A Specific Pattern of Routine Cerebrospinal Fluid Parameters Might Help to Identify Cases of West Nile Virus Neuroinvasive Disease
Abstract
:1. Introduction
2. Methods
2.1. Analysis of the Cerebrospinal Fluid
2.2. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meyding-Lamadé, U. Virale Meningoenzephalitis, S1-Leitlinie, 2018. Deutsche Gesellschaft für Neurologie (Hrsg.), Leitlinien für Diagnostik und Therapie in der Neurologie. Available online: https://dnvp9c1uo2095.cloudfront.net/wp-content/uploads/2020/07/030100_LL_Virale_Meningoenzephalitis_2018_V1.1.pdf (accessed on 8 August 2022).
- McGill, F.; Griffiths, M.J.; Bonnett, L.J.; Geretti, A.M.; Michael, B.D.; Beeching, N.J.; McKee, D.; Scarlett, P.; Hart, I.J.; Mutton, K.J.; et al. Incidence, aetiology, and sequelae of viral meningitis in UK adults: A multicentre prospective observational cohort study. Lancet Infect. Dis. 2018, 18, 992–1003. [Google Scholar] [CrossRef] [PubMed]
- Whitley, R.J.; Alford, C.A.; Hirsch, M.S.; Schooley, R.T.; Luby, J.P.; Aoki, F.Y.; Hanley, D.; Nahmias, A.J.; Soong, S.-J.; The NIAID Collaborative Antiviral Study Group. Vidarabine versus Acyclovir Therapy in Herpes Simplex Encephalitis. N. Engl. J. Med. 1986, 314, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Ungureanu, A.; van der Meer, J.; Bicvic, A.; Abbuehl, L.; Chiffi, G.; Jaques, L.; Suter-Riniker, F.; Leib, S.L.; Bassetti, C.L.A.; Dietmann, A. Meningitis, meningoencephalitis and encephalitis in Bern: An observational study of 258 patients. BMC Neurol. 2021, 21, 474. [Google Scholar] [CrossRef] [PubMed]
- Meyding-Lamadé, U.; Craemer, E.; Schnitzler, P. Emerging and re-emerging viruses affecting the nervous system. Neurol. Res. Pract. 2019, 1, 20. [Google Scholar] [CrossRef] [PubMed]
- Pietsch, C.; Michalski, D.; Münch, J.; Petros, S.; Bergs, S.; Trawinski, H.; Lübbert, C.; Liebert, U.G. Autochthonous West Nile virus infection outbreak in humans, Leipzig, Germany, August to September 2020. Eurosurveillance 2020, 25, 2001786. [Google Scholar] [CrossRef] [PubMed]
- Larsen, A.L.; Kanestrøm, A.; Bjørland, M.; Andreassen, A.; Soleng, A.; Vene, S.; Dudman, S.G. Detection of specific IgG antibodies in blood donors and tick-borne encephalitis virus in ticks within a non-endemic area in southeast Norway. Scand. J. Infect. Dis. 2014, 46, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Hellenbrand, W.; Kreusch, T.; Böhmer, M.M.; Wagner-Wiening, C.; Dobler, G.; Wichmann, O.; Altmann, D. Epidemiology of Tick-Borne Encephalitis (TBE) in Germany, 2001–2018. Pathogens 2019, 8, 42. [Google Scholar] [CrossRef] [PubMed]
- Reiber, H. Cerebrospinal fluid—Physiology, analysis and interpretation of protein patterns for diagnosis of neurological diseases. Mult. Scler. J. 1998, 4, 99–107. [Google Scholar]
