Continued Circulation of Highly Pathogenic H5 Influenza Viruses in Vietnamese Live Bird Markets in 2018–2021
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus Isolation and Identification
2.2. Viral Genomic Sequence Analysis
2.3. Phylogenetic Analysis
2.4. Biosafety Statement
3. Results
3.1. Isolation and Identification of Avian Influenza Viruses from Vietnamese Live Bird Markets in 2018 through Early 2021
3.2. Phylogenetic Analysis of Highly Pathogenic H5N6 Viruses
3.3. Comparison of the Amino Acid Consensus Sequences of Highly Pathogenic H5N6 Viruses
3.4. Viral Subpopulations of Highly Pathogenic H5N6 Viruses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, D.T.; Jang, Y.; Nguyen, T.D.; Jones, J.; Shepard, S.S.; Yang, H.; Gerloff, N.; Fabrizio, T.; Nguyen, L.V.; Inui, K.; et al. Shifting Clade Distribution, Reassortment, and Emergence of New Subtypes of Highly Pathogenic Avian Influenza A(H5) Viruses Collected from Vietnamese Poultry from 2012 to 2015. J. Virol. 2017, 91, e01708–e01716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://www.fao.org/animal-health/situation-updates/global-aiv-with-zoonotic-potential/en (accessed on 30 April 2023).
- EFSA (European Food Safety Authority); ECDC (European Centre for Disease Prevention and Control); EURL (European Reference Laboratory for Avian Influenza); Adlhoch, C.; Fusaro, A.; Gonzales, J.L.; Kuiken, T.; Marangon, S.; Niqueux, E.; Staubach, C.; et al. Avian influenza overview September–December 2022. EFSA J. 2023, 21, e07786. [Google Scholar] [PubMed]
- WHO (World Health Organization). Genetic and Antigenic Characteristics of Zoonotic Influenza A Viruses and Development of Candidate Vaccine Viruses for Pandemic Preparedness. 2023. Available online: https://cdnwhoint/media/docs/default-source/influenza/who-influenzarecommendations/vcm-northern-hemisphere-recommendation-2023-2024/20230224_zoonotic_recommendationspdf?sfvrsn=38c739fa_4 (accessed on 15 May 2023).
- Guan, L.; Zhong, G.; Fan, S.; Plisch, E.M.; Presler, R.; Gu, C.; Babujee, L.; Pattinson, D.; Le Khanh Nguyen, H.; Hoang, V.M.P.; et al. Highly Pathogenic H5 Influenza Viruses Isolated between 2016 and 2017 in Vietnamese Live Bird Markets. Viruses 2023, 15, 1093. [Google Scholar] [CrossRef] [PubMed]
- Shepard, S.S.; Meno, S.; Bahl, J.; Wilson, M.M.; Barnes, J.; Neuhaus, E. Viral deep sequencing needs an adaptive approach: IRMA, the iterative refinement meta-assembler. BMC Genom. 2016, 17, 708, Erratum in BMC Genom. 2016, 17, 801. [Google Scholar]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Kozlov, A.M.; Darriba, D.; Flouri, T.; Morel, B.; Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019, 35, 4453–4455. [Google Scholar] [CrossRef] [Green Version]
- Pattengale, N.D.; Alipour, M.; Bininda-Emonds, O.R.; Moret, B.M.; Stamatakis, A. How many bootstrap replicates are necessary? J. Comput. Biol. 2010, 17, 337–354. [Google Scholar] [CrossRef]
- Yu, G.; Smith, D.K.; Zhu, H.; Guan, Y.; Lam, T. ggtree: An R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 2017, 8, 28–36. [Google Scholar] [CrossRef]
- Zhong, G.; Fan, S.; Lopes, T.J.S.; Le, M.Q.; van Bakel, H.; Dutta, J.; Smith, G.J.D.; Jayakumar, J.; Nguyen, H.L.K.; Hoang, P.V.M.; et al. Isolation of Highly Pathogenic H5N1 Influenza Viruses in 2009–2013 in Vietnam. Front. Microbiol. 2019, 10, 1411. [Google Scholar] [CrossRef] [Green Version]
- Matrosovich, M.; Zhou, N.; Kawaoka, Y.; Webster, R. The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J. Virol. 1999, 73, 1146–1155. [Google Scholar] [CrossRef]
- Wang, W.; Lu, B.; Zhou, H.; Suguitan, A.L., Jr.; Cheng, X.; Subbarao, K.; Kemble, G.; Jin, H. Glycosylation at 158N of the hemagglutinin protein and receptor binding specificity synergistically affect the antigenicity and immunogenicity of a live attenuated H5N1 A/Vietnam/1203/2004 vaccine virus in ferrets. J. Virol. 2010, 84, 6570–6577. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.Y.; Wei, C.J.; Kong, W.P.; Wu, L.; Xu, L.; Smith, D.F.; Nabel, G.J. Immunization by avian H5 influenza hemagglutinin mutants with altered receptor binding specificity. Science 2007, 317, 825–828. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, Y.; Ibrahim, M.S.; Ellakany, H.F.; Kawashita, N.; Mizuike, R.; Hiramatsu, H.; Sriwilaijaroen, N.; Takagi, T.; Suzuki, Y.; Ikuta, K. Acquisition of human-type receptor binding specificity by new H5N1 influenza virus sublineages during their emergence in birds in Egypt. PLoS Pathog. 2011, 7, e1002068. [Google Scholar] [CrossRef]
