Application of Flow Cytometry in the Diagnosis of Bovine Epidemic Disease
Abstract
:1. Introduction
2. Flow Cytometry (FCM)
2.1. Definition and Characteristics of Flow Cytometry
2.2. Structure and Principles of Flow Cytometry
3. Application of Flow Cytometry in the Diagnosis of Bovine Epidemic Diseases
3.1. Application in the Diagnosis of Bovine Viral Diarrhoea
3.2. Application in the Diagnosis of Bovine Endemic Leukaemia
3.3. Application in the Diagnosis of Bovine Brucellosis
3.4. Application in the Diagnosis of Bovine Tuberculosis
4. Conclusions and Prospects
Funding
Acknowledgments
Conflicts of Interest
References
- Woolums, A.R. Serology in Bovine Infectious Disease Diagnosis. Vet. Clin. N. Am. Food Anim. Pract. 2023, 39, 141–155. [Google Scholar] [CrossRef] [PubMed]
- Qing, F.; Zhixun, X.; Zhiqin, X.; Liji, X.; Li, H.; Jiaolin, H.; Yanfang, Z.; Tingting, Z.; Sheng, W.; Sisi, L.; et al. Simultaneous detection of eight common cattle pathogens by GeXP high-throughput rapid detection technology. Chin. J. Anim. Sci. Vet. Med. 2017, 48, 1920–1931. [Google Scholar]
- Qian, J.; Zhu, T.; Jin, W. Avian reovirus detection method research. J. Anim. Med. Prog. Lancet 2022, 43, 69–74. [Google Scholar] [CrossRef]
- McKinnon, K.M. Flow Cytometry: An Overview. Curr. Protoc. Immunol. 2018, 120, 5.1.1–5.1.11. [Google Scholar] [CrossRef] [PubMed]
- Xiaoyao, W.; Suying, M.; Kun, D. Research progress of flow cytometry in the detection of small extracellular vesicles. J. Chongqing Med. Univ. 2021, 47, 917–922. [Google Scholar]
- Flynn, J.; Gorry, P. Flow Cytometry Analysis to Identify Human CD8+ T Cells. Methods Mol. Biol. 2019, 2048, 1–13. [Google Scholar] [CrossRef]
- Lin, C.; Li, S. The development of flow cytometry and application in plant research. J. Biol. Eng. 2023, 33, 472–487. [Google Scholar] [CrossRef]
- Georgakoudi, I.; Solban, N.; Novak, J.; Rice, W.L.; Wei, X.; Hasan, T.; Lin, C.P. In vivo flow cytometry: A new method for enumerating circulating cancer cells. Cancer Res. 2004, 64, 5044–5047. [Google Scholar] [CrossRef]
- Pera, V.; Tan, X.; Runnels, J.; Sardesai, N.; Lin, C.P.; Niedre, M. Diffuse fluorescence fiber probe for in vivo detection of circulating cells. J. Biomed. Opt. 2017, 22, 37004. [Google Scholar] [CrossRef] [Green Version]
- Novak, J.; Georgakoudi, I.; Wei, X.; Prossin, A.; Lin, C.P. In vivo flow cytometer for real-time detection and quantification of circulating cells. Opt. Lett. 2004, 29, 77–79. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.; Patil, R.; Bartosik, P.; Runnels, J.M.; Lin, C.P.; Niedre, M. In Vivo Flow Cytometry of Extremely Rare Circulating Cells. Sci. Rep. 2019, 9, 3366. [Google Scholar] [CrossRef] [Green Version]
- Jiang, K. Study on Rapid Counting Method and Activity Determination of Lactic Acid Bacteria Based on Flow Cytometry. Master’s Thesis, Shanghai Normal University, Shanghai, China, 2018. [Google Scholar]
- Manohar, S.M.; Shah, P.; Nair, A. Flow cytometry: Principles, applications and recent advances. Bioanalysis 2021, 13, 181–198. [Google Scholar] [CrossRef]
- Gong, X.Q.; Li, X.X.; Geng, Q.Q.; Tan, Z.J.; Yao, L.; Jiang, Y.H.; Qu, M.; Li, F.L. Flow cytometry in the application of bivalves immune research. J. Food Saf. Qual. Test. 2022, 13, 8026–8032. [Google Scholar] [CrossRef]
