Development of a One-Step Real-Time TaqMan Reverse Transcription Polymerase Chain Reaction (RT-PCR) Assay for the Detection of the Novel Variant Infectious Bursal Disease Virus (nVarIBDV) Circulating in China
Abstract
1. Introduction
2. Materials and Methods
2.1. Virus Strains
2.2. Primer and Probe Designs
2.3. Viral RNA Extraction and Reverse Transcription
2.4. Construction of a Positive Plasmid Standard
2.5. Establishment of the One-Step Real-Time TaqMan RT-PCR Method
2.6. Determination of Specificity of Primers and Probe Sets
2.7. Assay Detection Limit
2.8. Clinical Sample Testing
3. Results
3.1. Feasibility of the One-Step Real-Time TaqMan RT-PCR Method
3.2. Specificity of the One-Step Real-Time TaqMan RT-PCR Method
3.3. Sensitivity of the One-Step Real-Time TaqMan RT-PCR Method
3.4. Analysis of the Clinical Samples Using the One-Step Real-Time TaqMan RT-PCR Method
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eterradossi, N.; Saif, Y.M. Infectious bursal disease. In Diseases of Poultry, 14th ed.; Saif, Y.M., Fadly, A.M., Glison, J.R., McDouglad, L.R., Nolan, L.K., Eds.; Ames IA Blackwell Publishing: Ames, IA, USA, 2017; pp. 185–208. [Google Scholar]
- Jackwood, D.J.; Saif, Y.M.; Hughes, J.H. Characteristics and serologic studies of two serotypes of infectious bursal disease virus in turkeys. Avian Dis. 1982, 26, 871–882. [Google Scholar] [CrossRef] [PubMed]
- Müller, H.; Islam, M.R.; Raue, R. Research on infectious bursal disease—The past, the present and the future. Vet. Microbiol. 2003, 97, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Wu, T.; Hussain, A.; Gao, Y.; Zeng, X.; Wang, Y.; Gao, L.; Li, K.; Wang, Y.; Liu, C.; et al. Novel variant strains of infectious bursal disease virus isolated in China. Vet. Microbiol. 2019, 230, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Hou, B.; Wang, C.; Luo, Z.; Shao, G. Commercial vaccines used in China do not protect against a novel infectious bursal disease virus variant isolated in Fujian. Vet. Rec. 2022, 191, e1840. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Gao, Y.; Qi, X. The Over-40-Years-Epidemic of Infectious Bursal Disease Virus in China. Viruses 2022, 14, 2253. [Google Scholar] [CrossRef]
- Petit, S.; Lejal, N.; Huet, J.; Delmas, B. Active Residues and Viral Substrate Cleavage Sites of the Protease of the Birnavirus Infectious Pancreatic Necrosis Virus. J. Virol. 2000, 74, 2057–2066. [Google Scholar] [CrossRef]
- Letzel, T.; Coulibaly, F.; Rey, F.A.; Delmas, B.; Jagt, E.; van Loon, A.A.; Mundt, E. Molecular and structural bases for the antigenicity of VP2 of infectious bursal disease virus. J. Virol. 2007, 81, 12827–12835. [Google Scholar] [CrossRef]
- Mato, T.; Tatar-Kis, T.; Felfoldi, B.; Jansson, D.S.; Homonnay, Z.; Banyai, K.; Palya, V. Occurrence and spread of a reassortant very virulent genotype of infectious bursal disease virus with altered VP2 amino acid profile and pathogenicity in some European countries. Vet. Microbiol. 2020, 245, 108663. [Google Scholar] [CrossRef]
- Spies, U.; Muller, H.; Becht, H. Properties of RNA polymerase activity associated with infectious bursal disease virus and characterization of its reaction products. Virus Res. 1987, 8, 127–140. [Google Scholar] [CrossRef]
