Review of Medicinal Plants and Active Pharmaceutical Ingredients against Aquatic Pathogenic Viruses
Abstract
:1. Introduction
2. Antiviral Effect of Medicinal Plants in Aquaculture
2.1. Medicinal Plants against RNA Viruses
2.1.1. Medicinal Plants against IPNV
2.1.2. Medicinal Plants against IHNV
2.1.3. Medicinal Plants against VHSV
2.1.4. Medicinal Plants against SVCV
2.1.5. Medicinal Plants against NNV
2.1.6. Medicinal Plants against GCRV
2.2. Medicinal Plants against DNA Viruses
2.2.1. Medicinal Plants against SGIV
2.2.2. Medicinal Plants against WSSV
3. Challenges and Perspectives
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ich | Ichthyophthirius multifiliis |
WSSV | White spot syndrome virus |
IPNV | Infectious pancreatic necrosis virus |
MPA | Mycophenolic acid |
IMPDH | Inosine monophosphate dehydrogenase |
GTP | Guanosine triphosphate |
VHSV | Viral hemorrhagic septicemia virus |
IPN | Infectious hematopoietic necrosis virus |
IHNV | Invasive pneumococcal disease |
RPS | Relative survival |
LNT | Lentinan |
TNF | Tumor necrosis factor |
IL | Interleukin |
IFNs | Interferon |
MOI | Multiplicity of infectivity |
EPC | Epithelioma papulosum cyprini |
PVL | Prunella vulgaris L. |
UA | Ursolic acid |
CPE | Cytopathic effect |
IHN | Infectious hematopoietic necrosis |
GUF | Glycyrrhiza uralensis |
GL | Glycyrrhizin |
GLA | Glycyrrhizinic acid |
PI3K | Phosphatidylinositol-3-kinase |
NF-κB | Nuclear factor kappa B |
FN | Fibronectin |
GSN | Gelsolin |
LA | α-Lipoic acid |
SVCV | Spring viremia of carp virus |
APS | Astragalus polysaccharide |
PA | Palmitic acid |
IFN | Type I interferon |
BVN | Bavachin |
SSD | Saikosaponin D |
ROS | Reactive oxygen species |
SVC | Spring viremia of carp |
NNV | Nervous necrosis virus |
α-KG | α-Ketoglutarate |
GLS | Glutaminase |
TCA | Tricarboxylic acid |
OAA | Oxaloacetic acid |
NLRC3 | NLR family CARD domain-containing 3 |
LDH | Lactate dehydrogenase |
VER | Viral encephalopathy and retinopathy |
VNN | Viral nervous necrosis |
GCRV | Grass carp reovirus |
CIK | Ctenopharyngodon idella kidney |
EGCG | Epigallocatechin-3-gallate |
VOPBA | Virus overlay protein binding assay |
LamR | Laminin receptor |
MDA | Malondialdehyde |
GSH | Glucuronide |
LZM | Lysozyme |
ECG | Epicatechin-3-gallate |
CO | Carp ovarian |
HSF | Heat-shock factor |
Hsp | Heat-shock protein |
Qct | Quercetin |
GCHD | Grass carp haemorrhagic disease |
SGIV | Grouper iridovirus |
TAT | trans-Anethole |
DDBA | 3,4-Dihydroxybenzoic acid |
Q2-AFMP | (Q2)-based fluorescent molecular probe |
CKEE | Curcuma kwangsiensis ethanol ingredient |
LAE | Lonicera japonica aqueous extract |
CGA | Chlorogenic acid |
CCGA | Cryptochlorogenic acid |
IAA | Isochlorogenic acid A |
IAB | Isochlorogenic acid B |
IAC | Isochlorogenic acid C |
CA | Caffeic acid |
LT | Luteolin |
IS | Inositol |
GUF | Glycyrrhiza uralensis |
IMD | Immune deficiency pathway |
proPO | Prophenoloxidase |
MAPK | Mitogen-activated protein kinase |
NOS | Nitric oxide synthase |
JAK | Janus kinase |
