Statistical Analysis of the Performance of Local Veterinary Laboratories in Molecular Detection (rRT-PCR) of Avian Influenza Virus via National Proficiency Testing Performed during 2020–2022
Abstract
:1. Introduction
2. Materials and Methods
2.1. Viruses for the PT Panel
2.2. Preparation, Assessment, and Determination of the PT Panel
2.3. Homogeneity and Stability Testing of the PT Panel
2.4. Distribution of the PT Panel and Data Collection
2.5. Statistical Analysis of PT Results
3. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AIV | Avian influenza virus |
HPAIV | High-pathogenicity avian influenza virus |
LPAIV | Low-pathogenicity influenza virus |
LBM | Live bird market |
VSL | Veterinary service laboratory |
rRT-PCR | Real-time RT-PCR |
PT | Proficiency test |
Ct | Cycle threshold |
NIQR | Normalized interquartile range |
References
- Pantin-Jackwood, M.J.; Swayne, D.E. Pathogenesis and pathobiology of avian influenza virus infection in birds. OIE Sci. Tech. Rev. 2009, 28, 113–136. [Google Scholar] [CrossRef]
- Webster, R.G.; Bean, W.J.; Gorman, O.T.; Chambers, T.M.; Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiol. Rev. 1992, 56, 152–179. [Google Scholar] [CrossRef]
- Abdelwhab, E.S.M.; Veits, J.; Mettenleiter, T.C. Genetic changes that accompanied shifts of low pathogenic avian influenza viruses toward higher pathogenicity in poultry. Virulence 2013, 4, 441–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutton, T.C. The pandemic threat of emerging H5 and H7 avian influenza viruses. Viruses 2018, 10, 461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, D.J.; Brown, I.H. History of highly pathogenic avian influenza. Rev. Sci. Tech. 2009, 28, 19–38. [Google Scholar] [CrossRef]
- Peacock, T.H.P.; James, J.; Sealy, J.E.; Iqbal, M. A global perspective on H9n2 avian influenza Virus. Viruses 2019, 11, 620. [Google Scholar] [CrossRef] [Green Version]
- Eladl, A.H.; Alzayat, A.A.; Ali, H.S.; Fahmy, H.A.; Ellakany, H.F. comparative molecular characterization, pathogenicity and seroprevalence of avian influenza virus H9n2 in commercial and backyard poultry flocks. Comp. Immunol. Microbiol. Infect. Dis. 2019, 64, 81–89. [Google Scholar] [CrossRef]
- Lee, C.-W.; Suarez, D.L.; Tumpey, T.M.; Sung, H.-W.; Kwon, Y.-K.; Lee, Y.-J.; Choi, J.-G.; Joh, S.-J.; Kim, M.-C.; Lee, E.-K. Characterization of highly pathogenic H5N1 avian influenza A viruses isolated from South Korea. J. Virol. 2005, 79, 3692–3702. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-J.; Choi, Y.-K.; Kim, Y.-J.; Song, M.-S.; Jeong, O.-M.; Lee, E.-K.; Jeon, W.-J.; Jeong, W.; Joh, S.-J.; Choi, K.-s. Highly pathogenic avian influenza virus (H5N1) in domestic poultry and relationship with migratory birds, South Korea. Emerg. Infect. Dis. 2008, 14, 487. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-N.; Cheon, S.-H.; Kye, S.-J.; Lee, E.-K.; Sagong, M.; Heo, G.-B.; Kang, Y.-M.; Cho, H.-K.; Kim, Y.-J.; Kang, H.-M. Novel reassortants of clade 2.3. 4.4 H5N6 highly pathogenic avian influenza viruses possessing genetic heterogeneity in South Korea in late 2017. J. Vet. Sci. 2018, 19, 850–854. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Kang, H.-M.; Lee, E.-K.; Song, B.-M.; Jeong, J.; Kwon, Y.-K.; Kim, H.-R.; Lee, K.-J.; Hong, M.-S.; Jang, I. Novel reassortant influenza A (H5N8) viruses, South Korea, 2014. Emerg. Infect. Dis. 2014, 20, 1087. [Google Scholar] [CrossRef]
