Comparison of Attenuated and Virulent Strains of African Swine Fever Virus Genotype I and Serogroup 2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Cultures and Viruses
2.2. Animal Experiment
2.3. Next Generation Sequencing (NGS)
3. Results
3.1. In Vivo Replication and Virulence in Susceptible Animals
3.2. Replication of ASF Viruses in Primary Swine Macrophage Culture
3.3. Comparison of Congo-a and Congo-v Genomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eustace Montgomery, R. On a Form of Swine Fever Occurring in British East Africa (Kenya Colony). J. Comp. Pathol. Ther. 1921, 34, 159–191. [Google Scholar] [CrossRef] [Green Version]
- Coggins, L. African swine fever virus. Pathogenesis. Prog. Virol. Med. 1974, 18, 48–63. [Google Scholar]
- Mebus, C.A. African swine fever. Adv. Virus Res. 1988, 35, 251–269. [Google Scholar] [CrossRef] [PubMed]
- Rowlands, R.J.; Michaud, V.; Heath, L.; Hutchings, G.; Oura, C.; Vosloo, W.; Dwarka, R.; Onashvili, T.; Albina, E.; Dixon, L.K. African swine fever virus isolate, Georgia, 2007. Emerg. Infect. Dis. 2008, 14, 1870–1874. [Google Scholar] [CrossRef]
- Pikalo, J.; Zani, L.; Hühr, J.; Beer, M.; Blome, S. Pathogenesis of African swine fever in domestic pigs and European wild boarLessons learned from recent animal trials. Virus Res. 2019, 271, 197614. [Google Scholar] [CrossRef] [PubMed]
- Dixon, L.K.; Chapman, D.A.G.; Netherton, C.L.; Upton, C. African swine fever virus replication and genomics. Virus Res. 2013, 173, 3–14. [Google Scholar] [CrossRef]
- Bastos, A.D.; Penrith, M.L.; Crucière, C.; Edrich, J.L.; Hutchings, G.; Roger, F.; Couacy-Hymann, E.; Thomson, G.R. Genotyping field strains of African swine fever virus by partial p72 gene characterisation. Arch. Virol. 2003, 148, 693–706. [Google Scholar] [CrossRef]
- Quembo, C.J.; Jori, F.; Vosloo, W.; Heath, L. Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype. Transbound. Emerg. Dis. 2018, 65, 420–431. [Google Scholar] [CrossRef] [Green Version]
- Sereda, A.D.; Balyshev, V.M. Antigenic diversity of African swine fever viruses. Vopr. Virusol. 2011, 56, 38–42. [Google Scholar]
- Vishnjakov, I.F.; Mitin, N.I.; Petrov, J.I. Seroimmunological classification of African swine fever virus natural isolates. In Topical Issues of Veterinary Virology, Proceedings of the Conference VNIIVViM: Classical Swine Fever Urgent Problems of Science and Practice, VNIIVViM, Pokrov, Russia, 9–11 November 1995; VNIIVViM: Pokrov, Russia, 1995; pp. 141–143. (In Russian) [Google Scholar]
- Sereda, A.D.; Balyshev, V.M.; Kazakova, A.S.; Imatdinov, A.R.; Kolbasov, D.V. Protective Properties of Attenuated Strains of African Swine Fever Virus Belonging to Seroimmunotypes I–VIII. Pathogens 2020, 9, 274. [Google Scholar] [CrossRef] [Green Version]
- Sereda, A.D.; Kazakova, A.S.; Namsrayn, S.G.; Vlasov, M.E.; Kolbasov, D.V. The attenuated ASFV strains MK-200 and FK-32/135 as possible models for investigation of protective immunity by ASFV infection. PLoS ONE 2022, 17, e0270641. [Google Scholar] [CrossRef]
- Malogolovkin, A.; Burmakina, G.; Tulman, E.R.; Delhon, G.; Diel, D.G.; Salnikov, N.; Kutish, G.F.; Kolbasov, D.; Rock, D.L. African swine fever virus CD2v and C-type lectin gene loci mediate serological specificity. J. Gen. Virol. 2015, 96, 866–873. [Google Scholar] [CrossRef]