- Falkenberg, S.M.; Dassanayake, R.P.; Neill, J.D.; Ridpath, J.F. Improved detection of bovine viral diarrhea virus in bovine lymphoid cell lines using PrimeFlow RNA assay. Virology 2017, 509, 260–265. [Google Scholar] [CrossRef]
- Falkenberg, S.M.; Dassanayake, R.P.; Neill, J.D.; Walz, P.H.; Casas, E.; Ridpath, J.F.; Roth, J. Measuring CMI responses using the PrimeFlow RNA assay: A new method of evaluating BVDV vaccination response in cattle. Vet. Immunol. Immunopathol. 2020, 221, 110024. [Google Scholar] [CrossRef]
- Grandoni, F.; Martucciello, A.; Petrini, S.; Steri, R.; Donniacuo, A.; Casciari, C.; Scatà, M.C.; Grassi, C.; Vecchio, D.; Feliziani, F.; et al. Assessment of Multicolor Flow Cytometry Panels to Study Leukocyte Subset Alterations in Water Buffalo (Bubalus bubalis) during BVDV Acute Infection. Front. Vet. Sci. 2020, 7, 574434. [Google Scholar] [CrossRef]
- Szczotka, M.; Kocki, J.; Iwan, E.; Pluta, A. Determination of telomere length and telomerase activity in cattle infected with bovine leukaemia virus (BLV). Pol. J. Vet. Sci. 2019, 22, 391–403. [Google Scholar] [CrossRef]
- Szczotka, M.; Kuźmak, J. Expression of Bovine Leukaemia Virus (BLV) Gp51 Protein in Blood and Milk Cells of Cows with Leukosis. J. Vet. Res. 2022, 66, 305–315. [Google Scholar] [CrossRef]
- Iwan, E.; Szczotka, M.; Kocki, J.; Pluta, A. Determination of cytokine profiles in populations of dendritic cells from cattle infected with bovine leukaemia virus. Pol. J. Vet. Sci. 2018, 21, 681–690. [Google Scholar] [CrossRef]
- Grandoni, F.; Signorelli, F.; Martucciello, A.; Napolitano, F.; De Donato, I.; Donniacuo, A.; Di Vuolo, G.; De Matteis, G.; Del Zotto, G.; Davis, W.C.; et al. In-depth immunophenotyping reveals significant alteration of lymphocytes in buffalo with brucellosis. Cytometry Part A 2023, 103, 528–536. [Google Scholar] [CrossRef]
- Agnone, A.; La Manna, M.P.; Vesco, G.; Gargano, V.; Macaluso, G.; Dieli, F.; Sireci, G.; Villari, S. Analysis of interferon-gamma producing cells during infections by Yersinia enterocolitica O:9 and Brucella abortus in cattle. Vet. Ital. 2019, 55, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Boggiatto, P.M.; Schaut, R.G.; Olsen, S.C. Enhancing the Detection of Brucella-Specific CD4+ T Cell Responses in Cattle via In Vitro Antigenic Expansion and Restimulation. Front. Immunol. 2020, 11, 1944. [Google Scholar] [CrossRef] [PubMed]
- Xia, A.; Xu, Z.; Hu, T.; Li, X.; Zhu, Z.; Chen, X.; Jiao, X. Development of a flow cytometry assay for bovine interleukin-2 and its preliminary application in bovine tuberculosis detection. Vet. Immunol. Immunopathol. 2020, 228, 110112. [Google Scholar] [CrossRef] [PubMed]
- De Matteis, G.; Scatà, M.C.; Zampieri, M.; Grandoni, F.; Elnaggar, M.M.; Schiavo, L.; Cappelli, G.; Cagiola, M.; De Carlo, E.; Davis, W.C.; et al. Flow cytometric detection of IFN-γ production and Caspase-3 activation in CD4+ T lymphocytes to discriminate between healthy and Mycobacterium bovis naturally infected water buffaloes. Tuberculosis 2023, 139, 102327. [Google Scholar] [CrossRef]
- Elsayed, M.S.A.E.; Salah, A.; Elbadee, A.A.; Roshdy, T. Real-time PCR using atpE, conventional PCR targeting different regions of difference, and flow cytometry for confirmation of Mycobacterium bovis in buffaloes and cattle from the Delta area of Egypt. BMC Microbiol. 2022, 22, 154. [Google Scholar] [CrossRef]