- Stevens, J.; Blixt, O.; Chen, L.M.; Donis, R.O.; Paulson, J.C.; Wilson, I.A. Recent avian H5N1 viruses exhibit increased propensity for acquiring human receptor specificity. J. Mol. Biol. 2008, 381, 1382–1394. [Google Scholar] [CrossRef] [Green Version]
- Yen, H.L.; Aldridge, J.R.; Boon, A.C.; Ilyushina, N.A.; Salomon, R.; Hulse-Post, D.J.; Marjuki, H.; Franks, J.; Boltz, D.A.; Bush, D.; et al. Changes in H5N1 influenza virus hemagglutinin receptor binding domain affect systemic spread. Proc. Natl. Acad. Sci. USA 2009, 106, 286–291. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.; Shinya, K.; Deng, G.; Jiang, Y.; Li, Z.; Guan, Y.; Tian, G.; Li, Y.; Shi, J.; et al. Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathog. 2009, 5, e1000709. [Google Scholar] [CrossRef] [Green Version]
- Yamada, S.; Suzuki, Y.; Suzuki, T.; Le, M.Q.; Nidom, C.A.; Sakai-Tagawa, Y.; Muramoto, Y.; Ito, M.; Kiso, M.; Horimoto, T.; et al. Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature 2006, 444, 378–382. [Google Scholar] [CrossRef]
- Chutinimitkul, S.; van Riel, D.; Munster, V.J.; van den Brand, J.M.; Rimmelzwaan, G.F.; Kuiken, T.; Osterhaus, A.D.; Fouchier, R.A.; de Wit, E. In vitro assessment of attachment pattern and replication efficiency of H5N1 influenza A viruses with altered receptor specificity. J. Virol. 2010, 84, 6825–6833. [Google Scholar] [CrossRef] [Green Version]
- Maines, T.R.; Chen, L.M.; Van Hoeven, N.; Tumpey, T.M.; Blixt, O.; Belser, J.A.; Gustin, K.M.; Pearce, M.B.; Pappas, C.; Stevens, J.; et al. Effect of receptor binding domain mutations on receptor binding and transmissibility of avian influenza H5N1 viruses. Virology 2011, 413, 139–147. [Google Scholar] [CrossRef]
- Chen, L.M.; Blixt, O.; Stevens, J.; Lipatov, A.S.; Davis, C.T.; Collins, B.E.; Cox, N.J.; Paulson, J.C.; Donis, R.O. In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity. Virology 2012, 422, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, E.; Lipatov, A.S.; Webby, R.J.; Govorkova, E.A.; Webster, R.G. Role of specific hemagglutinin amino acids in the immunogenicity and protection of H5N1 influenza virus vaccines. Proc. Natl. Acad. Sci. USA 2005, 102, 12915–12920. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Mei, K.; Shi, W.; Liu, D.; Yu, X.; Gao, Z.; Zhao, L.; Gao, G.F.; Chen, J.; Chen, Q. Two Novel Reassortants of Avian Influenza A(H5N6) Virus in China. J. Gen. Virol. 2015, 96, 975–981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Zhang, Z.; Li, H.; Wang, X.; Li, B.; Ren, X.; Zeng, Z.; Zhang, X.; Liu, S.; Hu, P.; et al. Biological Characterizations of H5Nx Avian Influenza Viruses Embodying Different Neuraminidases. Front. Microbiol. 2017, 8, 1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, W.S.; Jeong, J.H.; Kwon, J.J.; Ahn, S.J.; Lloren, K.K.S.; Kwon, H.I.; Chae, H.B.; Hwang, J.; Kim, M.H.; Kim, C.J.; et al. Screening for Neuraminidase Inhibitor Resistance Markers among Avian Influenza Viruses of the N4, N5, N6, and N8 Neuraminidase Subtypes. J. Virol. 2018, 92, e01580-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaymard, A.; Charles-Dufant, A.; Sabatier, M.; Cortay, J.C.; Frobert, E.; Picard, C.; Casalegno, J.S.; Rosa-Calatrava, M.; Ferraris, O.; Valette, M.; et al. Impact on antiviral resistance of E119V, I222L and R292K substitutions in influenza A viruses bearing a group 2 neuraminidase (N2, N3, N6, N7 and N9). J. Antimicrob. Chemother. 2016, 71, 3036–3045. [Google Scholar] [CrossRef] [Green Version]
- Stoner, T.D.; Krauss, S.; Turner, J.C.; Seiler, P.; Negovetich, N.J.; Stallknecht, D.E.; Frase, S.; Govorkova, E.A.; Webster, R.G. Susceptibility of avian influenza viruses of the N6 subtype to the neuraminidase inhibitor oseltamivir. Antivir. Res. 2012, 93, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Hatta, M.; Gao, P.; Halfmann, P.; Kawaoka, Y. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 2001, 293, 1840–1842. [Google Scholar] [CrossRef] [Green Version]