STAT | Signal transducers and activators of transcription |
NAR | Naringenin |
COX | Cyclooxygenase |
CAT | Catalase |
FBW | Final body weight |
SGR | Specific growth rate |
WG | Weight gain |
T-AOC | Total antioxidant capacity |
GPx | Glutathione peroxidase |
SOD | Superoxide dismutase |
ACP | Activities of acid phosphatase |
AKP | Alkaline phosphatase |
PO | Phenoloxidase |
CypA | Cyclophilin A |
GN | Genipin |
GPA | Geniposidic acid |
LUT | Luteolin |
CP | Chicory polysaccharides |
GML | Glycerol monolaurate |
THC | Total hemocyte count |
ARPs | Anoectochilus roxburghii polysaccharides |
AMPs | Antimicrobial peptides |
References
- Sudhakaran, G.; Guru, A.; Haridevamuthu, B.; Murugan, R.; Arshad, A.; Arockiaraj, J. Molecular Properties of Postbiotics and Their Role in Controlling Aquaculture Diseases. Aquac. Res. 2022, 53, 3257–3273. [Google Scholar] [CrossRef]
- Ekmekcioglu, C.; Wallner, P.; Kundi, M.; Weisz, U.; Haas, W.; Hutter, H.-P. Red Meat, Diseases, and Healthy Alternatives: A Critical Review. Crit. Rev. Food Sci. Nutr. 2018, 58, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Fiorella, K.J.; Okronipa, H.; Baker, K.; Heilpern, S. Contemporary Aquaculture: Implications for Human Nutrition. Curr. Opin. Biotechnol. 2021, 70, 83–90. [Google Scholar] [CrossRef]
- Brugere, C.; Onuigbo, D.M.; Morgan, K.L. People Matter in Animal Disease Surveillance: Challenges and Opportunities for the Aquaculture Sector. Aquaculture 2017, 467, 158–169. [Google Scholar] [CrossRef] [Green Version]
- Sargenti, M.; Bartolacci, S.; Luciani, A.; Di Biagio, K.; Baldini, M.; Galarini, R.; Giusepponi, D.; Capuccella, M. Investigation of the Correlation between the Use of Antibiotics in Aquaculture Systems and Their Detection in Aquatic Environments: A Case Study of the Nera River Aquafarms in Italy. Sustainability 2020, 12, 5176. [Google Scholar] [CrossRef]
- Watts, J.; Schreier, H.; Lanska, L.; Hale, M. The Rising Tide of Antimicrobial Resistance in Aquaculture: Sources, Sinks and Solutions. Mar. Drugs 2017, 15, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samuelsen, O.B.; Lunestad, B.T.; Jelmert, A. Pharmacokinetic and Efficacy Studies on Bath-Administering Potentiated Sulphonamides in Atlantic Halibut, Hippoglossus hippoglossus L. J. Fish Dis. 1997, 20, 287–296. [Google Scholar] [CrossRef]
- Topp, E.; Larsson, D.G.J.; Miller, D.N.; Van den Eede, C.; Virta, M.P.J. Antimicrobial Resistance and the Environment: Assessment of Advances, Gaps and Recommendations for Agriculture, Aquaculture and Pharmaceutical Manufacturing. FEMS Microbiol. Ecol. 2018, 94, 3. [Google Scholar] [CrossRef]
- Done, H.Y.; Halden, R.U. Reconnaissance of 47 Antibiotics and Associated Microbial Risks in Seafood Sold in the United States. J. Hazard. Mater. 2015, 282, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Limbu, S.M.; Chen, L.-Q.; Zhang, M.-L.; Du, Z.-Y. A Global Analysis on the Systemic Effects of Antibiotics in Cultured Fish and Their Potential Human Health Risk: A Review. Rev. Aquac. 2021, 13, 1015–1059. [Google Scholar] [CrossRef]
