J.; Provinciael, B.; Noppen, S.; Schols, D.; Stevaert, A.; Vermeire, K. Cellular electrical impedance to profile SARS-CoV-2 fusion inhibitors and to assess the fusogenic potential of spike mutants. Antivir. Res. 2023, 213, 105587. [Google Scholar] [CrossRef]
- Carrascosa-Sàez, M.; Marqués, M.-C.; Geller, R.; Elena, S.F.; Rahmeh, A.; Dufloo, J.; Sanjuán, R.; Consortium, T.I.-C.-P. Cell type-specific adaptation of the SARS-CoV-2 spike. Virus Evol. 2024, 10, veae032. [Google Scholar] [CrossRef]
- Tieu, K.V.; Espey, M.; Narayanan, A.; Heise, R.L.; Alem, F.; Conway, D.E. SARS-CoV-2 S-protein expression drives syncytia formation in endothelial cells. Sci. Rep. 2025, 15, 3549. [Google Scholar] [CrossRef]
- Lee, J.Y.; Schick, M. Calculation of free energy barriers to the fusion of small vesicles. Biophys J. 2008, 94, 1699–1706. [Google Scholar] [CrossRef]
- Hernández, J.M.; Podbilewicz, B. The hallmarks of cell-cell fusion. Development 2017, 144, 4481–4495. [Google Scholar] [CrossRef]
- Lai, A.L.; Freed, J.H. SARS-CoV-2 Fusion Peptide has a Greater Membrane Perturbating Effect than SARS-CoV with Highly Specific Dependence on Ca2+. J. Mol. Biol. 2021, 433, 166946. [Google Scholar] [CrossRef]
- Carten, J.D.; Khelashvili, G.; Bidon, M.K.; Straus, M.R.; Tang, T.; Jaimes, J.A.; Whittaker, G.R.; Weinstein, H.; Daniel, S. A Mechanistic Understanding of the Modes of Ca2+ Ion Binding to the SARS-CoV-1 Fusion Peptide and Their Role in the Dynamics of Host Membrane Penetration. ACS Infect. Dis. 2024, 10, 398–411. [Google Scholar] [CrossRef]
- Allolio, C.; Harries, D. Calcium Ions Promote Membrane Fusion by Forming Negative-Curvature Inducing Clusters on Specific Anionic Lipids. ACS Nano 2021, 15, 12880–12887. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, D.S.; Broder, C.C.; A Berger, E.; Blumenthal, R. Calcium ions are required for cell fusion mediated by the CD4-human immunodeficiency virus type 1 envelope glycoprotein interaction. J. Virol. 1993, 67, 1647–1652. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Yin, S.-R.; Blank, P.S.; Zimmerberg, J. Cholesterol Promotes Hemifusion and Pore Widening in Membrane Fusion Induced by Influenza Hemagglutinin. J. Gen. Physiol. 2008, 131, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Zang, R.; Case, J.B.; Yutuc, E.; Ma, X.; Shen, S.; Gomez Castro, M.F.; Liu, Z.; Zeng, Q.; Zhao, H.; Son, J.; et al. Cholesterol 25-hydroxylase suppresses SARS-CoV-2 replication by blocking membrane fusion. Proc. Natl. Acad. Sci. USA 2020, 117, 32105–32113. [Google Scholar] [CrossRef]
- Wang, S.; Li, W.; Hui, H.; Tiwari, S.K.; Zhang, Q.; Croker, B.A.; Rawlings, S.; Smith, D.; Carlin, A.F.; Rana, T.M. Cholesterol 25-Hydroxylase inhibits SARS-CoV-2 and other coronaviruses by depleting membrane cholesterol. EMBO J. 2020, 39, e106057. [Google Scholar] [CrossRef]
- Bricogne, C.; Fine, M.; Pereira, P.M.; Sung, J.; Tijani, M.; Wang, Y.; Henriques, R.; Collins, M.K.; Hilgemann, D.W. TMEM16F activation by Ca2+ triggers plasma membrane expansion and directs PD-1 trafficking. Sci. Rep. 2019, 9, 619. [Google Scholar] [CrossRef] [PubMed]