- Subbarao, E.K.; London, W.; Murphy, B.R. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J. Virol. 1993, 67, 1761–1764. [Google Scholar] [CrossRef]
- Li, Z.; Chen, H.; Jiao, P.; Deng, G.; Tian, G.; Li, Y.; Hoffmann, E.; Webster, R.G.; Matsuoka, Y.; Yu, K. Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J. Virol. 2005, 79, 12058–12064. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.; Hatta, M.; Kim, J.H.; Halfmann, P.; Imai, M.; Macken, C.A.; Le, M.Q.; Nguyen, T.; Neumann, G.; Kawaoka, Y. Novel residues in avian influenza virus PB2 protein affect virulence in mammalian hosts. Nat. Commun. 2014, 5, 5021. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Li, Y.; Halpin, R.; Hine, E.; Spiro, D.J.; Wentworth, D.E. PB2 residue 158 is a pathogenic determinant of pandemic H1N1 and H5 influenza a viruses in mice. J. Virol. 2011, 85, 357–365. [Google Scholar] [CrossRef] [Green Version]
- Bussey, K.A.; Bousse, T.L.; Desmet, E.A.; Kim, B.; Takimoto, T. PB2 residue 271 plays a key role in enhanced polymerase activity of influenza A viruses in mammalian host cells. J. Virol. 2010, 84, 4395–4406. [Google Scholar] [CrossRef] [Green Version]
- Mehle, A.; Doudna, J.A. Adaptive strategies of the influenza virus polymerase for replication in humans. Proc. Natl. Acad. Sci. USA 2009, 106, 21312–21316. [Google Scholar] [CrossRef]
- Czudai-Matwich, V.; Otte, A.; Matrosovich, M.; Gabriel, G.; Klenk, H.D. PB2 mutations D701N and S714R promote adaptation of an influenza H5N1 virus to a mammalian host. J. Virol. 2014, 88, 8735–8742. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, J.; Okamatsu, M.; Soda, K.; Sakoda, Y.; Kida, H. Factors responsible for pathogenicity in chickens of a low-pathogenic H7N7 avian influenza virus isolated from a feral duck. Arch. Virol. 2013, 158, 2473–2478. [Google Scholar] [CrossRef] [Green Version]
- Cai, M.; Zhong, R.; Qin, C.; Yu, Z.; Wen, X.; Xian, J.; Chen, Y.; Cai, Y.; Yi, H.; Gong, L.; et al. The R251K Substitution in Viral Protein PB2 Increases Viral Replication and Pathogenicity of Eurasian Avian-like H1N1 Swine Influenza Viruses. Viruses 2020, 12, 52. [Google Scholar] [CrossRef] [Green Version]
- Kong, H.; Ma, S.; Wang, J.; Gu, C.; Wang, Z.; Shi, J.; Deng, G.; Guan, Y.; Chen, H. Identification of Key Amino Acids in the PB2 and M1 Proteins of H7N9 Influenza Virus That Affect Its Transmission in Guinea Pigs. J. Virol. 2019, 94, e01180-19. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Zu, Z.; Liu, J.; Song, J.; Wang, X.; Wang, C.; Liu, L.; Tong, Q.; Wang, M.; Sun, H.; et al. Prevailing I292V PB2 mutation in avian influenza H9N2 virus increases viral polymerase function and attenuates IFN-beta induction in human cells. J. Gen. Virol. 2019, 100, 1273–1281. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, X.; Yan, D.; Chen, C.; Liu, X.; Huang, C.; Fu, X.; Tian, G.; Ding, C.; Wu, J.; et al. V292I mutation in PB2 polymerase induces increased effects of E627K on influenza H7N9 virus replication in cells. Virus Res. 2021, 291, 198186. [Google Scholar] [CrossRef]
- Leung, B.W.; Chen, H.; Brownlee, G.G. Correlation between polymerase activity and pathogenicity in two duck H5N1 influenza viruses suggests that the polymerase contributes to pathogenicity. Virology 2010, 401, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Manz, B.; de Graaf, M.; Mogling, R.; Richard, M.; Bestebroer, T.M.; Rimmelzwaan, G.F.; Fouchier, R.A.M. Multiple Natural Substitutions in Avian Influenza A Virus PB2 Facilitate Efficient Replication in Human Cells. J. Virol. 2016, 90, 5928–5938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, W.; Wang, P.; Mok, B.W.; Lau, S.Y.; Huang, X.; Wu, W.L.; Zheng, M.; Wen, X.; Yang, S.; Chen, Y.; et al. The K526R substitution in viral protein PB2 enhances the effects of E627K on influenza virus replication. Nat. Commun. 2014, 5, 5509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, C.; Ma, W.; Sun, N.; Huang, L.; Li, Y.; Zeng, Z.; Wen, Y.; Zhang, Z.; Li, H.; Li, Q.; et al. PB2-588 V promotes the mammalian adaptation of H10N8, H7N9 and H9N2 avian influenza viruses. Sci. Rep. 2016, 6, 19474. [Google Scholar] [CrossRef] [Green Version]