- Liu, X.; Lv, Y.; Xu, K.; Xiao, X.; Xi, B.; Lu, S. Response of Ginger Growth to a Tetracycline-Contaminated Environment and Residues of Antibiotic and Antibiotic Resistance Genes. Chemosphere 2018, 201, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Griboff, J.; Carrizo, J.C.; Bonansea, R.I.; Valdés, M.E.; Wunderlin, D.A.; Amé, M.V. Multiantibiotic Residues in Commercial Fish from Argentina. The Presence of Mixtures of Antibiotics in Edible Fish, a Challenge to Health Risk Assessment. Food Chem. 2020, 332, 127380. [Google Scholar] [CrossRef] [PubMed]
- Nik Mohamad Nek Rahimi, N.; Natrah, I.; Loh, J.-Y.; Ervin Ranzil, F.K.; Gina, M.; Lim, S.-H.E.; Lai, K.-S.; Chong, C.-M. Phytocompounds as an Alternative Antimicrobial Approach in Aquaculture. Antibiotics 2022, 11, 469. [Google Scholar] [CrossRef] [PubMed]
- Bilen, S.; Ünal, S.; Güvensoy, H. Effects of Oyster Mushroom (Pleurotus Ostreatus) and Nettle (Urtica Dioica) Methanolic Extracts on Immune Responses and Resistance to Aeromonas hydrophila in Rainbow Trout (Oncorhynchus Mykiss). Aquaculture 2016, 454, 90–94. [Google Scholar] [CrossRef]
- Talpur, A.D.; Ikhwanuddin, M.; Ambok Bolong, A.-M. Nutritional Effects of Ginger (Zingiber Officinale Roscoe) on Immune Response of Asian Sea Bass, Lates calcarifer (Bloch) and Disease Resistance against Vibrio Harveyi. Aquaculture 2013, 400–401, 46–52. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, D.-H.; Klesius, P.H. Evaluation of an Antiparasitic Compound Extracted from Galla Chinensis against Fish Parasite Ichthyophthirius Multifiliis. Vet. Parasitol. 2013, 198, 45–53. [Google Scholar] [CrossRef]
- Chen, C.; Shen, J.-L.; Wang, T.; Yang, B.; Liang, C.-S.; Jiang, H.-F.; Wang, G.-X. Ophiopogon japonicus Inhibits White Spot Syndrome Virus Proliferation in Vivo and Enhances Immune Response in Chinese Mitten Crab Eriocheir Sinensis. Fish Shellfish Immunol. 2021, 119, 432–441. [Google Scholar] [CrossRef]
- Oidtmann, B.; Dixon, P.; Way, K.; Joiner, C.; Bayley, A.E. Risk of Waterborne Virus Spread—Review of Survival of Relevant Fish and Crustacean Viruses in the Aquatic Environment and Implications for Control Measures. Rev. Aquac. 2018, 10, 641–669. [Google Scholar] [CrossRef] [Green Version]
- Kibenge, F.S. Emerging Viruses in Aquaculture. Curr. Opin. Virol. 2019, 34, 97–103. [Google Scholar] [CrossRef]
- Dobos, P.; Hill, B.J.; Hallett, R.; Kells, D.T.; Becht, H.; Teninges, D. Biophysical and Biochemical Characterization of Five Animal Viruses with Bisegmented Double-Stranded RNA Genomes. J. Virol. 1979, 32, 593–605. [Google Scholar] [CrossRef] [Green Version]
- Dobos, P. The Molecular Biology of Infectious Pancreatic Necrosis Virus (IPNV). Annu. Rev. Fish Dis. 1995, 5, 25–54. [Google Scholar] [CrossRef]
- Ahne, W. Isolation and Characterization of Infectious Pancreatic Necrosis Virus from Pike (Esox Lucius). Arch. Virol. 1978, 58, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Lyoo, Y.S.; Chang, C.H.; Jeon, Y.H.; Lee, J.O.; Rhee, J.C. Isolation of Infectious Pancreatic Necrosis Virus from Rainbow Trout in Korea. Korean J. Vet. Res. 1991, 31, 195–199. [Google Scholar]
