Non-Lethal Detection of Ranavirus in Fish
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balcombe, J.P.; Barnard, N.D.; Sandusky, C. Laboratory routines cause animal stress. J. Am. Assoc. Lab. Anim. Sci. 2004, 43, 42–51. [Google Scholar]
- Davis, A.K.; Maerz, J.C. Assessing stress levels of captive-reared amphibians with hematological data: Implications for conservation initiatives. J. Herpetol. 2011, 45, 40–44. [Google Scholar] [CrossRef]
- Harikrishnan, V.; Hansen, A.K.; Abelson, K.S.; Sørensen, D.B. A comparison of various methods of blood sampling in mice and rats: Effects on animal welfare. Lab. Anim. 2018, 52, 253–264. [Google Scholar] [CrossRef]
- Sneddon, L.U.; Halsey, L.G.; Bury, N.R. Considering aspects of the 3Rs principles within experimental animal biology. J. Exp. Biol. 2017, 220, 3007–3016. [Google Scholar] [CrossRef] [PubMed]
- WOAH. Chapter 2.1.3. Infection with Ranavirus. In Manual of Diagnostic Tests for Aquatic Animals 2021; WOAH: Paris, France, 2021; pp. 69–88. [Google Scholar]
- Price, S.J.; Garner, T.W.J.; Nichols, R.A.; Balloux, F.; Ayres, C.; Mora-Cabello de Alba, A.; Bosch, J. Collapse of amphibian communities due to an introduced ranavirus. Curr. Biol. 2014, 24, 2586–2591. [Google Scholar] [CrossRef]
- Rosa, G.M.; Sabino-Pinto, J.; Laurentino, T.G.; Martel, A.; Pasmans, F.; Rebelo, R.; Griffiths, R.A.; Stöhr, A.C.; Marschang, R.E.; Price, S.J.; et al. Impact of asynchronous emergence of two lethal pathogens on amphibian assemblages. Sci. Rep. 2017, 7, 43260. [Google Scholar] [CrossRef]
- Rosa, G.M.; Botto, G.A.; Mitra, A.T.; de Almeida, J.S.; Hofmann, M.; Leung, W.T.M.; de Matos, A.P.A.; Caeiro, M.F.; Froufe, E.; Loureiro, A.; et al. Invasive fish disrupt host-pathogen dynamics leading to amphibian declines. Biol. Conserv. 2022, 276, 109785. [Google Scholar] [CrossRef]
- Mao, J.; Green, D.E.; Fellers, G.; Chinchar, V.G. Molecular characterization of iridoviruses isolated from sympatric amphibians and fish. Virus. Res. 1999, 63, 45–52. [Google Scholar] [CrossRef]
- Teacher, A.G.F.; Cunningham, A.A.; Garner, T.W.J. Assessing the long-term impact of Ranavirus infection in wild common frog populations. Anim. Conserv. 2010, 13, 514–522. [Google Scholar] [CrossRef]
- Waltzek, T.B.; Miller, D.L.; Gray, M.J.; Drecktrah, B.; Briggler, J.T.; MacConnell, B.; Hudson, C.; Hopper, L.; Friary, J.; Yun, S.C.; et al. New disease records for hatchery-reared sturgeon, I, Expansion of frog virus 3 host range into Scaphirhynchus albus. Dis. Aquat. Organ. 2014, 111, 219–227. [Google Scholar] [CrossRef]
- Duffus, A.L.J.; Waltzek, T.B.; Stöhr, A.C.; Allender, M.C.; Gotesman, M.; Whittington, R.J.; Hick, P.; Hines, M.K.; Marschang, R.E. Distribution and host range of ranaviruses. In Ranaviruses: Lethal Pathogens of Ectothermic Vertebrates; Gray, M.J., Chinchar, V.G., Eds.; Springer: Cham, Switzerland, 2015; pp. 9–57. [Google Scholar]
- Adamovicz, L.; Allender, M.C.; Archer, G.; Rzadkowska, M.; Boers, K.; Phillips, C.; Driskell, E.; Kinsel, M.J.; Chu, C. Investigation of multiple mortality events in eastern box turtles (Terrapene carolina carolina). PLoS ONE 2018, 13, e0195617. [Google Scholar] [CrossRef]
- McKenzie, C.M.; Piczak, M.L.; Snyman, H.N.; Joseph, T.; Theijin, C.; Chow-Fraser, P.; Jardineet, C.M. First report of ranavirus mortality in a common snapping turtle Chelydra serpentina. Dis. Aquat. Organ 2019, 132, 221–227. [Google Scholar] [CrossRef]