- Prince, H.E.; Hogrefe, W.R. Detection of West Nile Virus (WNV)-Specific Immunoglobulin M in a Reference Laboratory Setting during the 2002 WNV Season in the United States. Clin. Diagn. Lab. Immunol. 2003, 10, 764–768. [Google Scholar] [CrossRef]
- Davis, L.E.; DeBiasi, R.; Goade, D.E.; Haaland, K.Y.; Harrington, J.A.; Harnar, J.B.; Pergam, S.A.; King, M.K.; DeMasters, B.K.; Tyler, K.L. West Nile virus neuroinvasive disease. Ann. Neurol. 2006, 60, 286–300. [Google Scholar] [CrossRef]
- Chung, W.M.; Buseman, C.M.; Joyner, S.N.; Hughes, S.M.; Fomby, T.B.; Luby, J.P.; Haley, R.W. The 2012 West Nile Encephalitis Epidemic in Dallas, Texas. JAMA 2013, 310, 297–307. [Google Scholar] [CrossRef]
- Spanos, A.; Harrell, F.E.; Durack, D.T. Differential Diagnosis of Acute Meningitis: An Analysis of the Predictive Value of Initial Observations. JAMA 1989, 262, 2700–2707. [Google Scholar] [CrossRef] [PubMed]
- Weiss, D.; Carr, D.; Kellachan, J.; Tan, C.; Phillips, M.; Bresnitz, E.; Layton, M.; West Nile Virus Outbreak Response Working Group. Clinical Findings of West Nile Virus Infection in Hospitalized Patients, New York and New Jersey, 2000. Emerg. Infect. Dis. 2001, 7, 654–658. [Google Scholar] [CrossRef] [PubMed]
- Crichlow, R.; Bailey, J.; Gardner, C. Cerebrospinal fluid neutrophilic pleocytosis in hospitalized West Nile virus patients. J. Am. Board Fam. Pract. 2004, 17, 470–472. [Google Scholar] [CrossRef]
- Urošević, A.; Dulović, O.; Milošević, B.; Maksić, N.; Popović, N.; Milošević, I.; Delić, D.; Jevtović, D.; Poluga, J.; Jordović, J.; et al. The Importance of Haematological and Biochemical Findings in Patients with West Nile Virus Neuroinvasive Disease. J. Med. Biochem. 2016, 35, 451–457. [Google Scholar] [CrossRef]
- Jaijakul, S.; Salazar, L.; Wootton, S.H.; Aguilera, E.; Hasbun, R. The clinical significance of neutrophilic pleocytosis in cerebrospinal fluid in patients with viral central nervous system infections. Int. J. Infect. Dis. 2017, 59, 77–81. [Google Scholar] [CrossRef]
- Map of TBE Risk Areas. Available online: https://www.rki.de/DE/Content/InfAZ/F/FSME/Karte_Tab.html (accessed on 13 February 2024).
- European Commission. European Commission Implementing Decision of 8 August 2012 Amending Decision 2002/253/EC Laying Down Case Definitions for Reporting Communicable Diseases to the Community Network under Decision No 2119/98/EC of the European Parliament and of the Council. 27.9.2012: L 262. Official Journal of the European Union. Luxembourg: Publications Office of the European Union. 27 Sep 2012. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:262:0001:0057:EN:PDF (accessed on 13 December 2023).