- Jackwood, D.J.; Sommer-Wagner, S.E.; Stoute, A.S.; Woolcock, P.R.; Crossley, B.M.; Hietala, S.K.; Charlton, B.R. Characteristics of a very virulent infectious bursal disease virus from California. Avian Dis. 2009, 53, 592–600. [Google Scholar] [CrossRef]
- van den Berg, T.P.; Morales, D.; Eterradossi, N.; Rivallan, G.; Toquin, D.; Raue, R.; Zierenberg, K.; Zhang, M.F.; Zhu, Y.P.; Wang, C.Q.; et al. Assessment of genetic, antigenic and pathotypic criteria for the characterization of IBDV strains. Avian Pathol. 2004, 33, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, T.P.; Gonze, M.; Meulemans, G. Acute infectious bursal disease in poultry: Isolation and characterisation of a highly virulent strain. Avian Pathol. 1991, 20, 133–143. [Google Scholar] [CrossRef]
- Mosad, S.M.; Eladl, A.H.; El-Tholoth, M.; Ali, H.S.; Hamed, M.F. Molecular characterization and pathogenicity of very virulent infectious bursal disease virus isolated from naturally infected turkey poults in Egypt. Trop. Anim. Health Prod. 2020, 52, 3819–3831. [Google Scholar] [CrossRef]
- Stoute, S.T.; Jackwood, D.J.; Sommer-Wagner, S.E.; Crossley, B.M.; Woolcock, P.R.; Charlton, B.R. Pathogenicity associated with coinfection with very virulent infectious bursal disease and Infectious bursal disease virus strains endemic in the United States. J. Vet. Diagn. Investig. 2013, 25, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Wu, T.; Wang, Y.; Hussain, A.; Jiang, N.; Gao, L.; Li, K.; Gao, Y.; Liu, C.; Cui, H.; et al. Novel variants of infectious bursal disease virus can severely damage the bursa of fabricius of immunized chickens. Vet. Microbiol. 2020, 240, 108507. [Google Scholar] [CrossRef] [PubMed]
- Kelemen, M.; Forgách, K.; Iván, J.; Palya, V.; Süveges, T.; Tóth, B.; Mészáros, J. Pathological and immunological study of an in ovo complex vaccine against infectious bursal disease. Acta Vet. Hung. 2000, 48, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Arafat, N.; Eladl, A.H.; Mahgoub, H.; El-Shafei, R.A. Effect of infectious bursal disease (IBD) vaccine on Salmonella Enteritidis infected chickens. Vaccine 2017, 35, 3682–3689. [Google Scholar] [CrossRef]
- Hussain, A.; Wu, T.; Li, H.; Fan, L.; Li, K.; Gao, L.; Wang, Y.; Gao, Y.; Liu, C.; Cui, H.; et al. Pathogenic Characterization and Full Length Genome Sequence of a Reassortant Infectious Bursal Disease Virus Newly Isolated in Pakistan. Virol. Sin. 2019, 34, 102–105. [Google Scholar] [CrossRef]
- Islam, M.R.; Nooruzzaman, M.; Rahman, T.; Mumu, T.T.; Rahman, M.M.; Chowdhury, E.H.; Eterradossi, N.; Muller, H. A unified genotypic classification of infectious bursal disease virus based on both genome segments. Avian Pathol. 2021, 50, 190–206. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, N.; Fan, L.; Niu, X.; Zhang, W.; Huang, M.; Gao, L.; Li, K.; Gao, Y.; Liu, C.; et al. Identification and Pathogenicity Evaluation of a Novel Reassortant Infectious Bursal Disease Virus (Genotype A2dB3). Viruses 2021, 13, 1682. [Google Scholar] [CrossRef]