- Sagong, M.; Lee, Y.N.; Song, S.; Cha, R.M.; Lee, E.K.; Kang, Y.M.; Cho, H.K.; Kang, H.M.; Lee, Y.J.; Lee, K.N. Emergence of clade 2.3. 4.4 b novel reassortant H5N1 high pathogenicity avian influenza virus in South Korea during late 2021. Transbound. Emerg. Dis. 2022, 69, e3255–e3260. [Google Scholar] [CrossRef]
- Choi, J.G.; Lee, Y.J.; Kim, Y.J.; Lee, E.K.; Jeong, O.M.; Sung, H.W.; Kim, J.H.; Kwon, J.H. An inactivated vaccine to control the current H9N2 low pathogenic avian influenza in Korea. J. Vet. Sci. 2008, 9, 67–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heo, G.-B.; Kye, S.-J.; Sagong, M.; Lee, E.-K.; Lee, K.-N.; Lee, Y.-N.; Choi, K.-S.; Lee, M.-H.; Lee, Y.-J. Genetic characterization of H9N2 avian influenza virus previously unrecognized in Korea. J. Vet. Sci. 2021, 22, e21. [Google Scholar] [CrossRef] [PubMed]
- Stelzer-Braid, S.; Escott, R.; Baleriola, C.; Kirkland, P.; Robertson, P.; Catton, M.; Rawlinson, W.D. Proficiency of nucleic acid tests for avian influenza viruses, Australasia. Emerg. Infect. Dis. 2008, 14, 1126. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Gao, Y.; Wen, L.; Shao, M.; Zou, S.; Li, C.; Yang, L.; Li, X.; Wang, W.; Shu, Y. Development and implementation of the quality control panel of RT-PCR and real-time RT-PCR for avian influenza A (H5N1) surveillance network in mainland China. BMC Infect. Dis. 2011, 11, 67. [Google Scholar] [CrossRef] [Green Version]
- Popowich, M.D.; Brunt, S.J.; Bennett, R.T.; George, K.S. Development of a proficiency testing program for molecular diagnosis of influenza viruses. J. Clin. Virol. 2012, 54, 245–250. [Google Scholar] [CrossRef]
- Ahmad-Nejad, P.; Ashavaid, T.; Salinas, A.V.; Huggett, J.; Harris, K.; Linder, M.W.; Baluchova, K.; Steimer, W.; Payne, D.A.; Diagnostics, I.C.f.M. Current and future challenges in quality assurance in molecular diagnostics. Clin. Chim. Acta 2021, 519, 239–246. [Google Scholar] [CrossRef]
- Clark, G.A.; Loh, M.H.; Waugh, C.; Watson, J. Guidelines for Operating a Proficiency Testing Scheme. CSIRO Aust. 2022. [Google Scholar]
- Kang, Y.-M.; Cho, H.-K.; Kim, H.-M.; Lee, M.-H.; To, T.L.; Kang, H.-M. Protective efficacy of vaccines of the Korea national antigen bank against the homologous H5Nx clade 2.3. 2.1 and clade 2.3. 4.4 highly pathogenic avian influenza viruses. Vaccine 2020, 38, 663–672. [Google Scholar]
- Kang, H.-M.; Kim, M.-C.; Choi, J.-G.; Batchuluun, D.; Erdene-Ochir, T.-O.; Paek, M.-R.; Sodnomdarjaa, R.; Kwon, J.-H.; Lee, Y.-J.J.P.s. Genetic analyses of avian influenza viruses in Mongolia, 2007 to 2009, and their relationships with Korean isolates from domestic poultry and wild birds. Poult. Sci. 2011, 90, 2229–2242. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-N.; Lee, D.-H.; Kwon, J.-H.; Shin, J.-I.; Hong, S.Y.; Cha, R.M.; Baek, Y.-G.; Lee, E.-K.; Sagong, M.; Heo, G.-B. Genetic Characterization of Novel H7Nx Low Pathogenic Avian Influenza Viruses from Wild Birds in South Korea during the Winter of 2020–2021. Viruses 2021, 13, 2274. [Google Scholar] [CrossRef] [PubMed]
- Rosario, P.; Martínez, J.L.; Silván, J.M. Comparison of different statistical methods for evaluation of proficiency test data. Accredit. Qual. Assur. 2008, 13, 493–499. [Google Scholar] [CrossRef]