- Whitlock, J.M.; Chernomordik, L.V. Flagging fusion: Phosphatidylserine signaling in cell–cell fusion. J. Biol. Chem. 2021, 296, 100411. [Google Scholar] [CrossRef] [PubMed]
- Bolland, W.; Marechal, I.; Petiot, C.; Porrot, F.; Guivel-Benhassine, F.; Casartelli, N.; Schwartz, O.; Buchrieser, J. SARS-CoV-2 entry and fusion are independent of ACE2 localization to lipid rafts. bioRxiv 2024. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lu, F.; Chen, Y.; Plow, E.; Qin, J. Integrin mediates cell entry of the SARS-CoV-2 virus independent of cellular receptor ACE2. J. Biol. Chem. 2022, 298, 101710. [Google Scholar] [CrossRef]
- Ackermann, M.; Anders, H.-J.; Bilyy, R.; Bowlin, G.L.; Daniel, C.; De Lorenzo, R.; Egeblad, M.; Henneck, T.; Hidalgo, A.; Hoffmann, M.; et al. Patients with COVID-19: In the dark-NETs of neutrophils. Cell Death Differ. 2021, 28, 3125–3139. [Google Scholar] [CrossRef]
- Sefik, E.; Qu, R.; Junqueira, C.; Kaffe, E.; Mirza, H.; Zhao, J.; Brewer, J.R.; Han, A.; Steach, H.R.; Israelow, B.; et al. Inflammasome activation in infected macrophages drives COVID-19 pathology. Nature 2022, 606, 585–593. [Google Scholar] [CrossRef]
- Labzin, L.I.; Chew, K.Y.; Eschke, K.; Wang, X.; Esposito, T.; Stocks, C.J.; Rae, J.; Patrick, R.; Mostafavi, H.; Hill, B.; et al. Macrophage ACE2 is necessary for SARS-CoV-2 replication and subsequent cytokine responses that restrict continued virion release. Sci. Signal. 2023, 16, eabq1366. [Google Scholar] [CrossRef]
- Yu, S.; Zheng, X.; Zhou, Y.; Gao, Y.; Zhou, B.; Zhao, Y.; Li, T.; Li, Y.; Mou, J.; Cui, X.; et al. Antibody-mediated spike activation promotes cell-cell transmission of SARS-CoV-2. PLoS Pathog. 2023, 19, e1011789. [Google Scholar] [CrossRef]
- Coish, J.M.; MacNeil, L.A.; MacNeil, A.J. The SARS-CoV-2 antibody-dependent enhancement façade. Microbes Infect 2025, 27, 105464. [Google Scholar] [CrossRef]
- Pickering, S.; Wilson, H.; Bravo, E.; Perera, M.R.; Seow, J.; Graham, C.; Almeida, N.; Fotopoulos, L.; Williams, T.; Moitra, A.; et al. Antibodies to the RBD of SARS-CoV-2 spike mediate productive infection of primary human macrophages. Nat. Commun. 2024, 15, 10764. [Google Scholar] [CrossRef]
- Graham, C.; Seow, J.; Huettner, I.; Khan, H.; Kouphou, N.; Acors, S.; Winstone, H.; Pickering, S.; Galao, R.P.; Dupont, L.; et al. Neutralization potency of monoclonal antibodies recognizing dominant and subdominant epitopes on SARS-CoV-2 Spike is impacted by the B.1.1.7 variant. Immunity 2021, 54, 1276–1289.e6. [Google Scholar] [CrossRef]
- Reuter, N.; Chen, X.; Kropff, B.; Peter, A.S.; Britt, W.J.; Mach, M.; Überla, K.; Thomas, M. SARS-CoV-2 Spike Protein Is Capable of Inducing Cell–Cell Fusions Independent from Its Receptor ACE2 and This Activity Can Be Impaired by Furin Inhibitors or a Subset of Monoclonal Antibodies. Viruses 2023, 15, 1500. [Google Scholar] [CrossRef]
- Lim, S.; Zhang, M.; Chang, T.L. ACE2-Independent Alternative Receptors for SARS-CoV-2. Viruses 2022, 14, 2535. [Google Scholar] [CrossRef]
- Lin, L.; Li, Q.; Wang, Y.; Shi, Y. Syncytia formation during SARS-CoV-2 lung infection: A disastrous unity to eliminate lymphocytes. Cell Death Differ. 2021, 28, 2019–2021. [Google Scholar] [CrossRef]