- Taft, A.S.; Ozawa, M.; Fitch, A.; Depasse, J.V.; Halfmann, P.J.; Hill-Batorski, L.; Hatta, M.; Friedrich, T.C.; Lopes, T.J.; Maher, E.A.; et al. Identification of mammalian-adapting mutations in the polymerase complex of an avian H5N1 influenza virus. Nat. Commun. 2015, 6, 7491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youk, S.S.; Leyson, C.M.; Seibert, B.A.; Jadhao, S.; Perez, D.R.; Suarez, D.L.; Pantin-Jackwood, M.J. Mutations in PB1, NP, HA, and NA Contribute to Increased Virus Fitness of H5N2 Highly Pathogenic Avian Influenza Virus Clade 2.3.4.4 in Chickens. J. Virol. 2020, 95, e01675-20. [Google Scholar] [CrossRef]
- Yu, Z.; Cheng, K.; Sun, W.; Zhang, X.; Li, Y.; Wang, T.; Wang, H.; Zhang, Q.; Xin, Y.; Xue, L.; et al. A PB1 T296R substitution enhance polymerase activity and confer a virulent phenotype to a 2009 pandemic H1N1 influenza virus in mice. Virology 2015, 486, 180–186. [Google Scholar] [CrossRef] [Green Version]
- Salomon, R.; Franks, J.; Govorkova, E.A.; Ilyushina, N.A.; Yen, H.L.; Hulse-Post, D.J.; Humberd, J.; Trichet, M.; Rehg, J.E.; Webby, R.J.; et al. The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04. J. Exp. Med. 2006, 203, 689–697. [Google Scholar] [CrossRef]
- Xu, C.; Hu, W.B.; Xu, K.; He, Y.X.; Wang, T.Y.; Chen, Z.; Li, T.X.; Liu, J.H.; Buchy, P.; Sun, B. Amino acids 473V and 598P of PB1 from an avian-origin influenza A virus contribute to polymerase activity, especially in mammalian cells. J. Gen. Virol. 2012, 93, 531–540. [Google Scholar] [CrossRef]
- Chu, C.; Fan, S.; Li, C.; Macken, C.; Kim, J.H.; Hatta, M.; Neumann, G.; Kawaoka, Y. Functional analysis of conserved motifs in influenza virus PB1 protein. PLoS ONE 2012, 7, e36113. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, Y.; Jin, S.; Zhang, Y.; Sun, L.; Hu, X.; Zhao, M.; Li, F.; Wang, T.; Sun, W.; et al. PB1 S524G mutation of wild bird-origin H3N8 influenza A virus enhances virulence and fitness for transmission in mammals. Emerg. Microbes Infect. 2021, 10, 1038–1051. [Google Scholar] [CrossRef]
- Kamiki, H.; Matsugo, H.; Kobayashi, T.; Ishida, H.; Takenaka-Uema, A.; Murakami, S.; Horimoto, T. A PB1-K577E Mutation in H9N2 Influenza Virus Increases Polymerase Activity and Pathogenicity in Mice. Viruses 2018, 10, 653. [Google Scholar] [CrossRef] [Green Version]
- Arai, Y.; Kawashita, N.; Elgendy, E.M.; Ibrahim, M.S.; Daidoji, T.; Ono, T.; Takagi, T.; Nakaya, T.; Matsumoto, K.; Watanabe, Y. PA Mutations Inherited during Viral Evolution Act Cooperatively to Increase Replication of Contemporary H5N1 Influenza Virus with an Expanded Host Range. J. Virol. 2020, 95, e01582-20. [Google Scholar] [CrossRef]
- Bussey, K.A.; Desmet, E.A.; Mattiacio, J.L.; Hamilton, A.; Bradel-Tretheway, B.; Bussey, H.E.; Kim, B.; Dewhurst, S.; Takimoto, T. PA residues in the 2009 H1N1 pandemic influenza virus enhance avian influenza virus polymerase activity in mammalian cells. J. Virol. 2011, 85, 7020–7028. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Hu, Z.; Mo, Y.; Wu, Q.; Cui, Z.; Duan, Z.; Huang, J.; Chen, H.; Chen, Y.; Gu, M.; et al. The PA and HA gene-mediated high viral load and intense innate immune response in the brain contribute to the high pathogenicity of H5N1 avian influenza virus in mallard ducks. J. Virol. 2013, 87, 11063–11075. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Xu, Q.; Shen, Y.; Liu, L.; Wei, K.; Sun, H.; Pu, J.; Chang, K.C.; Liu, J. Naturally occurring mutations in the PA gene are key contributors to increased virulence of pandemic H1N1/09 influenza virus in mice. J. Virol. 2014, 88, 4600–4604. [Google Scholar] [CrossRef] [Green Version]
- Zhong, G.; Le, M.Q.; Lopes, T.J.S.; Halfmann, P.; Hatta, M.; Fan, S.; Neumann, G.; Kawaoka, Y. Mutations in the PA Protein of Avian H5N1 Influenza Viruses Affect Polymerase Activity and Mouse Virulence. J. Virol. 2018, 92, e01557-17. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Zhang, X.; Gao, W.; Wang, C.; Wang, J.; Sun, H.; Sun, Y.; Guo, L.; Zhang, R.; Chang, K.C.; et al. Prevailing PA Mutation K356R in Avian Influenza H9N2 Virus Increases Mammalian Replication and Pathogenicity. J. Virol. 2016, 90, 8105–8114. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Huang, F.; Zhang, J.; Tan, L.; Lu, G.; Zhang, X.; Zhang, H. Characteristic amino acid changes of influenza A(H1N1)pdm09 virus PA protein enhance A(H7N9) viral polymerase activity. Virus Genes. 2016, 52, 346–353. [Google Scholar] [CrossRef]