- Chancey, C.; Grinev, A.; Volkova, E.; Rios, M. The Global Ecology and Epidemiology of West Nile Virus. BioMed Res. Int. 2015, 2015, 376230. [Google Scholar] [CrossRef] [PubMed]
- Sips, G.J.; Wilschut, J.; Smit, J.M. Neuroinvasive flavivirus infections. Rev. Med. Virol. 2012, 22, 69–87. [Google Scholar] [CrossRef]
- Petersen, L.R.; Brault, A.C.; Nasci, R.S. West Nile Virus: Review of the Literature. JAMA 2013, 310, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Wijayasri, S.; Nelder, M.; Russell, C.; Johnson, K.; Johnson, S.; Badiani, T.; Sider, D. West Nile virus illness in Ontario, Canada: 2017. Can. Commun. Dis. Rep. 2019, 44, 32–37. [Google Scholar] [CrossRef]
- Napp, S.; Petrić, D.; Busquets, N. West Nile virus and other mosquito-borne viruses present in Eastern Europe. Pathog. Glob. Health 2018, 112, 233–248. [Google Scholar] [CrossRef]
- Holt, E. West Nile virus spreads in Europe. Lancet Infect. Dis. 2018, 18, 1184. [Google Scholar] [CrossRef]
- Bakonyi, T.; Haussig, J.M. West Nile virus keeps on moving up in Europe. Eurosurveillance 2020, 25, 2001938. [Google Scholar] [CrossRef]
- Paull, S.H.; Horton, D.E.; Ashfaq, M.; Rastogi, D.; Kramer, L.D.; Diffenbaugh, N.S.; Kilpatrick, A.M. Drought and immunity determine the intensity of West Nile virus epidemics and climate change impacts. Proc. R. Soc. B Biol. Sci. 2017, 284, 20162078. [Google Scholar] [CrossRef]
- Lindsey, N.P.; Staples, J.E.; Lehman, J.A.; Fischer, M. Centers for Disease Control and Prevention (CDC). Surveillance for human West Nile virus disease-United States, 1999–2008. MMWR Surveill. Summ. 2010, 59, 1–17. [Google Scholar]
- Rizzo, C.; Salcuni, P.; Nicoletti, L.; Ciufolini, M.G.; Russo, F.; Masala, R.; Frongia, O.; Finarelli, A.C.; Gramegna, M.; Gallo, L.; et al. Epidemiological surveillance of West Nile neuroinvasive diseases in Italy, 2008 to 2011. Eurosurveillance 2012, 17, 20172. [Google Scholar] [CrossRef] [PubMed]
- Curren, E.J.; Hills, S.L.; Fischer, M.; Lindsey, N.P. St. Louis Encephalitis Virus Disease in the United States, 2003–2017. Am. J. Trop. Med. Hyg. 2018, 99, 1074–1079. [Google Scholar] [CrossRef] [PubMed]
- Venkat, H.; Krow-Lucal, E.; Kretschmer, M.; Sylvester, T.; Levy, C.; Adams, L.; Fitzpatrick, K.; Laven, J.; Kosoy, O.; Sunenshine, R.; et al. Comparison of Characteristics of Patients with West Nile Virus or St. Louis Encephalitis Virus Neuroinvasive Disease During Concurrent Outbreaks, Maricopa County, Arizona, 2015. Vector-Borne Zoonotic Dis. 2020, 20, 624–629. [Google Scholar] [CrossRef] [PubMed]
- Senel, M.; Rapp, D.; Mayer, B.; Jesse, S.; Süssmuth, S.D.; Otto, M.; Lewerenz, J.; Tumani, H. Tick-Borne Encephalitis: A Differential Pattern of Intrathecal Humoral Immune Response and Inflammatory Cell Composition Compared with Other Viral CNS Infections. Cells 2020, 9, 2169. [Google Scholar] [CrossRef]