- Ezanno, P.; Fourichon, C.; Seegers, H. Influence of herd structure and type of virus introduction on the spread of bovine viral diarrhoea virus (BVDV) within a dairy herd. Vet. Res. 2008, 39, 39. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wu, C.; Chen, N.; Li, Y.; Fan, C.; Zhao, S.; Bai, T.; Zhao, Z.; Chen, J.; Su, S.; et al. PD-1 Blockade Restores the Proliferation of Peripheral Blood Lymphocyte and Inhibits Lymphocyte Apoptosis in a BALB/c Mouse Model of CP BVDV Acute Infection. Front. Immunol. 2021, 12, 727254. [Google Scholar] [CrossRef]
- Nishimori, A.; Hirose, S.; Ogino, S.; Andoh, K.; Isoda, N.; Sakoda, Y. Endemic infections of bovine viral diarrhea virus genotypes 1b and 2a isolated from cattle in Japan between 2014 and 2020. J. Vet. Med. Sci. 2022, 84, 228–232. [Google Scholar] [CrossRef]
- Chi, S.; Chen, S.; Jia, W.; He, Y.; Ren, L.; Wang, X. Non-structural proteins of bovine viral diarrhea virus. Virus Genes 2022, 58, 491–500. [Google Scholar] [CrossRef]
- Dong, K.; Hu, J.Y.; Zhang, Z.Y.; Zhang, F.; Hu, H.Q.; Chang, X.R.; Wang, Y.G.; Riguli-Baitushan, M.I.; Wang, X.P. Epidemiological investigation of mixed infections of bovine viral diarrhea virus and bovine enterovirus in Jilin Province. Chin. J. Vet. Med. 2022, 42, 1143–1148. [Google Scholar] [CrossRef]
- Chang, L.Y.; Liu, Z.Y.; Qin, J.H.; Zhao, Y.L. Epidemiological investigation of viral diarrhea in dairy calves in Tangshan City, Hebei Province. China Anim. Husb. Vet. Med. 2021, 48, 4213–4219. [Google Scholar] [CrossRef]
- Platt, R.; Burdett, W.; Roth, J.A. Induction of antigen-specific T-cell subset activation to bovine respiratory disease viruses by a modified-live virus vaccine. Am. J. Vet. Res. 2006, 67, 1179–1184. [Google Scholar] [CrossRef]
- Ruiz, V.; Porta, N.G.; Lomónaco, M.; Trono, K.; Alvarez, I. Bovine Leukemia Virus Infection in Neonatal Calves. Risk Factors and Control Measures. Front. Vet. Sci. 2018, 5, 267. [Google Scholar] [CrossRef] [Green Version]
- Nishikaku, K.; Noguchi, T.; Murakami, S.; Torii, Y.; Kobayashi, T. Molecular analysis of bovine leukemia virus in early epidemic phase in Japan using archived formalin fixed paraffin embedded histopathological specimens. J. Vet. Med. Sci. 2022, 84, 350–357. [Google Scholar] [CrossRef]
- Marawan, M.A.; Alouffi, A.; El Tokhy, S.; Badawy, S.; Shirani, I.; Dawood, A.; Guo, A.; Almutairi, M.M.; Alshammari, F.A.; Selim, A. Bovine Leukaemia Virus: Current Epidemiological Circumstance and Future Prospective. Viruses 2021, 13, 2167. [Google Scholar] [CrossRef]
- Hutchinson, H.C.; Norby, B.; Droscha, C.J.; Sordillo, L.M.; Coussens, P.M.; Bartlett, P.C. Bovine leukemia virus detection and dynamics following experimental inoculation. Res. Vet. Sci. 2020, 133, 269–275. [Google Scholar] [CrossRef]
- Usui, T.; Konnai, S.; Ohashi, K.; Onuma, M. Interferon-gamma expression associated with suppression of bovine leukemia virus at the early phase of infection in sheep. Vet. Immunol. Immunopathol. 2007, 115, 17–23. [Google Scholar] [CrossRef]
- Turner, K.J.; Vasu, V.; Griffin, D.K. Telomere Biology and Human Phenotype. Cells 2019, 8, 73. [Google Scholar] [CrossRef] [Green Version]