- Burmakina, G.; Diel, D.G.; Kutish, G.F.; Zsak, L.; Tulman, E.R.; Morgunov, Y.P.; Kolbasov, D.; Morgunov, S.Y.; Malogolovkin, A.; Shobogorov, N.M.; et al. African swine fever virus serotype-specific proteins are significant protective antigens for African swine fever. J. Gen. Virol. 2016, 97, 1670. [Google Scholar] [CrossRef]
- Titov, I.; Burmakina, G.; Morgunov, Y.; Morgunov, S.; Koltsov, A.; Malogolovkin, A.; Kolbasov, D. Virulent strain of African swine fever virus eclipses its attenuated derivative after challenge. Arch. Virol. 2017, 162, 3081–3088. [Google Scholar] [CrossRef]
- Krug, P.W.; Holinka, L.G.; O’Donnell, V.; Reese, B.; Sanford, B.; Fernandez-Sainz, I.; Gladue, D.P.; Arzt, J.; Rodriguez, L.; Risatti, G.R.; et al. The progressive adaptation of a georgian isolate of African swine fever virus to vero cells leads to a gradual attenuation of virulence in swine corresponding to major modifications of the viral genome. J. Virol. 2015, 89, 2324–2332. [Google Scholar] [CrossRef] [Green Version]
- Balysheva, V.I.; Prudnikova, E.Y.; Galnbek, T.V.; Balyshev, V.M. Immunological properties of attenuated variants of African swine fever virus isolated in the Russian Federation. Russ. Agric. Sci. 2015, 41, 178–182. [Google Scholar] [CrossRef]
- Yanez, R.J.; Rodriguez, J.M.; Nogal, M.L.; Yuste, L.; Enriquez, C.; Rodriguez, J.F.; Vinuela, E. Analysis of the complete nucleotide sequence of African swine fever virus. Virology 1995, 208, 249–278. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, J.M.; Moreno, L.T.; Alejo, A.; Lacasta, A.; Rodriguez, F.; Salas, M.L. Genome sequence of African swine fever virus BA71, the virulent parentalal strain of the nonpathogenic and tissue-culture adapted BA71V. PLoS ONE 2015, 10, e0142889. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Wang, L.; Han, Y.; Pan, L.; Yang, J.; Sun, M.; Zhou, P.; Sun, Y.; Bi, Y.; Qiu, H.J. Adaptation of African swine fever virus to HEK293T cells. Transbound. Emerg. Dis. 2021, 68, 2853–2866. [Google Scholar] [CrossRef]
- Koltsova, G.; Koltsov, A.; Krutko, S.; Kholod, N.; Tulman, E.R.; Kolbasov, D. Growth Kinetics and Protective Efficacy of Attenuated ASFV Strain Congo with Deletion of the EP402 Gene. Viruses 2021, 13, 1259. [Google Scholar] [CrossRef]
- Koltsov, A.; Tulman, E.R.; Namsrayn, S.; Kutish, G.F.; Koltsova, G. Complete genome sequence of virulent genotype I African swine fever virus strain K49 from the Democratic Republic of the Congo, isolated from a domestic pig (Sus scrofa domesticus). Arch. Virol. 2022, 167, 2377–2380. [Google Scholar] [CrossRef]
- Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Howey, E.B.; O’Donnell, V.; de Carvalho Ferreira, H.C.; Borca, M.V.; Arzt, J. Pathogenesis of highly virulent African swine fever virus in domestic pigs exposed via intraoropharyngeal, intranasopharyngeal, and intramuscular inoculation, and by direct contact with infected pigs. Virus Res. 2013, 178, 328–339. [Google Scholar] [CrossRef]
- King, D.P.; Reid, S.M.; Hutchings, G.H.; Grierson, S.S.; Wilkinson, P.J.; Dixon, L.K.; Bastos, A.D.S.; Drew, T.W. Development of a TaqMan® PCR assay with internal amplification control for the detection of African swine fever virus. J. Virol. Methods 2003, 107, 53–61. [Google Scholar] [CrossRef]
- Delcher, A.L.; Harmon, D.; Kasif, S.; White, O.; Salzberg, S.L. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 1999, 27, 4636–4641. [Google Scholar] [CrossRef]
- Tcherepanov, V.; Ehlers, A.; Upton, C. Genome Annotation Transfer Utility (GATU): Rapid annotation of viral genomes using a closely related reference genome. BMC Genom. 2006, 7, 150. [Google Scholar] [CrossRef]