- Maximova, O.A.; Pletnev, A.G. Flaviviruses and the Central Nervous System: Revisiting Neuropathological Concepts. Annu. Rev. Virol. 2018, 5, 255–272. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.R.; Meyding-Lamadé, U.; Craemer, E.M. Meningitis. In Neuroinfektiologie; Meyding-Lamadé, U., Stangel, M., Weber, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Klein, M.; Abdel-Hadi, C.; Bühler, R.; Grabein, B.; Linn, J.; Nau, R.; Salzberger, B.; Schlüter, D.; Schwager, K.; Tumani, H.; et al. German guidelines on community-acquired acute bacterial meningitis in adults. Neurol. Res. Pract. 2023, 5, 44. [Google Scholar] [CrossRef] [PubMed]
- Castellot, A.; Camacho, J.; Fernández-García, M.D.; Tarragó, D. Shotgun metagenomics to investigate unknown viral etiologies of pediatric meningoencephalitis. PLoS ONE 2023, 18, e0296036. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, U.; Lühken, R.; Keller, M.; Cadar, D.; van der Grinten, E.; Michel, F.; Albrecht, K.; Eiden, M.; Rinder, M.; Lachmann, L.; et al. West Nile virus epizootic in Germany, 2018. Antivir. Res. 2019, 162, 39–43. [Google Scholar] [CrossRef] [PubMed]
All Cases (n = 156) | Cases with Identified Virus (n = 93) | Cases with Unknown Viral Etiology (n = 63) | Statistical Significance | |
---|---|---|---|---|
Age (in years, median, 25th percentile, 75th percentile) | 40 (29, 67.75) | 48 (31.5, 73.5) | 36 (28, 60) | 0.011 * |
Sex (female, %) | 74 (47.4%) | 42 (45.2%) | 32 (50.8%) | 0.489 # |
Season (n, %) | 0.115 # | |||
spring | 33 (21.2%) | 19 (20.4%) | 14 (22.2%) | |
summer | 58 (37.2%) | 37 (39.8%) | 21 (33.3%) | |
autumn | 36 (23.1%) | 25 (26.9%) | 11 (17.5%) | |
winter | 29 (18.6%) | 12 (12.9%) | 17 (27.0%) | |
Time from symptom onset to lumbar puncture (in days) | 4.9 ± 4.5 | 4.7 ± 4.4 | 5.1 ± 4.7 | 0.765 * |
All Cases (n = 156) | Cases with Identified Virus (n = 93) | Cases with Unknown Viral Etiology (n = 63) | Statistical Significance | |
---|---|---|---|---|
Leucocytes CSF (/µL) | 203 ± 311 | 225 ± 355 | 169 ± 228 | 0.185 * |
Lymphocytes CSF (%) | 58.3 ± 30.1 | 58.3 ± 30.1 | 60.0 ± 31.2 | 0.627 * |
Neutrophils CSF (%) | 21.1 ± 28.2 | 19.3 ± 28.1 | 23.6 ± 28.5 | 0.163 * |
Monocytes CSF (%) | 16.6 ± 15.3 | 18.4 ± 15.7 | 14.0 ± 14.5 | 0.073 * |
Albumin CSF (mg/L) | 763 ± 468 | 834 ± 547 | 660 ± 299 | 0.060 * |
Age-adjusted CSF/serum ratio for albumin | 14.0 ± 8.4 | 15.4 ± 9.6 | 11.9 ± 5.7 | 0.032 * |
Intrathecal Ig synthesis | 29 /153 (19.0%) | 17/91 (18.7%) | 12/62 (19.4%) | 0.917 # |
Intrathecal IgM synthesis | 22 /153 (14.4%) | 12/91 (13.2%) | 10/62 (16.1%) | 0.611 # |
Intrathecal IgG synthesis | 7/153 (4.6%) | 5/91 (5.5%) | 2/62 (3.2%) | 0.510 # |
Intrathecal IgA synthesis | 5/153 (3.3%) | 3/91 (3.3%) | 2/62 (3.2%) | 0.981 # |