- Li, J.S.; Miralles Fusté, J.; Simavorian, T.; Bartocci, C.; Tsai, J.; Karlseder, J.; Lazzerini Denchi, E. TZAP: A telomere-associated protein involved in telomere length control. Science 2017, 355, 638–641. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Sušac, L.; Feigon, J. Structural Biology of Telomerase. Cold Spring Harb. Perspect. Biol. 2019, 11, a032383. [Google Scholar] [CrossRef]
- Mizukoshi, E.; Kaneko, S. Telomerase-Targeted Cancer Immunotherapy. Int. J. Mol. Sci. 2019, 20, 1823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemmatzadeh, F.; Keyvanfar, H.; Hasan, N.H.; Niap, F.; Bani Hassan, E.; Hematzade, A.; Ebrahimie, E.; McWhorter, A.; Ignjatovic, J. Interaction between Bovine leukemia virus (BLV) infection and age on telomerase misregulation. Vet. Res. Commun. 2015, 39, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Henaux, V.; JaŸ, M.; Siebeke, C.; Calavas, D.; Ponsart, C. Review of bovine brucellosis surveillance in Europe in 2015. Rev. Sci. Tech. 2018, 37, 805–821. [Google Scholar] [CrossRef] [PubMed]
- Mfune, R.L.; Mubanga, M.; Silwamba, I.; Sagamiko, F.; Mudenda, S.; Daka, V.; Godfroid, J.; Hangombe, B.M.; Muma, J.B. Seroprevalence of Bovine Brucellosis in Selected Districts of Zambia. Int. J. Environ. Res. Public Health 2021, 18, 1436. [Google Scholar] [CrossRef]
- Trotta, A.; Marinaro, M.; Cirilli, M.; Sposato, A.; Adone, R.; Beverelli, M.; Buonavoglia, D.; Corrente, M. Brucella melitensis B115-based ELISA to unravel false positive serologic reactions in bovine brucellosis: A field study. BMC Vet. Res. 2020, 16, 50. [Google Scholar] [CrossRef] [Green Version]
- Crosby, E.; Llosa, L.; Quesada, M.M.; Carrillo, P.C.; Gotuzzo, E. Hematologic Changes in Brucellosis. J. Infect. Dis. 1984, 150, 419–424. [Google Scholar] [CrossRef]
- Vitry, M.A.; Hanot Mambres, D.; De Trez, C.; Akira, S.; Ryffel, B.; Letesson, J.J.; Muraille, E. Humoral immunity and CD4+ Th1 cells are both necessary for a fully protective immune response upon secondary infection with Brucella melitensis. J. Immunol. 2014, 192, 3740–3752. [Google Scholar] [CrossRef] [Green Version]
- Ramos, D.F.; Silva, P.E.; Dellagostin, O.A. Diagnosis of bovine tuberculosis: Review of main techniques. Braz. J. Biol. 2015, 75, 830–837. [Google Scholar] [CrossRef]
- Boko, C.K.; Zoclanclounon, A.R.; Adoligbe, C.M.; Dedehouanou, H.; M’Po, M.; Mantip, S.; Farougou, S. Molecular diagnosis of bovine tuberculosis on postmortem carcasses during routine meat inspection in Benin: GeneXpert® testing to improve diagnostic scheme. Vet. World 2022, 15, 2506–2510. [Google Scholar] [CrossRef]
- Xu, F. Survey on Bovine Tuberculosis in Some Regions of China and Study on the Isolation, Identification and Biological Characteristics of Bovine Extrapulmonary Tuberculosis. Ph.D. Thesis, Gansu Agricultural University, Lanzhou, China, 2020. [Google Scholar] [CrossRef]
- Wang, B.Q. Epidemiological Survey of Brucellosis and Tuberculosis in Dairy Cattle and Demonstration of Integrated Prevention and Control Technology in Suining County, Jiangsu Province, 2018–2020. Master’s Thesis, Yangzhou University, Yangzhou, China, 2021. [Google Scholar] [CrossRef]
- Rojas-Espinosa, O.; Beristain-Cornelio, G.; Santillán-Flores, M.A.; Arce-Paredes, P.; Islas-Trujillo, S.; Rivero-Silva, M.Á. A neutrophil-based test as an auxiliary tool for substantiating the diagnosis of bovine tuberculosis. Int. J. Mycobacteriol. 2022, 11, 190–198. [Google Scholar] [CrossRef]