- Chen, G.W.; Chang, S.C.; Mok, C.K.; Lo, Y.L.; Kung, Y.N.; Huang, J.H.; Shih, Y.H.; Wang, J.Y.; Chiang, C.; Chen, C.J.; et al. Genomic signatures of human versus avian influenza A viruses. Emerg. Infect. Dis. 2006, 12, 1353–1360. [Google Scholar] [CrossRef]
- Shaw, M.; Cooper, L.; Xu, X.; Thompson, W.; Krauss, S.; Guan, Y.; Zhou, N.; Klimov, A.; Cox, N.; Webster, R.; et al. Molecular changes associated with the transmission of avian influenza a H5N1 and H9N2 viruses to humans. J. Med. Virol. 2002, 66, 107–114. [Google Scholar] [CrossRef]
- Miotto, O.; Heiny, A.T.; Albrecht, R.; Garcia-Sastre, A.; Tan, T.W.; August, J.T.; Brusic, V. Complete-proteome mapping of human influenza A adaptive mutations: Implications for human transmissibility of zoonotic strains. PLoS ONE 2010, 5, e9025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finkelstein, D.B.; Mukatira, S.; Mehta, P.K.; Obenauer, J.C.; Su, X.; Webster, R.G.; Naeve, C.W. Persistent host markers in pandemic and H5N1 influenza viruses. J. Virol. 2007, 81, 10292–10299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hale, B.G.; Randall, R.E.; Ortin, J.; Jackson, D. The multifunctional NS1 protein of influenza A viruses. J. Gen. Virol. 2008, 89, 2359–2376. [Google Scholar] [CrossRef] [PubMed]
- Long, J.X.; Peng, D.X.; Liu, Y.L.; Wu, Y.T.; Liu, X.F. Virulence of H5N1 avian influenza virus enhanced by a 15-nucleotide deletion in the viral nonstructural gene. Virus Genes. 2008, 36, 471–478. [Google Scholar] [CrossRef]
- Jackson, D.; Hossain, M.J.; Hickman, D.; Perez, D.R.; Lamb, R.A. A new influenza virus virulence determinant: The NS1 protein four C-terminal residues modulate pathogenicity. Proc. Natl. Acad. Sci. USA 2008, 105, 4381–4386. [Google Scholar] [CrossRef]
- Conenello, G.M.; Palese, P. Influenza A virus PB1-F2: A small protein with a big punch. Cell Host Microbe 2007, 2, 207–209. [Google Scholar] [CrossRef] [Green Version]
- Cheung, P.H.; Lee, T.T.; Chan, C.P.; Jin, D.Y. Influenza A virus PB1-F2 protein: An ambivalent innate immune modulator and virulence factor. J. Leukoc. Biol. 2020, 107, 763–771. [Google Scholar] [CrossRef]
- Conenello, G.M.; Tisoncik, J.R.; Rosenzweig, E.; Varga, Z.T.; Palese, P.; Katze, M.G. A single N66S mutation in the PB1-F2 protein of influenza A virus increases virulence by inhibiting the early interferon response in vivo. J. Virol. 2011, 85, 652–662. [Google Scholar] [CrossRef] [Green Version]
- Kaverin, N.V.; Rudneva, I.A.; Timofeeva, T.A.; Ignatieva, A.V.; Shilov, A.A.; Bovin, N.V.; Ilyushina, N.A. Pleiotropic effects of amino acid substitutions in H5 hemagglutinin of influenza A escape mutants. Virus Res. 2015, 210, 81–89. [Google Scholar] [CrossRef]
- Rudneva, I.A.; Timofeeva, T.A.; Ignatieva, A.V.; Shilov, A.A.; Krylov, P.S.; Ilyushina, N.A.; Kaverin, N.V. Pleiotropic effects of hemagglutinin amino acid substitutions of H5 influenza escape mutants. Virology 2013, 447, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Auewarakul, P.; Suptawiwat, O.; Kongchanagul, A.; Sangma, C.; Suzuki, Y.; Ungchusak, K.; Louisirirotchanakul, S.; Lerdsamran, H.; Pooruk, P.; Thitithanyanont, A.; et al. An avian influenza H5N1 virus that binds to a human-type receptor. J. Virol. 2007, 81, 9950–9955. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Su, R.; Jian, X.; An, H.; Jiang, R.; Mok, C.K.P. The D253N Mutation in the Polymerase Basic 2 Gene in Avian Influenza (H9N2) Virus Contributes to the Pathogenesis of the Virus in Mammalian Hosts. Virol. Sin. 2018, 33, 531–537. [Google Scholar] [CrossRef]
- Mok, C.K.; Yen, H.L.; Yu, M.Y.; Yuen, K.M.; Sia, S.F.; Chan, M.C.; Qin, G.; Tu, W.W.; Peiris, J.S. Amino acid residues 253 and 591 of the PB2 protein of avian influenza virus A H9N2 contribute to mammalian pathogenesis. J. Virol. 2011, 85, 9641–9645. [Google Scholar] [CrossRef] [Green Version]