- Zang, R.; Castro, M.F.G.; McCune, B.T.; Zeng, Q.; Rothlauf, P.W.; Sonnek, N.M.; Liu, Z.; Brulois, K.F.; Wang, X.; Greenberg, H.B.; et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci. Immunol. 2020, 5, eabc3582. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Zhao, X.; Zheng, S.; Chen, D.; Du, P.; Li, X.; Jiang, D.; Guo, J.-T.; Zeng, H.; Lin, H. Bat SARS-Like WIV1 coronavirus uses the ACE2 of multiple animal species as receptor and evades IFITM3 restriction via TMPRSS2 activation of membrane fusion. Emerg. Microbes Infect. 2020, 9, 1567–1579. [Google Scholar] [CrossRef] [PubMed]
- Bertram, S.; Dijkman, R.; Habjan, M.; Heurich, A.; Gierer, S.; Glowacka, I.; Welsch, K.; Winkler, M.; Schneider, H.; Hofmann-Winkler, H.; et al. TMPRSS2 Activates the Human Coronavirus 229E for Cathepsin-Independent Host Cell Entry and Is Expressed in Viral Target Cells in the Respiratory Epithelium. J. Virol. 2013, 87, 6150–6160. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.-J.; Acosta, D.; Hoq, M.R.; Khurana, S.; Golding, H.; Zaitseva, M. Pyrogenic and inflammatory mediators are produced by polarized M1 and M2 macrophages activated with D-dimer and SARS-CoV-2 spike immune complexes. Cytokine 2024, 173, 156447. [Google Scholar] [CrossRef]
- Prévost, J.; Richard, J.; Gasser, R.; Ding, S.; Fage, C.; Anand, S.P.; Adam, D.; Gupta Vergara, N.; Tauzin, A.; Benlarbi, M.; et al. Impact of temperature on the affinity of SARS-CoV-2 Spike glycoprotein for host ACE2. J. Biol. Chem. 2021, 297, 101151. [Google Scholar] [CrossRef]
- Dufloo, J.; Sanjuán, R. Temperature impacts SARS-CoV-2 spike fusogenicity and evolution. mBio 2024, 15, e03360-23. [Google Scholar] [CrossRef]
- Ma, H.; Zhu, Z.; Lin, H.; Wang, S.; Zhang, P.; Li, Y.; Li, L.; Wang, J.; Zhao, Y.; Han, J. Pyroptosis of syncytia formed by fusion of SARS-CoV-2 spike and ACE2-expressing cells. Cell Discov. 2021, 7, 73. [Google Scholar] [CrossRef]
- Zhuang, X.; Tsukuda, S.; Wrensch, F.; Wing, P.A.C.; Schilling, M.; Harris, J.M.; Borrmann, H.; Morgan, S.B.; Cane, J.L.; Mailly, L.; et al. The circadian clock component BMAL1 regulates SARS-CoV-2 entry and replication in lung epithelial cells. iScience 2021, 24, 103144. [Google Scholar] [CrossRef] [PubMed]
- Cabantous, S.; Nguyen, H.B.; Pedelacq, J.-D.; Koraïchi, F.; Chaudhary, A.; Ganguly, K.; Lockard, M.A.; Favre, G.; Terwilliger, T.C.; Waldo, G.S. A New Protein-Protein Interaction Sensor Based on Tripartite Split-GFP Association. Sci. Rep. 2013, 3, 2854. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.; Igwe, C.L.; Wiechert, W.; Oldiges, M. Scaling production of GFP1-10 detector protein in E. coli for secretion screening by split GFP assay. Microb. Cell Factories 2021, 20, 191. [Google Scholar] [CrossRef] [PubMed]
- Bignon, C.; Gruet, A.; Longhi, S. Split-GFP Reassembly Assay: Strengths and Caveats from a Multiparametric Analysis. Int. J. Mol. Sci. 2022, 23, 13167. [Google Scholar] [CrossRef]