- Darling, C.E.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [Green Version]
- Larsson, A. AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 2014, 30, 3276–3278. [Google Scholar] [CrossRef] [Green Version]
- Ruiz Gonzalvo, F.; Caballero, C.; Martinez, J.; Carnero, M.E. Neutralization of African swine fever virus by sera from African swine fever resistant pigs. Am. J. Vet. Res. 1986, 47, 1858–1862. [Google Scholar]
- Tabares, E.; Olivares, I.; Santurde, G.; Garcia, M.J.; Martin, E.; Carnero, M.E. African swine fever virus DNA: Deletions and additions during adaptation to growth in monkey kidney cells. Arch. Virol. 1987, 97, 333–346. [Google Scholar] [CrossRef]
- De La Vega, I.; Vinuela, E.; Blasco, R. Genetic variation and multigene families in African swine fever virus. Virology 1990, 179, 234–246. [Google Scholar] [CrossRef]
- Pires, S.; Ribeiro, G.; Costa, J.V. Sequence and organization of the left multigene family 110 region of the Vero-adapted L60V strain of African swine fever virus. Virus Genes 1997, 15, 271–274. [Google Scholar] [CrossRef]
- Chapman, D.A.; Tcherepanov, V.; Upton, C.; Dixon, L.K. Comparison of the genome sequences of non-pathogenic and pathogenic African swine fever virus isolates. J. Gen. Virol. 2008, 89, 397–408. [Google Scholar] [CrossRef]
- Zsak, L.; Lu, Z.; Burrage, T.G.; Neilan, J.G.; Kutish, G.F.; Moore, D.M.; Rock, D.L. African swine fever virus multigene family 360 and 530 genes are novel macrophage host range determinants. J. Virol. 2001, 75, 3066–3076. [Google Scholar] [CrossRef] [Green Version]
- Neilan, J.G.; Zsak, L.; Lu, Z.; Kutish, G.F.; Afonso, C.L.; Rock, D.L. Novel swine virulence determinant in the left variable region of the African swine fever virus genome. J. Virol. 2002, 76, 3095–3104. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, V.; Holinka, L.G.; Gladue, D.P.; Sanford, B.; Krug, P.W.; Lu, X.; Arzt, J.; Reese, B.; Carrillo, C.; Risatti, G.R.; et al. African Swine Fever Virus Georgia Isolate Harboring Deletions of MGF360 and MGF505 Genes Is Attenuated in Swine and Confers Protection against Challenge with Virulent Parentalal Virus. J. Virol. 2015, 89, 6048–6056. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Zhao, D.; He, X.; Liu, R.; Wang, Z.; Zhang, X.; Li, F.; Shan, D.; Chen, H.; Zhang, J.; et al. A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs. Sci. China Life Sci. 2020, 3, 623–634. [Google Scholar] [CrossRef]
- Li, D.; Liu, Y.; Qi, X.; Wen, Y.; Li, P.; Ma, Z.; Liu, Y.; Zheng, H.; Liu, Z. African swine fever virus MGF-110-9L-deficient mutant has attenuated virulence in pigs. Virol. Sin. 2021, 36, 187–195. [Google Scholar] [CrossRef]
- Li, D.; Zhang, J.; Yang, W.; Li, P.; Ru, Y.; Kang, W.; Li, L.L.; Ran, Y.; Zheng, H. African swine fever virus protein MGF-505–7R promotes virulence and pathogenesis by inhibiting JAK1- and JAK2-mediated signaling. J. Biol. Chem. 2021, 297, 101190. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Xue, Y.; Niu, H.; Shi, C.; Cheng, M.; Wang, J.; Zou, B.; Wang, J.; Niu, T.; Bao, M.; et al. African swine fever virus MGF360-11L negatively regulates cGAS-STING-mediated inhibition of type I interferon production. Vet. Res. 2022, 53, 7. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Huang, Q.; Wang, R.; Zeng, Y.; Cheng, M.; Xue, Y.; Shi, C.; Ye, L.; Yang, W.; Jiang, Y.; et al. African swine fever virus MGF505-11R inhibits type I interferon production by negatively regulating the cGAS-STING mediated signaling pathway. Vet. Microbiol. 2021, 263, 109265. [Google Scholar] [CrossRef] [PubMed]