- Isakova-Sivak, I.; Chen, L.M.; Matsuoka, Y.; Voeten, J.T.; Kiseleva, I.; Heldens, J.G.; den Bosch, H.; Klimov, A.; Rudenko, L.; Cox, N.J.; et al. Genetic bases of the temperature-sensitive phenotype of a master donor virus used in live attenuated influenza vaccines: A/Leningrad/134/17/57 (H2N2). Virology 2011, 412, 297–305. [Google Scholar] [CrossRef] [Green Version]
- Yamaji, R.; Yamada, S.; Le, M.Q.; Ito, M.; Sakai-Tagawa, Y.; Kawaoka, Y. Mammalian adaptive mutations of the PA protein of highly pathogenic avian H5N1 influenza virus. J. Virol. 2015, 89, 4117–4125. [Google Scholar] [CrossRef] [Green Version]
- Moeller, A.; Kirchdoerfer, R.N.; Potter, C.S.; Carragher, B.; Wilson, I.A. Organization of the influenza virus replication machinery. Science 2012, 338, 1631–1634. [Google Scholar] [CrossRef] [Green Version]
- Pu, J.; Sun, H.; Qu, Y.; Wang, C.; Gao, W.; Zhu, J.; Sun, Y.; Bi, Y.; Huang, Y.; Chang, K.C.; et al. Gene Reassortment in H9N2 Influenza Virus Promotes Early Infection and Replication: Contribution to Rising Virus Prevalence in Chickens in China. J. Virol. 2017, 91, e02055-16. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Qu, R.; Zong, Y.; Qin, C.; Liu, L.; Gao, X.; Sun, H.; Sun, Y.; Chang, K.C.; Zhang, R.; et al. Enhanced stability of M1 protein mediated by a phospho-resistant mutation promotes the replication of prevailing avian influenza virus in mammals. PLoS Pathog. 2022, 18, e1010645. [Google Scholar] [CrossRef]
- Ninpan, K.; Suptawiwat, O.; Boonarkart, C.; Songprakhon, P.; Puthavathana, P.; Auewarakul, P. Mutations in matrix protein 1 and nucleoprotein caused human-specific defects in nuclear exportation and viral assembly of an avian influenza H7N1 virus. Virus Res. 2017, 238, 49–62. [Google Scholar] [CrossRef]
- Perez-Cidoncha, M.; Killip, M.J.; Asensio, V.J.; Fernandez, Y.; Bengoechea, J.A.; Randall, R.E.; Ortin, J. Generation of replication-proficient influenza virus NS1 point mutants with interferon-hyperinducer phenotype. PLoS ONE 2014, 9, e98668. [Google Scholar] [CrossRef]
- Manz, B.; Brunotte, L.; Reuther, P.; Schwemmle, M. Adaptive mutations in NEP compensate for defective H5N1 RNA replication in cultured human cells. Nat. Commun. 2012, 3, 802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pulit-Penaloza, J.A.; Belser, J.A.; Brock, N.; Thakur, P.B.; Tumpey, T.M.; Maines, T.R. Pathogenesis and Transmissibility of North American Highly Pathogenic Avian Influenza A(H5N1) Virus in Ferrets. Emerg. Infect. Dis. 2022, 28, 1913–1915. [Google Scholar] [CrossRef] [PubMed]
- Hiono, T.; Kobayashi, D.; Kobayashi, A.; Suzuki, T.; Satake, Y.; Harada, R.; Matsuno, K.; Sashika, M.; Ban, H.; Kobayashi, M.; et al. Virological, pathological, and glycovirological investigations of an Ezo red fox and a tanuki naturally infected with H5N1 high pathogenicity avian influenza viruses in Hokkaido, Japan. Virology 2023, 578, 35–44. [Google Scholar] [CrossRef] [PubMed]
Isolate | Subtype(s) * | Subclade | Location | Province | Collection Date | Accession Number |
---|---|---|---|---|---|---|
A/Muscovy duck/ Vietnam/HN4711/2018 | H5N6 | 2.3.4.4h | Thuong Tin | Ha Noi | 9 June 2018 | EPI_ISL_17768813 |
A/Muscovy duck/ Vietnam/HN4713/2018 | H5N6 | 2.3.4.4h | Thuong Tin | Ha Noi | 9 June 2018 | EPI_ISL_17768814 |
A/Muscovy duck/ Vietnam/HN4714/2018 | H5N6 | 2.3.4.4h | Thuong Tin | Ha Noi | 9 June 2018 | EPI_ISL_17768815 |
A/Muscovy duck/ Vietnam/HN4715/2018 | H5N6 | 2.3.4.4h | Thuong Tin | Ha Noi | 9 June 2018 | EPI_ISL_17768816 |
A/Muscovy duck/ Vietnam/HN4716/2018 | H5N6 | 2.3.4.4h | Thuong Tin | Ha Noi | 9 June 2018 | EPI_ISL_17768817 |
A/Muscovy duck/ Vietnam/HN4718/2018 | H5N6 | 2.3.4.4h | Thuong Tin | Ha Noi | 9 June 2018 | EPI_ISL_17768818 |
A/Muscovy duck/ Vietnam/HN4719/2018 | H5N6 | 2.3.4.4h | Thuong Tin | Ha Noi | 9 June 2018 | EPI_ISL_17768819 |
A/Muscovy duck/ Vietnam/HN4720/2018 | H5N6 | 2.3.4.4h | Thuong Tin | Ha Noi | 9 June 2018 | EPI_ISL_17768820 |
A/duck/Vietnam/HN4721/2018 | H5N6 | 2.3.4.4h | Thuong Tin | Ha Noi | 9 June 2018 | EPI_ISL_17768803 |
A/Muscovy duck/ Vietnam/HN4856/2018 | H5N6 | 2.3.4.4h | Thuong Tin | Ha Noi | 10 August 2018 | EPI_ISL_17768821 |