- Cafaro, A.; Schietroma, I.; Sernicola, L.; Belli, R.; Campagna, M.; Mancini, F.; Farcomeni, S.; Pavone-Cossut, M.R.; Borsetti, A.; Monini, P.; et al. Role of HIV-1 Tat Protein Interactions with Host Receptors in HIV Infection and Pathogenesis. Int. J. Mol. Sci. 2024, 25, 1704. [Google Scholar] [CrossRef]
- Gatignol, A.; Duarte, M.; Daviet, L.; Chang, Y.N.; Jeang, K.T. Sequential steps in Tat trans-activation of HIV-1 mediated through cellular DNA, RNA, and protein binding factors. Gene Expr. 1996, 5, 217–228. [Google Scholar]
- Holland, A.U.; Munk, C.; Lucero, G.R.; Nguyen, L.D.; Landau, N.R. α-Complementation assay for HIV envelope glycoprotein-mediated fusion. Virology 2004, 319, 343–352. [Google Scholar] [CrossRef]
- Green, M.R.; Sambrook, J. Screening Bacterial Colonies Using X-Gal and IPTG: α-Complementation. Cold Spring Harb. Protoc. 2019, 2019, pdb-prot101329. [Google Scholar] [CrossRef]
- García-Murria, M.J.; Expósito-Domínguez, N.; Duart, G.; Mingarro, I.; Martinez-Gil, L. A Bimolecular Multicellular Complementation System for the Detection of Syncytium Formation: A New Methodology for the Identification of Nipah Virus Entry Inhibitors. Viruses 2019, 11, 229. [Google Scholar] [CrossRef]
- Pipchuk, A.; Yang, X. Monitoring Hippo Signaling Pathway Activity Using a Luciferase-Based Large Tumor Suppressor (LATS) Biosensor. In Bioluminescence: Methods and Protocols, Volume 2; Kim, S.-B., Ed.; Springer: New York, NY, USA, 2022; pp. 155–169. [Google Scholar]
- Kelly, T.; Yang, X. Application of Fluorescence- and Bioluminescence-Based Biosensors in Cancer Drug Discovery. Biosensors 2024, 14, 570. [Google Scholar] [CrossRef]
- Reyes-Alcaraz, A.; Garcia-Rojas, E.Y.L.; Merlinsky, E.A.; Seong, J.Y.; Bond, R.A.; McConnell, B.K. A NanoBiT assay to monitor membrane proteins trafficking for drug discovery and drug development. Commun. Biol. 2022, 5, 212. [Google Scholar] [CrossRef]
- Little, H.J.; Rorick, N.K.; Su, L.-I.; Baldock, C.; Malhotra, S.; Jowitt, T.; Gakhar, L.; Subramanian, R.; Schutte, B.C.; Dixon, M.J.; et al. Missense mutations that cause Van der Woude syndrome and popliteal pterygium syndrome affect the DNA-binding and transcriptional activation functions of IRF6. Hum. Mol. Genet. 2008, 18, 535–545. [Google Scholar] [CrossRef]
- Massoud, T.F.; Paulmurugan, R. Chapter 47—Molecular Imaging of Protein–Protein Interactions and Protein Folding. In Molecular Imaging, 2nd ed.; Ross, B.D., Gambhir, S.S., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 897–928. [Google Scholar]
- Ma, J.Z.; Ng, W.C.; Zappia, L.; Gearing, L.J.; Olshansky, M.; Pham, K.; Cheong, K.; Hsu, A.; Turner, S.J.; Wijburg, O.; et al. Unique Transcriptional Architecture in Airway Epithelial Cells and Macrophages Shapes Distinct Responses following Influenza Virus Infection Ex Vivo. J. Virol. 2019, 93, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Quinchia, J.; Echeverri, D.; Cruz-Pacheco, A.F.; Maldonado, M.E.; Orozco, J. Electrochemical Biosensors for Determination of Colorectal Tumor Biomarkers. Micromachines 2020, 11, 411. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, H.; Archana; Noumani, A.; Himanshu, J.K.; Chakravorty, S.; Solanki, P.R. Recent advancement in the detection of potential cancer biomarkers using the nanomaterial integrated electrochemical sensing technique: A detailed review. Mater. Adv. 2024, 5, 475–503. [Google Scholar] [CrossRef]