- Whittington, R.J.; Philbey, A.; Reddacliff, G.L.; Macgown, A.R. Epidemiology of epizootic haematopoietic necrosis virus (EHNV) infection in farmed rainbow trout, Oncorhynchus mykiss (Walbaum): Findings based on virus isolation, antigen capture ELISA and serology. J. Fish. Dis. 1994, 17, 205–218. [Google Scholar] [CrossRef]
- Whittington, R.J.; Becker, J.A.; Dennis, M.M. Iridovirus infections in finfish-critical review with emphasis on ranaviruses. J. Fish. Dis. 2010, 33, 95–122. [Google Scholar] [CrossRef] [PubMed]
- George, M.R.; John, K.R.; Mansoor, M.M.; Saravanakumar, R.; Sundar, P.; Pradeep, V. Isolation and characterization of a ranavirus from koi, Cyprinus carpio L., experiencing mass mortalities in India. J. Fish. Dis 2015, 38, 389–403. [Google Scholar] [CrossRef] [PubMed]
- Picco, A.M.; Brunner, J.L.; Collins, J.P. Susceptibility of the Endangered California Tiger Salamander, Ambystoma californiense, to Ranavirus Infection. J. Wildl. Dis. 2007, 43, 286–290. [Google Scholar] [CrossRef]
- St-Amour, V.; Garner, T.W.J.; Schulte-Hostedde, A.I.; Lesbarrères, D. Effects of Two Amphibian Pathogens on the Developmental Stability of Green Frogs. Conserv. Biol. 2010, 24, 788–794. [Google Scholar] [CrossRef]
- Gray, M.J.; Duffus, A.L.J.; Haman, K.H.; Harris, R.N.; Allender, M.C.; Thompson, T.A.; Christman, M.R.; Sacerdote-Velat, A.; Sprague, L.A.; Williams, J.M.; et al. Pathogen surveillance in herpetofaunal populations: Guidance on study design, sample collection, biosecurity, and intervention strategies. Herpetol. Rev. 2017, 48, 334–351. [Google Scholar]
- Price, S.J.; Wadia, A.; Wright, O.N.; Leung, W.T.M.; Cunningham, A.A.; Lawson, B. Screening of a long-term sample set reveals two Ranavirus lineages in British herpetofauna. PLoS ONE 2017, 12, e0184768. [Google Scholar] [CrossRef]
- St-Amour, V.; Lesbarrères, D. Genetic evidence of Ranavirus in toe clips: An alternative to lethal sampling methods. Conserv. Genet. 2007, 8, 1247–1250. [Google Scholar] [CrossRef]
- Kurobe, T.; Kwak, K.T.; MacConnell, E.; McDowell, T.S.; Mardones, F.O.; Hedrick, R.P. Development of PCR assays to detect iridovirus infections among captive and wild populations of Missouri River sturgeon. Dis. Aquat. Organ. 2010, 93, 31–42. [Google Scholar] [CrossRef]
- Greer, A.L.; Collins, J.P. Sensitivity of a diagnostic test for amphibian ranavirus varies with sampling protocol. J. Wildl. Dis. 2007, 43, 525–532. [Google Scholar] [CrossRef]
- Gray, M.J.; Miller, D.L.; Hoverman, J.T. Reliability of non-lethal surveillance methods for detecting ranavirus infection. Dis. Aquat. Organ 2012, 99, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Deakin, A.G.; Buckley, J.; AlZu’bi, H.S.; Cossins, A.R.; Spencer, J.W.; Al’Nuaimy, W.; Young, I.S.; Thomson, J.S.; Sneddon, L.U. Automated monitoring of behaviour in zebrafish after invasive procedures. Sci. Rep. 2019, 9, 9042. [Google Scholar] [CrossRef]
- Tilley, C.A.; Carreño Gutierrez, H.; Sebire, M.; Obasaju, O.; Reichmann, F.; Katsiadaki, I.; Barber, I.; Norton, W.H.J. Skin swabbing is a refined technique to collect DNA from model fish species. Sci. Rep. 2020, 10, 18212. [Google Scholar] [CrossRef] [PubMed]
- Kidd, A.; Reid, S.; Wilson, C. Non-invasive DNA sampling from small-bodied species at risk. Ontario Ministry of Natural Resources, 2014; 6 pp + appendices. [Google Scholar]