A/Muscovy duck/ Vietnam/HN4857/2018 | H5N6 | 2.3.4.4h | Thuong Tin | Ha Noi | 10 August 2018 | EPI_ISL_17768822 |
A/Muscovy duck/ Vietnam/HN4858/2018 | H5N6 | 2.3.4.4h | Thuong Tin | Ha Noi | 10 August 2018 | EPI_ISL_17768823 |
A/Muscovy duck/ Vietnam/HN5046/2018 | H5N6 | 2.3.4.4h | Gia Lam | Ha Noi | 29 October 2018 | EPI_ISL_17768824 |
A/Muscovy duck/ Vietnam/HN5047/2018 | H5N6 | 2.3.4.4h | Gia Lam | Ha Noi | 29 October 2018 | EPI_ISL_17768825 |
A/Muscovy duck/ Vietnam/HN5048/2018 | H5N6 | 2.3.4.4h | Gia Lam | Ha Noi | 29 October 2018 | EPI_ISL_17768826 |
A/duck/Vietnam/HN5080/2018 | H5N6 | 2.3.4.4h | Thuong Tin | Ha Noi | 5 November 2018 | EPI_ISL_17768806 |
A/Muscovy duck/ Vietnam/HN5132/2018 | H5N6 | 2.3.4.4h | Thuong Tin | Ha Noi | 5 December 2018 | EPI_ISL_17768828 |
A/Muscovy duck/ Vietnam/HN5135/2018 | H5N6 | 2.3.4.4h | Thuong Tin | Ha Noi | 5 December 2018 | EPI_ISL_17768829 |
A/Muscovy duck/ Vietnam/HN5137/2018 | H5N6 | 2.3.4.4h | Thuong Tin | Ha Noi | 5 December 2018 | EPI_ISL_17768830 |
A/Muscovy duck/ Vietnam/HN5138/2018 | H5N6 | 2.3.4.4h | Thuong Tin | Ha Noi | 5 December 2018 | EPI_ISL_17768831 |
A/Muscovy duck/ Vietnam/HN5139/2018 | H5N6 | 2.3.4.4h | Thuong Tin | Ha Noi | 5 December 2018 | EPI_ISL_17768832 |
A/Muscovy duck/ Vietnam/HN5140/2018 | H5H9N2N6 | 2.3.4.4h | Thuong Tin | Ha Noi | 5 December 2018 | N/A |
A/Muscovy duck/ Vietnam/HN5049/2018 | H5N6 | 2.3.4.4h | Gia Lam | Ha Noi | 5 December 2018 | EPI_ISL_17768827 |
A/duck/Vietnam/HN5150/2018 | H5H6N6 | 2.3.4.4h | Thuong Tin | Ha Noi | 5 December 2018 | N/A |
A/Muscovy duck/ Vietnam/HN6029/2019 | H5H6N6N8 | 2.3.4.4h | Gia Lam | Ha Noi | 30 December 2019 | N/A |
A/Muscovy duck/ Vietnam/HN6111/2020 | H5N6 | 2.3.4.4h | Thuong Tin | Ha Noi | 10 February 2020 | EPI_ISL_9572812 |
A/Muscovy duck/ Vietnam/HN6113/2020 | H5N6 | 2.3.4.4h | Thuong Tin | Ha Noi | 10 February 2020 | EPI_ISL_9572787 |
A/Muscovy duck/ Vietnam/HN6114/2020 | H5N6 | 2.3.4.4h | Thuong Tin | Ha Noi | 10 February 2020 | EPI_ISL_9572808 |
A/Muscovy duck/ Vietnam/HN6115/2020 | H5N6 | 2.3.4.4h | Thuong Tin | Ha Noi | 10 February 2020 | EPI_ISL_9572794 |
A/Muscovy duck/ Vietnam/HN6119/2020 | H5N6 | 2.3.4.4h | Thuong Tin | Ha Noi | 10 February 2020 | EPI_ISL_9572800 |
A/Muscovy duck/ Vietnam/HN6120/2020 | H5N6 | 2.3.4.4h | Thuong Tin | Ha Noi | 10 February 2020 | EPI_ISL_9572792 |
A/Muscovy duck/ Vietnam/HN6606/2020 | H5N6 | 2.3.4.4h | Gia Lam | Ha Noi | 29 September 2020 | EPI_ISL_9572754 |
A/Muscovy duck/ Vietnam/HN6607/2020 | H5N6 | 2.3.4.4h | Gia Lam | Ha Noi | 29 September 2020 | EPI_ISL_9572759 |
A/Muscovy duck/ Vietnam/HN6608/2020 | H5N6 | 2.3.4.4h | Gia Lam | Ha Noi | 29 September 2020 | EPI_ISL_9572770 |
A/Muscovy duck/ Vietnam/HN6609/2020 | H5N6 | 2.3.4.4h | Gia Lam | Ha Noi | 29 September 2020 | EPI_ISL_9572745 |
A/Muscovy duck/ Vietnam/HN6610/2020 | H5N6 | 2.3.4.4h | Gia Lam | Ha Noi | 29 September 2020 | EPI_ISL_9572739 |
A/duck/Vietnam/HN6611/2020 | H5N6 | 2.3.4.4h | Gia Lam | Ha Noi | 29 September 2020 | EPI_ISL_9572741 |
A/Muscovy duck/ Vietnam/HN6692/2020 | H5N6 | 2.3.4.4h | Thuong Tin | Ha Noi | 4 November 2020 | EPI_ISL_17809474 |
A/Muscovy duck/ Vietnam/HN6698/2020 | H4H5N6 | 2.3.4.4h | Thuong Tin | Ha Noi | 4 November 2020 | N/A |
A/Muscovy duck/ Vietnam/HN6699/2020 | H4H5N6 | 2.3.4.4h | Thuong Tin | Ha Noi | 4 November 2020 | N/A |
A/Muscovy duck/ Vietnam/HN6811/2020 | H5H6N6 | 2.3.4.4h | Gia Lam | Ha Noi | 30 December 2020 | N/A |
A/Muscovy duck/ Vietnam/HN6881/2021 | H5N6 | 2.3.4.4h | Gia Lam | Ha Noi | 29 January 2021 | EPI_ISL_17809475 |
A/Muscovy duck/ Vietnam/HN6884/2021 | H5N6 | 2.3.4.4h | Gia Lam | Ha Noi | 29 January 2021 | EPI_ISL_17809476 |
A/Muscovy duck/ Vietnam/HN6890/2021 | H5N6 | 2.3.4.4h | Gia Lam | Ha Noi | 29 January 2021 | EPI_ISL_17809477 |
A/duck/Vietnam/HN6893/2021 | H5N6 | 2.3.4.4h | Gia Lam | Ha Noi | 29 January 2021 | EPI_ISL_17809478 |
A/duck/Vietnam/HN6894/2021 | H5N6 | 2.3.4.4h | Gia Lam | Ha Noi | 29 January 2021 | EPI_ISL_17809479 |
A/duck/Vietnam/HN6896/2021 | H5N6 | 2.3.4.4h | Gia Lam | Ha Noi | 29 January 2021 | EPI_ISL_17809480 |