- Tomás, G.; Hernández, M.; Marandino, A.; Panzera, Y.; Maya, L.; Hernández, D.; Pereda, A.; Banda, A.; Villegas, P.; Aguirre, S.; et al. Development and validation of a TaqMan-MGB real-time RT-PCR assay for simultaneous detection and characterization of infectious bursal disease virus. J. Virol. Methods 2012, 185, 101–107. [Google Scholar] [CrossRef]
- Wu, C.C.; Rubinelli, P.; Lin, T.L. Molecular detection and differentiation of infectious bursal disease virus. Avian Dis. 2007, 51, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.P.; Handberg, K.J.; Kabell, S.; Kusk, M.; Zhang, M.F.; Jørgensen, P.H. Relative quantification and detection of different types of infectious bursal disease virus in bursa of Fabricius and cloacal swabs using real time RT-PCR SYBR green technology. Res. Vet. Sci. 2007, 82, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.L.; Omar, A.R.; Hair Bejo, M.; Ideris, A.; Tan, S.W. Development of SYBR green I based one-step real-time RT-PCR assay for the detection and differentiation of very virulent and classical strains of infectious bursal disease virus. J. Virol. Methods 2009, 161, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Ghorashi, S.A.; O’Rourke, D.; Ignjatovic, J.; Noormohammadi, A.H. Differentiation of infectious bursal disease virus strains using real-time RT-PCR and high resolution melt curve analysis. J. Virol. Methods 2011, 171, 264–271. [Google Scholar] [CrossRef]
- Hernandez, M.; Banda, A.; Hernandez, D.; Panzera, F.; Perez, R. Detection of very virulent strains of infectious bursal disease virus (vvIBDV) in commercial broilers from Uruguay. Avian Dis. 2006, 50, 624–631. [Google Scholar] [CrossRef]
- Kusk, M.; Kabell, S.; Jørgensen, P.H.; Handberg, K.J. Differentiation of five strains of infectious bursal disease virus: Development of a strain-specific multiplex PCR. Vet. Microbiol. 2005, 109, 159–167. [Google Scholar] [CrossRef]
- Hernandez, M.; Tomas, G.; Hernandez, D.; Villegas, P.; Banda, A.; Maya, L.; Panzera, Y.; Perez, R. Novel multiplex RT-PCR/RFLP diagnostic test to differentiate low- from high-pathogenic strains and to detect reassortant infectious bursal disease virus. Avian Dis. 2011, 55, 368–374. [Google Scholar] [CrossRef]
- Drissi, T.C.; Fellahi, S.; Fassi, F.O.; Gaboun, F.; Khayi, S.; Mentag, R.; Lico, C.; Baschieri, S.; El, H.M.; Ducatez, M. Complete genome analysis and time scale evolution of very virulent infectious bursal disease viruses isolated from recent outbreaks in Morocco. Infect. Genet. Evol. 2020, 77, 104097. [Google Scholar] [CrossRef]
- Techera, C.; Tomás, G.; Panzera, Y.; Banda, A.; Perbolianachis, P.; Pérez, R.; Marandino, A. Development of real-time PCR assays for single and simultaneous detection of infectious bursal disease virus and chicken anemia virus. Mol. Cell. Probes 2019, 43, 58–63. [Google Scholar] [CrossRef]
- Luan, Q.; Jiang, Z.; Wang, D.; Wang, S.; Yin, Y.; Wang, J. A sensitive triple nanoparticle-assisted PCR assay for detection of fowl adenovirus, infectious bursal disease virus and chicken anemia virus. J. Virol. Methods 2022, 303, 114499. [Google Scholar] [CrossRef] [PubMed]