- Grubbs, F.E. Procedures for detecting outlying observations in samples. Technometrics 1969, 11, 1–21. [Google Scholar] [CrossRef]
- Kojima, I.; Kakita, K. Comparative study of robustness of statistical methods for laboratory proficiency testing. Anal. Sci. 2014, 30, 1165–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Strain Name | Subtype | Clade/Lineage | Used Year | Accession No. | Reference |
---|---|---|---|---|---|
rgBuan2 a | H5N8 | 2.3.4.4c b | 2020, 2021 | EPI 509704 | [20] |
rgHD1 a | H5N6 | 2.3.4.4b | 2020, 2021, 2022 | EPI 1123317 | |
A/Goose/Korea/H277/2022 | H5N3 | LPAI | 2022 | EPI_ISL_14161097 | |
A/duck/Korea/BC10/2007 | H7N3 | LPAI | 2020 | EPI_ISL_70556 | [21] |
A/duck/Korea/H20-2/2020 | H7N7 | LPAI | 2021 | EPI_ISL_15505735 | |
A/wild duck/Korea/H296/2020 | H7N9 | LPAI | 2021 | EPI_ISL_3663323 | [22] |
A/mallard/Korea/H901/2017 | H7N7 | LPAI | 2020, 2022 | EPI_ISL_309227 | |
A/Wild bird feces/Korea/H337/2018 | H7N5 | LPAI | 2022 | EPI_ISL_14161096 | |
A/chicken/Korea/01310/2001 | H9N2 | Y439 | 2020 | EPI_ISL_13845 | [13] |
A/chicken/Korea/LBM261/2020 | H9N2 | Y280 | 2022 | EPI_ISL_492107 | [14] |
A/chicken/Korea/LBM314/2020 | H9N2 | Y280 | 2021 | EPI_ISL_492108 | [14] |
Target | Sample | Exp. 1 | Exp. 2 | Exp. 3 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Maxwell® RSC simplyRNA Tissue | Nextractor® NX-48 Viral NA Kit VN121 | Nextractor® NX-48 Viral NA Kit VN121 | |||||||||
VDx® AIV qRT-PCR Kit | VDx® AIV qRT-PCR Kit | PowerCheck™ Influenza Real-Time PCR Kit | |||||||||
Bio-Rad CFX96 | Bio-Rad CFX96 | QuantStudio5 | |||||||||
Subtype | No. | Before Freezing | F and T | 4 °C, 48 h | Before Freezing | F and T | 4 °C, 48 h | Before Freezing | F and T | 4 °C, 48 h | |
M | H5 | 1 | 31.32 † | 30.74 † | 30.22 † | 27.65 | 26.61 | 26.58 | 26.39 | 25.43 | nt a |
2 | 34.94 † | 34.51 † | 34.13 † | 30.91 | 29.94 | 29.99 | 29.76 | 27.18 | |||
3 | 30.05 † | 29.84 † | 29.11 † | 25.90 | 24.95 | 25.50 | 24.84 | 25.50 | |||
4 | 33.71 † | 33.76 † | 32.09 † | 29.10 | 28.03 | 28.48 | 28.06 | 29.01 | |||
H7 | 5 | 31.46 † | 32.05 † | 31.06 † | 27.14 | 26.39 | 26.65 | 26.35 | 27.07 | ||
6 | 35.01 † | 34.81 † | 35.23 † | 30.44 | 29.37 | 29.60 | 29.65 | 30.30 | |||
7 | 28.42 | 26.86 | 27.60 | 27.30 | 25.87 | 26.21 | 26.05 | 26.53 | |||
8 | 31.24 | 30.79 | 30.70 | 30.27 | 29.18 | 29.87 | 29.40 | 29.92 | |||
H9 | 9 | 33.64 ‡ | 29.01 | 28.68 | 33.13 ‡ | 31.32 | 28.96 | 32.21 ‡ | 29.28 | ||
10 | 37.22 ‡ | 32.12 | 32.16 | 36.39 ‡ | 31.84 | 32.91 | 35.23 ‡ | 32.79 | |||
H5 | H5 | 1 | 33.28 † | 32.56 † | 31.95 | 29.90 § | 29.08 | 29.11 | 26.89 | nt | nt |
2 | 36.83 † | 36.47 † | 35.34 | 33.51 § | 32.58 | 33.66 | 30.35 | ||||
3 | 33.70 † | 32.29 † | 31.53 | 29.20 § | 28.49 | 29.19 | 26.13 | ||||
4 | 37.20 † | 35.89 † | 34.40 | 32.68 § | 31.56 | 34.32 | 29.23 | ||||
H7 | H7 | 5 | 31.99 † | 31.95 † | 31.22 | 27.52 | 27.01 | 26.80 | 26.67 | 26.33 | nt |
6 | 36.02 † | 36.05 † | 34.07 | 31.02 | 30.16 | 29.90 | 30.05 | 29.78 | |||
7 | 29.38 | 28.38 | 28.60 | 28.11 | 27.51 | 26.67 | 26.51 | 25.49 | |||
8 | 32.11 | 31.80 | 31.85 | 31.00 | 30.20 | 30.03 | 29.69 | 28.95 |
Year | Most Common Extraction Method (%) | Most Common rRT-PCR Machine (%) | Most Common rRT-PCR Kit (%) |