- Ahmadivand, S.; Weidmann, M.; El-Matbouli, M.; Rahmati-Holasoo, H. Low Pathogenic Strain of Infectious Pancreatic Necrosis Virus (IPNV) Associated with Recent Outbreaks in Iranian Trout Farms. Pathogens 2020, 9, 782. [Google Scholar] [CrossRef] [PubMed]
- Rønneseth, A.; Haugland, G.T.; Wergeland, H.I. Flow Cytometry Detection of Infectious Pancreatic Necrosis Virus (IPNV) within Subpopulations of Atlantic Salmon (Salmo salar L.) Leucocytes after Vaccination and during the Time Course of Experimental Infection. Fish Shellfish Immunol. 2013, 34, 1294–1305. [Google Scholar] [CrossRef]
- Kamil, A.; Raae, A.; Fjelldal, P.G.; Koppang, E.O.; Fladmark, K.E.; Hordvik, I. Comparative Analysis of IgM Sub-Variants in Salmonid Fish and Identification of a Residue in Μ3 Which Is Essential for MAb4C10 Reactivity. Fish Shellfish Immunol. 2013, 34, 667–672. [Google Scholar] [CrossRef]
- Modak, B.; Galeno, H.; Torres, R. Antiviral Activity on Hantavirus and Apoptosis of Vero Cells of Natural and Semi-Synthetic Compounds from Heliotropium Filifolium Resin. J. Chil. Chem. Soc. 2004, 49, 143–145. [Google Scholar] [CrossRef]
- Modak, B.; Sandino, A.M.; Arata, L.; Cárdenas-Jirón, G.; Torres, R. Inhibitory Effect of Aromatic Geranyl Derivatives Isolated from Heliotropium Filifolium on Infectious Pancreatic Necrosis Virus Replication. Vet. Microbiol. 2010, 141, 53–58. [Google Scholar] [CrossRef]
- Sintchak, M.D.; Fleming, M.A.; Futer, O.; Raybuck, S.A.; Chambers, S.P.; Caron, P.R.; Murcko, M.A.; Wilson, K.P. Structure and Mechanism of Inosine Monophosphate Dehydrogenase in Complex with the Immunosuppressant Mycophenolic Acid. Cell 1996, 85, 921–930. [Google Scholar] [CrossRef] [Green Version]
- Marroquí, L.; Estepa, A.; Perez, L. Inhibitory Effect of Mycophenolic Acid on the Replication of Infectious Pancreatic Necrosis Virus and Viral Hemorrhagic Septicemia Virus. Antivir. Res. 2008, 80, 332–338. [Google Scholar] [CrossRef]
- Min, L.; Li-Li, Z.; Jun-Wei, G.; Xin-Yuan, Q.; Yi-Jing, L.; Di-Qiu, L. Immunogenicity of Lactobacillus-Expressing VP2 and VP3 of the Infectious Pancreatic Necrosis Virus (IPNV) in Rainbow Trout. Fish Shellfish Immunol. 2012, 32, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Dopazo, C.P. The Infectious Pancreatic Necrosis Virus (IPNV) and Its Virulence Determinants: What Is Known and What Should Be Known. Pathogens 2020, 9, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Zhong, J.; Xiong, Y.; Song, X.; Li, C.; He, Z. Development of Broad-Spectrum Antiviral Agents—Inspiration from Immunomodulatory Natural Products. Viruses 2021, 13, 1257. [Google Scholar] [CrossRef] [PubMed]
- Morzunov, S.P.; Winton, J.R.; Nichol, S.T. The Complete Genome Structure and Phylogenetic Relationship of Infectious Hematopoietic Necrosis Virus. Virus Res. 1995, 38, 175–192. [Google Scholar] [CrossRef]