- Zhenzhong, W.; Chuanxiang, Q.; Shengqiang, G.; Jinming, L.; Yongxin, H.; Xiaoyue, Z.; Yan, L.; Naijun, H.; Xiaodong, W.; Zhiliang, W.; et al. Genetic variation and evolution of attenuated African swine fever virus strain isolated in the field: A review. Virus Res. 2022, 2, 198874. [Google Scholar] [CrossRef]
Gene/Protein Region | Position in ASFV K49 Genome (bp) | Nucleotide/Amino Acid Change in ASFV KK262 Genome |
---|---|---|
L60L/MGF_360-3L (IGR) | 5619 | A-C |
MGF_110-10L/110-11L | 12,362 | Frameshift insertion |
ASFVK49_0660/0665(IGR) | 15,684–15,696 | Deletion |
ASFVK49_0700 | 17,587 | Insertion in Tandem Repeat |
ASFVK49_0700/0720 (IGR) | 17,896–17,900 | Deletion |
MGF_360-9L/10Lb (IGR) | 26,107 | Insertion in Tandem Repeat |
MGF_360-10La- MGF_505-3R | 26,013–34,824 | Deletion |
MGF505-10R | 45,679 | A-G |
ACD_00600/A104R (IGR) | 46,964 | Insertion in Tandem Repeat |
F165R (putative protein pF165R) | 59,592 | Substitution Arg-Gly |
EP402R (CD2v) | 73,629 | C-T |
74,130 | T-C | |
M1249L (minor capsid protein pM1249L) | 76,023 | C-T |
C315R (putative protein pC315R) | 87,043 | Substitution Arg-His |
C315R/C147L (IGR) | 87,849 | Insertion in Tandem Repeat |
C962L (helicase-like protein pC962R) | 89,657 | T-C |
B602L | 101,523 | Insertion in Tandem Repeat |
101,559 | Insertion in Tandem Repeat | |
101,615 | Insertion in Tandem Repeat | |
G1211R (DNA-directed DNA polymerase) | 113,487 | T-G |
CP530R (polyprotein pp62) | 126,126 | Substitution Leu-Val |
NP1450L (RNA polymerase subunit 1) | 131,323 | Substitution Ser-Pro |
D205R (mRNA decapping protein) | 137,251 | Substitution Ile-Thr |
137,812 | Substitution Met-Val | |
137,871 | Substitution Glu-Lys | |
E199L (membrane fusion protein pE199L) | 165,767 | Substitution Phe-Ile |
E120R (structural protein p14.5) | 167,788 | Substitution Asp-Gly |
167,799 | Substitution Glu-Lys | |
I8L (non-essential early protein) | 181,127 | Substitution Cys-Arg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kholod, N.; Koltsov, A.; Krutko, S.; Tulman, E.R.; Namsrayn, S.; Kutish, G.F.; Belov, S.; Korotin, A.; Sukher, M.; Koltsova, G. Comparison of Attenuated and Virulent Strains of African Swine Fever Virus Genotype I and Serogroup 2. Viruses 2023, 15, 1373. https://doi.org/10.3390/v15061373
Kholod N, Koltsov A, Krutko S, Tulman ER, Namsrayn S, Kutish GF, Belov S, Korotin A, Sukher M, Koltsova G. Comparison of Attenuated and Virulent Strains of African Swine Fever Virus Genotype I and Serogroup 2. Viruses. 2023; 15(6):1373. https://doi.org/10.3390/v15061373
Chicago/Turabian StyleKholod, Natalia, Andrey Koltsov, Sergey Krutko, Edan R. Tulman, Sanzhi Namsrayn, Gerald F. Kutish, Sergey Belov, Alexey Korotin, Mikhail Sukher, and Galina Koltsova. 2023. "Comparison of Attenuated and Virulent Strains of African Swine Fever Virus Genotype I and Serogroup 2" Viruses 15, no. 6: 1373. https://doi.org/10.3390/v15061373
APA StyleKholod, N., Koltsov, A., Krutko, S., Tulman, E. R., Namsrayn, S., Kutish, G. F., Belov, S., Korotin, A., Sukher, M., & Koltsova, G. (2023). Comparison of Attenuated and Virulent Strains of African Swine Fever Virus Genotype I and Serogroup 2. Viruses, 15(6), 1373. https://doi.org/10.3390/v15061373