- Peng, Y.; Zhu, X.; Wang, Z.; Chen, Y.; Guo, A. Bovine TB immunology research progress. Chin. J. Vet. 2018, 38, 1250–1254. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, X.; Xia, A.; Lu, M.; Shen, X.; Xu, Z.; Jiao, X. Flow cytometry in the diagnosis of cow disease. J. Yangzhou Univ. Agric. Life Sci. 2020, 9, 25–29. [Google Scholar] [CrossRef]
- de Figueiredo, A.M.; Glória, J.C.; Chaves, Y.O.; Neves, W.L.L.; Mariúba, L.A.M. Diagnostic applications of microsphere-based flow cytometry: A review. Exp. Biol. Med. 2022, 247, 1852–1861. [Google Scholar] [CrossRef]
- Palmer, M.V.; Kanipe, C.; Boggiatto, P.M. The Bovine Tuberculoid Granuloma. Pathogens 2022, 11, 61. [Google Scholar] [CrossRef]
- Boom, W.H.; Schaible, U.E.; Achkar, J.M. The knowns and unknowns of latent Mycobacterium tuberculosis infection. J. Clin. Investig. 2021, 131, e136222. [Google Scholar] [CrossRef]
Disease | Test Method | Instrument | Programme | References |
---|---|---|---|---|
BVD | PrimeFlow RNA | BD LSRII flow cytometer | Detection of BVDV RNA in BVDV-infected cell lines | [15] |
PrimeFlow RNA | BD FACSymphony™ A3 flow cytometer | Detection of CD25 (IL-2 receptor) and intracellular IFN-γ in T cell subsets | [16] | |
flow cytometer | CytoFLEXflow cytometer | Detection of lymphocyte counts | [17] | |
BLV | flow cytometer | flow cytometer | Detection of telomere length | [18] |
flow cytometer | FACSCalibur flow cytometer | Detection of BLV-gp51 expression in the blood of dairy cows | [19] | |
flow cytometer | flow cytometer Navios | Assay for IL-10 and IFN-γ in MDCs | [20] | |
Bovine brucellosis | flow cytometer | CytoFLEX flow cytometer | Measurement of total lymphocytes, B-lymphocytes, and T-lymphocytes | [21] |
flow cytometer | flow cytometry | Detection of IFN-γ+ T and IFN-γ+ CD4+ T cell numbers | [22] | |
flow cytometer | BD FACSymphonyTM A5 flow cytometer | Observation of CD4+ T cell proliferation and frequency of IFN-γ production | [23] | |
BTB | flow cytometer | FACSCalibur flow cytometer | Detection of CD4+ T cell numbers specific for IL-2 | [24] |
flow cytometer | CytoFLEX flow cytometer | Detecting IFN-γ secretion | [25] | |
flow cytometer | Becton Dickinson FACS Caliber flow Cytometer | Detection of CD4+, CD8+, WC1+δγ, and CD2+ cell phenotype numbers in cattle | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Zhang, Y.; Zhao, D.; Chen, Y.; Meng, Q.; Zhang, X.; Jia, Z.; Cui, J.; Wang, X. Application of Flow Cytometry in the Diagnosis of Bovine Epidemic Disease. Viruses 2023, 15, 1378. https://doi.org/10.3390/v15061378
Liu Z, Zhang Y, Zhao D, Chen Y, Meng Q, Zhang X, Jia Z, Cui J, Wang X. Application of Flow Cytometry in the Diagnosis of Bovine Epidemic Disease. Viruses. 2023; 15(6):1378. https://doi.org/10.3390/v15061378
Chicago/Turabian StyleLiu, Zhilin, Yuliang Zhang, Donghui Zhao, Yunjiao Chen, Qinglei Meng, Xin Zhang, Zelin Jia, Jiayu Cui, and Xueli Wang. 2023. "Application of Flow Cytometry in the Diagnosis of Bovine Epidemic Disease" Viruses 15, no. 6: 1378. https://doi.org/10.3390/v15061378
APA StyleLiu, Z., Zhang, Y., Zhao, D., Chen, Y., Meng, Q., Zhang, X., Jia, Z., Cui, J., & Wang, X. (2023). Application of Flow Cytometry in the Diagnosis of Bovine Epidemic Disease. Viruses, 15(6), 1378. https://doi.org/10.3390/v15061378