- Breacker, C.; Barber, I.; Norton, W.H.J.; McDearmid, J.R.; Tilley, C.A. A low-cost method of skin swabbing for the collection of DNA samples from small laboratory fish. Zebrafish 2017, 14, 35–41. [Google Scholar] [CrossRef]
- Colussi, S.; Campia, V.; Righetti, M.; Scanzio, T.; Riina, M.V.; Burioli, E.A.V.; Foglini, C.; Ingravalle, F.; Prearo, M.; Acutis, P.L. Buccal swab: A tissue sampling method for refinement of experimental procedures involving rainbow trout. J. Appl. Ichthyol. 2017, 33, 515–519. [Google Scholar] [CrossRef]
- LaPatra, S.E.; Rohovec, J.S.; Fryer, J.L. Detection of infectious Hematopoietic Necrosis Virus in fish mucus. Fish. Pathol. 1989, 24, 197–202. [Google Scholar] [CrossRef]
- Drolet, B.S.; Rohovec, J.S.; Leong, J.C. The route of entry and progression of infectious haematopoietic necrosis virus in Oncorhynchus mykiss (Walbaum): A sequential immunohistochemical study. J. Fish. Dis. 1994, 17, 337–344. [Google Scholar] [CrossRef]
- Ford, C.E.; Brookes, L.M.; Skelly, E.; Sergeant, C.; Jordine, T.; Balloux, F.; Nichols, R.A.; Garner, T.W.J. Non-lethal detection of Frog Virus 3-Like (RUK13) and Common Midwife Toad Virus-Like (PDE18) Ranaviruses in two UK-native amphibian species. Viruses 2022, 14, 2635. [Google Scholar] [CrossRef]
- Gui, L.; Li, X.; Lin, S.; Zhao, Y.; Lin, P.; Wang, B.; Tang, R.; Guo, J.; Zu, Y.; Zhou, Y.; et al. Low-cost and rapid method of DNA extraction from scaled fish blood and skin mucus. Viruses 2022, 14, 840. [Google Scholar] [CrossRef]
- Crivelli, A.J. Iucn Iberochondrostoma lusitanicus; The IUCN Red List of Threatened Species; IUCN (International Union for Conservation of Nature): Gland, Switzerland, 2006. [Google Scholar] [CrossRef]
- Coelho, M.M.; Mesquita, N.; Collares-Pereira, M.J. Chondrostoma almacai, a new cyprinid species from the southwest of Portugal, Iberian Peninsula. Folia. Zool. 2005, 54, 201–212. [Google Scholar]
- Crivelli, A.J. Iucn Cobitis paludica; The IUCN Red List of Threatened Species; IUCN (International Union for Conservation of Nature): Gland, Switzerland, 2006. [Google Scholar] [CrossRef]
- Soriguer, M.C.; Vallespín, C.; Gomez-Cama, C.; Hernando, J.A. Age, diet, growth and reproduction of a population of Cobitis paludica (de Buen, 1930) in the Palancar Stream (southwest of Europe, Spain) (Pisces: Cobitidae). Hydrobiologia 2000, 436, 51–58. [Google Scholar] [CrossRef]
- Reid, C.H.; Vandergoot, C.S.; Midwood, J.D.; Stevens, E.D.; Bowker, J.; Cooke, S.J. On the electroimmobilization of fishes for research and practice: Opportunities, challenges, and research needs. Fisheries 2019, 44, 576–585. [Google Scholar] [CrossRef]
- Phillott, A.D.; Speare, R.; Hines, H.B.; Skerratt, L.F.; Meyer, E.; McDonald, K.R.; Cashins, S.D.; Mendez, D.; Berger, L. Minimising exposure of amphibians to pathogens during field studies. Dis. Aquat. Organ. 2010, 92, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Leung, W.T.M.; Thomas-Walters, L.; Garner, T.W.J.; Balloux, F.; Durrant, C.; Price, S.J. A quantitative-PCR based method to estimate ranavirus viral load following normalisation by reference to an ultraconserved vertebrate target. J. Virol. Methods 2017, 249, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Mächler, M.; Bolker, B.M. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- Team, R. Rstudio: Integrated Development for r. Rstudio; PBC: Boston, MA, USA, 2020; Available online: http://www.Rstudio.Com (accessed on 9 September 2022).