- Xie, X.; Zou, J.; Shan, C.; Yang, Y.; Kum, D.B.; Dallmeier, K.; Neyts, J.; Shi, P.-Y. Zika Virus Replicons for Drug Discovery. EBioMedicine 2016, 12, 156–160. [Google Scholar] [CrossRef]
- Watterson, D.; Robinson, J.; Chappell, K.J.; Butler, M.S.; Edwards, D.J.; Fry, S.R.; Bermingham, I.M.; Cooper, M.A.; Young, P.R. A generic screening platform for inhibitors of virus induced cell fusion using cellular electrical impedance. Sci. Rep. 2016, 6, 22791. [Google Scholar] [CrossRef]
- Arora, P.; Nehlmeier, I.; Kempf, A.; Cossmann, A.; Schulz, S.R.; Dopfer-Jablonka, A.; Baier, E.; Tampe, B.; Moerer, O.; Dickel, S.; et al. Lung cell entry, cell–cell fusion capacity, and neutralisation sensitivity of omicron sublineage BA.2.75. Lancet Infect. Dis. 2022, 22, 1537–1538. [Google Scholar] [CrossRef]
- Doherty, G.J.; McMahon, H.T. Mechanisms of endocytosis. Annu. Rev. Biochem. 2009, 78, 857–902. [Google Scholar] [CrossRef]
- Sievers, B.L.; Cheng, M.T.K.; Csiba, K.; Meng, B.; Gupta, R.K. SARS-CoV-2 and innate immunity: The good, the bad, and the “goldilocks”. Cell. Mol. Immunol. 2024, 21, 171–183. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, C. Regulation of cGAS–STING signalling and its diversity of cellular outcomes. Nat. Rev. Immunol. 2025, 25, 425–444. [Google Scholar] [CrossRef]
- Hastie, C.E.; Lowe, D.J.; McAuley, A.; Mills, N.L.; Winter, A.J.; Black, C.; Scott, J.T.; O’Donnell, C.A.; Blane, D.N.; Browne, S.; et al. True prevalence of long-COVID in a nationwide, population cohort study. Nat. Commun. 2023, 14, 7892. [Google Scholar] [CrossRef]
- Buonsenso, D.; Tantisira, K.G. Long COVID and SARS-CoV-2 persistence: New answers, more questions. Lancet Infect. Dis. 2024, 24, 796–798. [Google Scholar] [CrossRef]
- Chen, H.-J.; Appelman, B.; Willemen, H.; Bos, A.; Prado, J.; Geyer, C.E.; Santos Ribeiro, P.S.; Versteeg, S.; Larsen, M.; Schüchner, E.; et al. Transfer of IgG from Long COVID patients induces symptomology in mice. bioRxiv 2024. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiang, K.C.; Chiu, C.E.N.; Altaf, M.; Cheng, M.T.K.; Gupta, R.K. Mechanisms of Cell–Cell Fusion in SARS-CoV-2: An Evolving Strategy for Transmission and Immune Evasion. Viruses 2025, 17, 1405. https://doi.org/10.3390/v17111405
Chiang KC, Chiu CEN, Altaf M, Cheng MTK, Gupta RK. Mechanisms of Cell–Cell Fusion in SARS-CoV-2: An Evolving Strategy for Transmission and Immune Evasion. Viruses. 2025; 17(11):1405. https://doi.org/10.3390/v17111405
Chicago/Turabian StyleChiang, Kate Chander, Cheng En Nicole Chiu, Mazharul Altaf, Mark Tsz Kin Cheng, and Ravindra K. Gupta. 2025. "Mechanisms of Cell–Cell Fusion in SARS-CoV-2: An Evolving Strategy for Transmission and Immune Evasion" Viruses 17, no. 11: 1405. https://doi.org/10.3390/v17111405
APA StyleChiang, K. C., Chiu, C. E. N., Altaf, M., Cheng, M. T. K., & Gupta, R. K. (2025). Mechanisms of Cell–Cell Fusion in SARS-CoV-2: An Evolving Strategy for Transmission and Immune Evasion. Viruses, 17(11), 1405. https://doi.org/10.3390/v17111405