- Schutze, H.; Enzmann, P.-J.; Kuchling, R.; Mundt, E.; Niemann, H.; Mettenleiter, T.C. Complete Genomic Sequence of the Fish Rhabdovirus Infectious Haematopoietic Necrosis Virus. J. Gen. Virol. 1995, 76, 2519–2527. [Google Scholar] [CrossRef]
- Amend, D.F.; Yasutake, W.T.; Mead, R.W. A Hematopoietic Virus Disease of Rainbow Trout and Sockeye Salmon. Trans. Am. Fish. Soc. 1969, 98, 796–804. [Google Scholar] [CrossRef]
- Crane, M.; Hyatt, A. Viruses of Fish: An Overview of Significant Pathogens. Viruses 2011, 3, 2025–2046. [Google Scholar] [CrossRef]
- Whipple, M.J.; Rohovec, J.S. The Effect of Heat and Low PH on Selected Viral and Bacterial Fish Pathogens. Aquaculture 1994, 123, 179–189. [Google Scholar] [CrossRef]
- Lapatra, S.E. Factors Affecting Pathogenicity of Infectious Hematopoietic Necrosis Virus (IHNV) for Salmonid Fish. J. Aquat. Anim. Health 1998, 10, 121–131. [Google Scholar] [CrossRef]
- Ahmadivand, S.; Soltani, M.; Mardani, K.; Shokrpoor, S.; Hassanzadeh, R.; Ahmadpoor, M.; Rahmati-Holasoo, H.; Meshkini, S. Infectious Hematopoietic Necrosis Virus (IHNV) Outbreak in Farmed Rainbow Trout in Iran: Viral Isolation, Pathological Findings, Molecular Confirmation, and Genetic Analysis. Virus Res. 2017, 229, 17–23. [Google Scholar] [CrossRef]
- Amar, E.C.; Kiron, V.; Satoh, S.; Watanabe, T. Enhancement of Innate Immunity in Rainbow Trout (Oncorhynchus mykiss Walbaum) Associated with Dietary Intake of Carotenoids from Natural Products. Fish Shellfish Immunol. 2004, 16, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Amar, E.C.; Kiron, V.; Akutsu, T.; Satoh, S.; Watanabe, T. Resistance of Rainbow Trout Oncorhynchus mykiss to Infectious Hematopoietic Necrosis Virus (IHNV) Experimental Infection Following Ingestion of Natural and Synthetic Carotenoids. Aquaculture 2012, 330–333, 148–155. [Google Scholar] [CrossRef]
- Ren, G.; Xu, L.; Lu, T.; Yin, J. Structural Characterization and Antiviral Activity of Lentinan from Lentinus Edodes Mycelia against Infectious Hematopoietic Necrosis Virus. Int. J. Biol. Macromol. 2018, 115, 1202–1210. [Google Scholar] [CrossRef] [PubMed]
- Roh, K.-B.; Park, D.; Jung, E. Inhibitory Effects of Prunella vulgaris L. Extract on 11 β -HSD1 in Human Skin Cells. Evid.-Based Complementary Altern. Med. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Li, B.-Y.; Hu, Y.; Li, J.; Shi, K.; Shen, Y.-F.; Zhu, B.; Wang, G.-X. Ursolic Acid from Prunella vulgaris L. Efficiently Inhibits IHNV Infection in Vitro and in Vivo. Virus Res. 2019, 273, 197741. [Google Scholar] [CrossRef]
- Kim, M.S.; Lee, C.W.; Kim, J.-H.; Lee, J.-C.; An, W.G. Extract of Rhus Verniciflua Stokes Induces P53-Mediated Apoptosis in MCF-7 Breast Cancer Cells. Evid.-Based Complementary Altern. Med. 2019, 2019, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, S.Y.; Kang, J.-Y.; Oh, M.-J. Antiviral Activities of Flavonoids Isolated from the Bark of Rhus verniciflua Stokes against Fish Pathogenic Viruses In Vitro. J. Microbiol. 2012, 50, 293–300. [Google Scholar] [CrossRef]