---|---|---|---|
2020 first half | Manual methods (29%) | Bio-Rad CFX96 (60%) | Kogene biotech PowerChek™ Influenza Virus Real-time PCR kit (72%) |
2020 second half | Qiagen Qiacube RNeasy mini kit (33%) | Bio-Rad CFX96 (61%) | Kogene biotech PowerChek™ Influenza Virus Real-time PCR kit (72%) |
2021 first half | Genolution Nextractor® NX-48 viral NA kit VN121 (26%) | Bio-Rad CFX96 (58%) | Kogene biotech PowerChek™ Influenza Virus Real-time PCR kit (69%) |
2021 second half | Genolution Nextractor® NX-48 viral NA kit VN121 (35%) | Bio-Rad CFX96 (62%) | Kogene biotech PowerChek™ Influenza Virus Real-time PCR kit (76%) |
2022 | Genolution Nextractor® NX-48 viral NA kit VN121 (50%) | Bio-Rad CFX96 (52%) | Kogene biotech PowerChek™ Influenza Virus Real-time PCR kit (77%) |
Year (Order) | Target Gene | No. of Labs with 100% Correct Answers (%) a | Statistics of a CDS Selected from Every PT Round | |||
---|---|---|---|---|---|---|
Ct Value (APQA) | Average Ct Value (Range) † | Standard Deviation ‡ | Coefficient of Variation (CV, %) ‡ | |||
2020 first half (1st) | M gene | 35/35 (100%) | 26.51 | 27.98 (24.51–32.19) | 1.78 | 5.95 |
H5 gene | 33/35 (94%) | 28.22 | 28.33 (24.23–31.62) c | 2.06c | 6.76 c | |
H7 gene | 29/29 (100%) | |||||
AIV negative | 34/35 (97%) | |||||
2020 second half (2nd) | M gene | 36/36 (100%) | 25.82 | 27.27 (22.27–33.10) | 2.09 | 8.20 |
H5 gene | 36/36 (100%) | 26.66 | 27.56 (22.28–33.55) | 2.49 | 8.58 | |
H7 gene | 36/36 (100%) | |||||
AIV negative | 26/26 (100%) | |||||
2021 first half (3rd) | M gene | 38/38 (100%) | 25.89 | 27.25 (24.46–31.65) | 1.82 | 6.36 |
H5 gene | 38/38 (100%) | 28.76 | 29.25 (26.24–32.82) | 2.01 | 6.58 | |
H7 gene | 25/25 (100%) | |||||
AIV negative | 38/38 (100%) | |||||
2021 second half (4th) | M gene | 37/37 (100%) | 29.35 | 28.62 (26.49–31.16) | 1.23 d | 4.58 d |
H5 gene | 37/37 (100%) | 28.93 | 27.23 (25.24–29.78) | 1.37 d | 4. d | |
H7 gene | 27/27 (100%) | |||||
AIV negative | 35/37 (95 %) | |||||
2022 (5th) | M gene | 38/38 (100%) | 29.71 | 30.43 (26.39–33.74) | 1.75 | 5.72 |
H5 gene | 38/38 (100%) | 32.39 | 30.53 (27.11–34.58) | 1.63 | 5.31 | |
H7 gene | 38/38 (100%) | |||||
AIV negative | 38/38 (100%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, S.-H.; Heo, G.-B.; Kang, Y.-M.; Sagong, M.; Kim, N.-Y.; Lee, Y.-J.; Lee, K.-N. Statistical Analysis of the Performance of Local Veterinary Laboratories in Molecular Detection (rRT-PCR) of Avian Influenza Virus via National Proficiency Testing Performed during 2020–2022. Viruses 2023, 15, 823. https://doi.org/10.3390/v15040823
An S-H, Heo G-B, Kang Y-M, Sagong M, Kim N-Y, Lee Y-J, Lee K-N. Statistical Analysis of the Performance of Local Veterinary Laboratories in Molecular Detection (rRT-PCR) of Avian Influenza Virus via National Proficiency Testing Performed during 2020–2022. Viruses. 2023; 15(4):823. https://doi.org/10.3390/v15040823
Chicago/Turabian StyleAn, Se-Hee, Gyeong-Beom Heo, Yong-Myung Kang, Mingeun Sagong, Na-Yeong Kim, Youn-Jeong Lee, and Kwang-Nyeong Lee. 2023. "Statistical Analysis of the Performance of Local Veterinary Laboratories in Molecular Detection (rRT-PCR) of Avian Influenza Virus via National Proficiency Testing Performed during 2020–2022" Viruses 15, no. 4: 823. https://doi.org/10.3390/v15040823