- Holopainen, R.; Tapiovaara, H.; Honkanen, J. Expression analysis of immune response genes in fish epithelial cells following ranavirus infection. Fish. Shellfish. Immunol. 2012, 32, 1095–1105. [Google Scholar] [CrossRef]
- Becerra, J.; Montes, G.S.; Bexiga, S.R.; Junqueira, L.C. Structure of the tail fin in teleosts. Cell. Tissue. Res 1983, 230, 127–137. [Google Scholar] [CrossRef]
- Saucedo, B.; Garner, T.W.J.; Kruithof, N.; Allain, S.J.R.; Goodman, M.J.; Cranfield, R.J.; Sergeant, C.; Vergara, D.A.; Kik, M.J.L.; Forzán, M.J.; et al. Common midwife toad ranaviruses replicate first in the oral cavity of smooth newts (Lissotriton vulgaris) and show distinct strain-associated pathogenicity. Sci. Rep. 2019, 9, 4453. [Google Scholar] [CrossRef]
- Brunner, J.L.; Schock, D.M.; Collins, J.P. Transmission dynamics of the amphibian ranavirus Ambystoma tigrinum virus. Dis. Aquat. Organ. 2007, 77, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Gray, M.J.; Miller, D.L.; Hoverman, J.T. Ecology and pathology of amphibian ranaviruses. Dis. Aquat. Organ 2009, 87, 243–266. [Google Scholar] [CrossRef] [PubMed]
- Hoverman, J.T.; Gray, M.J.; Miller, D.L. Anuran susceptibilities to ranaviruses: Role of species identity, exposure route, and a novel virus isolate. Dis. Aquat. Organ. 2010, 89, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Robert, J.; George, E.; Andino, F.D.J.; Chen, G. Waterborne infectivity of the Ranavirus Frog Virus 3 in Xenopus laevis. Virology 2011, 417, 410–417. [Google Scholar] [CrossRef]
- Button, K.; Ioannidis, J.; Mokrysz, C.; Nosek, B.A.; Flint, J.; Robinson, E.S.J.; Munafò, M.R. Power failure: Why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 2013, 14, 365–376. [Google Scholar] [CrossRef]
- Goodman, R.M.; Miller, D.L.; Ararso, Y.T. Prevalence of Ranavirus in Virginia turtles as detected by tail-clip sampling versus oral-cloacal swabbing. Northeast. Nat. 2013, 20, 325–332. [Google Scholar] [CrossRef]
- Das, A.; Spackman, E.; Pantin-Jackwood, M.J.; Suarez, D.L. Removal of real-time reverse transcription polymerase chain reaction (RT-PCR) inhibitors associated with cloacal swab samples and tissues for improved diagnosis of Avian Influenza Virus by RT-PCR. J. Vet. Diagn. Investig. 2009, 21, 771–778. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coutinho, C.D.; Ford, C.E.; Trafford, J.D.; Duarte, A.; Rebelo, R.; Rosa, G.M. Non-Lethal Detection of Ranavirus in Fish. Viruses 2023, 15, 471. https://doi.org/10.3390/v15020471
Coutinho CD, Ford CE, Trafford JD, Duarte A, Rebelo R, Rosa GM. Non-Lethal Detection of Ranavirus in Fish. Viruses. 2023; 15(2):471. https://doi.org/10.3390/v15020471
Chicago/Turabian StyleCoutinho, Catarina D., Charlotte E. Ford, Joseph D. Trafford, Ana Duarte, Rui Rebelo, and Gonçalo M. Rosa. 2023. "Non-Lethal Detection of Ranavirus in Fish" Viruses 15, no. 2: 471. https://doi.org/10.3390/v15020471
APA StyleCoutinho, C. D., Ford, C. E., Trafford, J. D., Duarte, A., Rebelo, R., & Rosa, G. M. (2023). Non-Lethal Detection of Ranavirus in Fish. Viruses, 15(2), 471. https://doi.org/10.3390/v15020471