Cases of HSV-ME (n = 14) | Cases of VZV-ME (n = 36) | Cases of Enterovirus-ME (n = 27) | Cases of WNV-ME (n = 9) | Cases of ME of Unknown Viral Etiology (n = 63) | Statistical Significance | |
---|---|---|---|---|---|---|
Age (median, in years) | 67.5 | 66 | 31 | 65 | 36 | <0.001 * |
Sex (female, %) | 6 (42.9%) | 23 (63.9%) | 9 (33.3%) | 1 (11.1%) | 32 (50.8%) | 0.024 # |
Season (n, %) | 0.003 # | |||||
spring | 1 (7.1%) | 6 (16.7%) | 9 (33.3%) | 0 | 14 (21.9%) | |
summer | 5 (35.7%) | 12 (33.3%) | 11 (40.7%) | 9 (100%) | 22 (34.4%) | |
autumn | 6 (42.9%) | 12 (33.3%) | 6 (22.2%) | 0 | 11 (17.2%) | |
winter | 2 (14.3%) | 6 (16.7%) | 1 (3.7%) | 0 | 17 (26.6%) | |
Time from symptom onset to lumbar puncture (in days) | 3.5 ± 3.2 | 6.1 ± 5.3 | 2.7 ± 2.6 | 6.6 ± 4.0 | 5.1 ± 4.7 | 0.007 * |
Leucocytes CSF (×106/L) | 228 ± 449 | 224 ± 258 | 176 ± 160 | 147 ± 157 | 169 ± 228 | 0.270 * |
Lymphocytes CSF (%) | 60.9 ± 34.1 | 72.0 ± 24.4 | 44.6 ± 26.9 | 29.5 ± 20.8 | 60.0 ± 31.2 | <0.001 * |
Neutrophils CSF (%) | 10.4 ± 20.5 | 4.8 ± 15.7 | 33.6 ± 30.0 | 48.5 ± 32.6 | 23.6 ± 28.5 | <0.001 * |
Monocytes CSF (%) | 25.6 ± 18.8 | 16.6 ± 14.3 | 19.2 ± 16.7 | 17.2 ± 13.4 | 14.0 ± 14.5 | 0.230 * |
Albumin CSF (mg/L) | 811 ± 401 | 992 ± 693 | 564 ± 180 | 909 ± 267 | 660 ± 299 | <0.001 * |
Age-adjusted CSF/serum ratio for albumin | 19.3 ± 11.5 | 15.9 ± 10.5 | 10.1 ± 3.3 | 22.0 ± 6.9 | 11.9 ± 5.7 | <0.001 * |
Intrathecal Ig synthesis (n = 155, %) | 2/14 (14.3%) | 3/34 (8.8%) | 5/27 (18.5%) | 5/9 (55.6%) | 12/62 (19.4%) | 0.033 # |
Intrathecal IgM synthesis (n = 155, %) | 1/14 (7.1%) | 2/34 (5.9%) | 4/27 (14.8%) | 5/9 (55.6%) | 10/62 (16.1%) | 0.006 # |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelz, J.O.; Mühlberg, C.; Friedrich, I.; Weidhase, L.; Zimmermann, S.; Maier, M.; Pietsch, C. A Specific Pattern of Routine Cerebrospinal Fluid Parameters Might Help to Identify Cases of West Nile Virus Neuroinvasive Disease. Viruses 2024, 16, 341. https://doi.org/10.3390/v16030341
Pelz JO, Mühlberg C, Friedrich I, Weidhase L, Zimmermann S, Maier M, Pietsch C. A Specific Pattern of Routine Cerebrospinal Fluid Parameters Might Help to Identify Cases of West Nile Virus Neuroinvasive Disease. Viruses. 2024; 16(3):341. https://doi.org/10.3390/v16030341
Chicago/Turabian StylePelz, Johann Otto, Christoph Mühlberg, Isabel Friedrich, Lorenz Weidhase, Silke Zimmermann, Melanie Maier, and Corinna Pietsch. 2024. "A Specific Pattern of Routine Cerebrospinal Fluid Parameters Might Help to Identify Cases of West Nile Virus Neuroinvasive Disease" Viruses 16, no. 3: 341. https://doi.org/10.3390/v16030341
APA StylePelz, J. O., Mühlberg, C., Friedrich, I., Weidhase, L., Zimmermann, S., Maier, M., & Pietsch, C. (2024). A Specific Pattern of Routine Cerebrospinal Fluid Parameters Might Help to Identify Cases of West Nile Virus Neuroinvasive Disease. Viruses, 16(3), 341. https://doi.org/10.3390/v16030341