Ratios of nVarIBDV to Non-nVarIBDV Templates (Copies/Reaction) | Cq FAM | Cq VIC |
---|---|---|
105:107 | 14.07 | 18.94 |
105:106 | 18.53 | 21.04 |
105:105 | 20.56 | 21.01 |
105:104 | 23.33 | 20.87 |
105:103 | Negative | 20.50 |
105:102 | Negative | 21.07 |
0:107 | 14.06 | Negative |
0:106 | 16.49 | Negative |
0:105 | 20.44 | Negative |
0:104 | 23.41 | Negative |
0:103 | 27.60 | Negative |
0:102 | 31.04 | Negative |
107:105 | 26.77 | 14.08 |
106:105 | 21.65 | 18.07 |
105:105 | 21.13 | 21.47 |
104:105 | 20.98 | 24.33 |
103:105 | 21.57 | Negative |
102:105 | 20.81 | Negative |
107:0 | Negative | 14.58 |
106:0 | Negative | 16.78 |
105:0 | Negative | 20.32 |
104:0 | Negative | 23.53 |
103:0 | Negative | 27.66 |
102:0 | Negative | 31.95 |
Sample No. | One-Step Real-Time TaqMan RT-PCR | RT-PCR for vp5 Gene | HVRs of vp2 Gene | |
---|---|---|---|---|
FAM Cq | VIC Cq | |||
S1 | negative | 20.23 | positive | nVarIBDV |
S2 | 28.39 | negative | positive | non-nVarIBDV |
S3 | 29.95 | negative | positive | N.D. |
S4 | 32.25 | negative | positive | N.D. |
S5 | 27.83 | negative | positive | non-nVarIBDV |
S6 | 25.44 | negative | positive | non-nVarIBDV |
S7 | 29.95 | negative | positive | N.D. |
S8 | 24.01 | negative | positive | non-nVarIBDV |
S9 | 26.63 | negative | positive | non-nVarIBDV |
S10 | 27.22 | negative | positive | non-nVarIBDV |
S11 | 25.54 | negative | positive | non-nVarIBDV |
S12 | 28.67 | negative | positive | N.D. |
S13 | negative | 22.28 | positive | nVarIBDV |
S14 | 26.62 | negative | positive | non-nVarIBDV |
S15 | 29.11 | negative | positive | N.D. |
S16 | 27.55 | negative | positive | non-nVarIBDV |
S17 | 26.71 | negative | positive | non-nVarIBDV |
S18 | 28.95 | negative | positive | N.D. |
S19 | 30.13 | negative | positive | N.D. |
S20 | 25.46 | negative | positive | non-nVarIBDV |
S21 | 27.02 | negative | positive | non-nVarIBDV |
S22 | 25.18 | negative | positive | non-nVarIBDV |
S23 | 22.93 | negative | positive | non-nVarIBDV |
S24 | 27.36 | negative | positive | non-nVarIBDV |
S25 | negative | 23.39 | positive | nVarIBDV |
S26 | 26.49 | negative | positive | non-nVarIBDV |
S27 | 28.16 | negative | positive | non-nVarIBDV |
S28 | 25.77 | negative | positive | non-nVarIBDV |
S29 | 26.32 | negative | positive | non-nVarIBDV |
S30 | 29.15 | negative | positive | N.D. |
S31 | 27.03 | 29.80 | positive | non-nVarIBDV |
S32 | 21.43 | negative | positive | non-nVarIBDV |
S33 | 25.75 | negative | positive | non-nVarIBDV |
S34 | 23.13 | negative | positive | non-nVarIBDV |
S35 | negative | 22.59 | positive | nVarIBDV |
S36 | 29.10 | negative | positive | N.D. |
S37 | 26.70 | negative | positive | non-nVarIBDV |
S38 | 30.75 | negative | positive | N.D. |
S39 | 26.60 | negative | positive | non-nVarIBDV |
S40 | 29.02 | negative | positive | N.D. |
S41 | 23.34 | negative | positive | non-nVarIBDV |
S42 | 29.06 | negative | positive | N.D. |
S43 | 22.77 | negative | positive | non-nVarIBDV |
S44 | 26.68 | negative | positive | non-nVarIBDV |
S45 | negative | 26.02 | positive | nVarIBDV |
S46 | 26.33 | negative | positive | non-nVarIBDV |
S47 | 27.21 | negative | positive | non-nVarIBDV |