A/duck/Vietnam/HN6897/2021 | H5N6 | 2.3.4.4h | Gia Lam | Ha Noi | 29 January 2021 | EPI_ISL_17809481 |
A/duck/Vietnam/HN6898/2021 | H5N6 | 2.3.4.4h | Gia Lam | Ha Noi | 29 January 2021 | EPI_ISL_17809482 |
A/duck/Vietnam/QN6519/2020 | H5N6 | 2.3.4.4h | Ha Long | Quang Ninh | 21 August 2020 | EPI_ISL_9572816 |
A/duck/Vietnam/QN6658/2020 | H5N6 | 2.3.4.4h | Ha Long | Quang Ninh | 23 October 2020 | EPI_ISL_17809483 |
A/duck/Vietnam/QN6659/2020 | H5N6 | 2.3.4.4h | Ha Long | Quang Ninh | 23 October 2020 | EPI_ISL_17809484 |
A/duck/Vietnam/QN6660/2020 | H5N6 | 2.3.4.4h | Ha Long | Quang Ninh | 23 October 2020 | EPI_ISL_17809485 |
A/duck/Vietnam/QN6661/2020 | H5N6 | 2.3.4.4h | Ha Long | Quang Ninh | 23 October 2020 | EPI_ISL_17809486 |
A/duck/Vietnam/QN6730/2020 | H5N6 | 2.3.4.4h | Ha Long | Quang Ninh | 25 November 2020 | EPI_ISL_17809487 |
A/duck/Vietnam/QN6736/2020 | H4H5N2N6 | 2.3.4.4h | Ha Long | Quang Ninh | 25 November 2020 | N/A |
A/duck/Vietnam/QN6739/2020 | H5N6 | 2.3.4.4h | Ha Long | Quang Ninh | 25 November 2020 | EPI_ISL_17809488 |
A/duck/Vietnam/QN6796/2020 | H5N6 | 2.3.4.4h | Ha Long | Quang Ninh | 25 December 2020 | EPI_ISL_17809489 |
A/duck/Vietnam/QN6798/2020 | H5N6 | 2.3.4.4h | Ha Long | Quang Ninh | 25 December 2020 | EPI_ISL_17809490 |
A/duck/Vietnam/QN6799/2020 | H5N6 | 2.3.4.4h | Ha Long | Quang Ninh | 25 December 2020 | EPI_ISL_17809491 |
A/duck/Vietnam/QN6800/2020 | H5N6 | 2.3.4.4h | Ha Long | Quang Ninh | 25 December 2020 | EPI_ISL_17809492 |
A/duck/Vietnam/QN6801/2020 | H5N6 | 2.3.4.4h | Ha Long | Quang Ninh | 25 December 2020 | EPI_ISL_17809493 |
A/duck/Vietnam/QN6803/2020 | H3H5N2N6 | 2.3.4.4h | Ha Long | Quang Ninh | 25 December 2020 | N/A |
A/duck/Vietnam/QN6804/2020 | H5N6 | 2.3.4.4h | Ha Long | Quang Ninh | 25 December 2020 | EPI_ISL_17809494 |
A/duck/Vietnam/QN6805/2020 | H5N6 | 2.3.4.4h | Ha Long | Quang Ninh | 25 December 2020 | EPI_ISL_17809495 |
A/duck/Vietnam/QN6806/2020 | H5N6 | 2.3.4.4h | Ha Long | Quang Ninh | 25 December 2020 | EPI_ISL_17809496 |
A/duck/Vietnam/QN6807/2020 | H3H5N2N6N8 | 2.3.4.4h | Ha Long | Quang Ninh | 25 December 2020 | N/A |
A/duck/Vietnam/QN6808/2020 | H5N6 | 2.3.4.4h | Ha Long | Quang Ninh | 25 December 2020 | EPI_ISL_17809497 |
A/duck/Vietnam/QN6809/2020 | H3H5N6 | 2.3.4.4h | Ha Long | Quang Ninh | 25 December 2020 | N/A |
A/duck/Vietnam/HN5141/2018 | H5N6 | 2.3.4.4g | Thuong Tin | Ha Noi | 5 December 2018 | EPI_ISL_17768807 |
A/duck/Vietnam/HN5142/2018 | H5N6 | 2.3.4.4g | Thuong Tin | Ha Noi | 5 December 2018 | EPI_ISL_17768808 |
A/duck/Vietnam/HN5143/2018 | H5N6 | 2.3.4.4g | Thuong Tin | Ha Noi | 5 December 2018 | EPI_ISL_17768809 |
A/duck/Vietnam/HN5144/2018 | H5N6 | 2.3.4.4g | Thuong Tin | Ha Noi | 5 December 2018 | EPI_ISL_17809472 |
A/duck/Vietnam/HN5145/2018 | H5N6 | 2.3.4.4g | Thuong Tin | Ha Noi | 5 December 2018 | EPI_ISL_17768810 |
A/duck/Vietnam/HN5147/2018 | H5N6 | 2.3.4.4g | Thuong Tin | Ha Noi | 5 December 2018 | EPI_ISL_17768811 |
A/duck/Vietnam/HN5148/2018 | H5N6 | 2.3.4.4g | Thuong Tin | Ha Noi | 5 December 2018 | EPI_ISL_17971917 |
A/duck/Vietnam/HN5149/2018 | H5N6 | 2.3.4.4g | Thuong Tin | Ha Noi | 5 December 2018 | EPI_ISL_17809473 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, L.; Babujee, L.; Browning, V.L.; Presler, R.; Pattinson, D.; Nguyen, H.L.K.; Hoang, V.M.P.; Le, M.Q.; van Bakel, H.; Neumann, G.; et al. Continued Circulation of Highly Pathogenic H5 Influenza Viruses in Vietnamese Live Bird Markets in 2018–2021. Viruses 2023, 15, 1596. https://doi.org/10.3390/v15071596
Guan L, Babujee L, Browning VL, Presler R, Pattinson D, Nguyen HLK, Hoang VMP, Le MQ, van Bakel H, Neumann G, et al. Continued Circulation of Highly Pathogenic H5 Influenza Viruses in Vietnamese Live Bird Markets in 2018–2021. Viruses. 2023; 15(7):1596. https://doi.org/10.3390/v15071596
Chicago/Turabian StyleGuan, Lizheng, Lavanya Babujee, Victoria L. Browning, Robert Presler, David Pattinson, Hang Le Khanh Nguyen, Vu Mai Phuong Hoang, Mai Quynh Le, Harm van Bakel, Gabriele Neumann, and et al. 2023. "Continued Circulation of Highly Pathogenic H5 Influenza Viruses in Vietnamese Live Bird Markets in 2018–2021" Viruses 15, no. 7: 1596. https://doi.org/10.3390/v15071596