S48 | 25.83 | negative | positive | non-nVarIBDV |
S49 | 25.96 | negative | positive | non-nVarIBDV |
S50 | negative | 15.19 | positive | nVarIBDV |
S51 | negative | 14.33 | positive | nVarIBDV |
S52 | 22.24 | negative | positive | non-nVarIBDV |
S53 | negative | 11.37 | positive | nVarIBDV |
S54 | negative | 21.53 | positive | nVarIBDV |
S55 | negative | 18.45 | positive | nVarIBDV |
S56 | 27.71 | negative | positive | non-nVarIBDV |
S57 | 32.14 | 29.23 | positive | N.D. |
S58 | negative | 16.56 | positive | nVarIBDV |
S59 | 24.82 | negative | positive | non-nVarIBDV |
S60 | negative | 21.17 | positive | nVarIBDV |
S61 | 23.13 | negative | positive | non-nVarIBDV |
S62 | 25.93 | negative | positive | non-nVarIBDV |
S63 | 26.15 | negative | positive | non-nVarIBDV |
S64 | 28.01 | negative | positive | non-nVarIBDV |
S65 | negative | 25.05 | positive | nVarIBDV |
S66 | 27.97 | negative | positive | non-nVarIBDV |
S67 | 27.44 | negative | positive | non-nVarIBDV |
S68 | 31.07 | negative | positive | N.D. |
S69 | 24.90 | negative | positive | non-nVarIBDV |
S70 | negative | 23.50 | positive | nVarIBDV |
S71 | 26.68 | negative | positive | non-nVarIBDV |
S72 | 26.96 | negative | positive | non-nVarIBDV |
S73 | 25.34 | negative | positive | non-nVarIBDV |
S74 | 26.65 | negative | positive | non-nVarIBDV |
S75 | 26.49 | negative | positive | non-nVarIBDV |
S76 | 29.37 | negative | positive | N.D. |
S77 | 25.38 | negative | positive | non-nVarIBDV |
S78 | 28.48 | negative | positive | N.D. |
S79 | negative | 18.21 | positive | nVarIBDV |
S80 | negative | 18.58 | positive | nVarIBDV |
S81 | 27.61 | negative | positive | non-nVarIBDV |
S82 | 25.41 | negative | positive | non-nVarIBDV |
S83 | 26.81 | negative | positive | non-nVarIBDV |
S84 | negative | 21.48 | positive | nVarIBDV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Hou, B.; Shao, G.; Wan, C. Development of a One-Step Real-Time TaqMan Reverse Transcription Polymerase Chain Reaction (RT-PCR) Assay for the Detection of the Novel Variant Infectious Bursal Disease Virus (nVarIBDV) Circulating in China. Viruses 2023, 15, 1453. https://doi.org/10.3390/v15071453
Wang C, Hou B, Shao G, Wan C. Development of a One-Step Real-Time TaqMan Reverse Transcription Polymerase Chain Reaction (RT-PCR) Assay for the Detection of the Novel Variant Infectious Bursal Disease Virus (nVarIBDV) Circulating in China. Viruses. 2023; 15(7):1453. https://doi.org/10.3390/v15071453
Chicago/Turabian StyleWang, Chenyan, Bo Hou, Guoqing Shao, and Chunhe Wan. 2023. "Development of a One-Step Real-Time TaqMan Reverse Transcription Polymerase Chain Reaction (RT-PCR) Assay for the Detection of the Novel Variant Infectious Bursal Disease Virus (nVarIBDV) Circulating in China" Viruses 15, no. 7: 1453. https://doi.org/10.3390/v15071453
APA StyleWang, C., Hou, B., Shao, G., & Wan, C. (2023). Development of a One-Step Real-Time TaqMan Reverse Transcription Polymerase Chain Reaction (RT-PCR) Assay for the Detection of the Novel Variant Infectious Bursal Disease Virus (nVarIBDV) Circulating in China. Viruses, 15(7), 1453. https://doi.org/10.3390/v15071453