- Shan, L.; Wang, H.; Hu, Y. A Preliminary Investigation on the Mechanism of Action of 4-(8-(2-Ethylimidazole)Octyloxy)-Arctigenin against IHNV. Virus Res. 2021, 294, 198287. [Google Scholar] [CrossRef]
- Wang, H.; Hu, Y.; Song, D.; Shan, L.; Liu, L. Synthesis and Application of a Potential Therapeutic Coumarin Derivative against IHNV in Aquaculture. Aquaculture 2021, 543, 736999. [Google Scholar] [CrossRef]
- Ammayappan, A.; Vakharia, V.N. Molecular Characterization of the Great Lakes Viral Hemorrhagic Septicemia Virus (VHSV) Isolate from USA. Virol. J. 2009, 6, 171. [Google Scholar] [CrossRef] [Green Version]
- Isshiki, T.; Nishizawa, T.; Kobayashi, T.; Nagano, T.; Miyazaki, T. An Outbreak of VHSV (Viral Hemorrhagic Septicemia Virus) Infection in Farmed Japanese Flounder Paralichthys Olivaceus in Japan. Dis. Aquat. Org. 2001, 47, 87–99. [Google Scholar] [CrossRef] [PubMed]
- López-Vázquez, C.; Dopazo, C.P.; Barja, J.L.; Bandín, I. Experimental Infection of Turbot, Psetta Maxima (L.), with Strains of Viral Haemorrhagic Septicaemia Virus Isolated from Wild and Farmed Marine Fish. J. Fish Dis. 2007, 30, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Hawley, L.; Garver, K. Stability of Viral Hemorrhagic Septicemia Virus (VHSV) in Freshwater and Seawater at Various Temperatures. Dis. Aquat. Org. 2008, 82, 171–178. [Google Scholar] [CrossRef]
- Cabon, J.; Almeras, F.; Baud, M.; Pallandre, L.; Morin, T.; Louboutin, L. Susceptibility of Pike Esox Lucius to VHSV and IHNV and Potential Transmission to Rainbow Trout Oncorhynchus Mykiss. Dis. Aquat. Org. 2020, 139, 175–187. [Google Scholar] [CrossRef]
- Brudeseth, B.; Evensen, Ø. Occurrence of Viral Haemorrhagic Septicaemia Virus (VHSV) in Wild Marine Fish Species in the Coastal Regions of Norway. Dis. Aquat. Org. 2002, 52, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Ahmadivand, S.; Soltani, M.; Mardani, K.; Shokrpoor, S.; Rahmati-Holasoo, H.; Mokhtari, A.; Hasanzadeh, R. Isolation and Identification of Viral Hemorrhagic Septicemia Virus (VHSV) from Farmed Rainbow Trout (Oncorhynchus Mykiss) in Iran. Acta Trop. 2016, 156, 30–36. [Google Scholar] [CrossRef]
- Park, Y.J.; Moon, C.; Kang, J.-H.; Choi, T.-J. Antiviral Effects of Extracts from Celosia cristata and Raphanus sativus Roots against Viral Hemorrhagic Septicemia Virus. Arch Virol 2017, 162, 1711–1716. [Google Scholar] [CrossRef] [PubMed]
- Pastorino, G.; Cornara, L.; Soares, S.; Rodrigues, F.; Oliveira, M.B.P.P. Liquorice (Glycyrrhiza Glabra): A Phytochemical and Pharmacological Review: Liquorice (Glycyrrhiza Glabra): A Review. Phytother. Res. 2018, 32, 2323–2339. [Google Scholar] [CrossRef]
- Lim, J.; Seo, J.; Jung, S.; Kang, S.Y. Efficacy of an Optimized Extract from Licorice Roots (Glycyrrhiza Uralensis Fischer) against Viral Hemorrhagic Septicemia Virus in Olive Flounder (Paralichthys Olivaceus). Aquac. Res. 2021, 52, 2609–2621. [Google Scholar] [CrossRef]
- Mathew, D.; Hsu, W.-L. Antiviral Potential of Curcumin. J. Funct. Foods 2018, 40, 692–699. [Google Scholar] [CrossRef]
- Jeong, E.-H.; Vaidya, B.; Cho, S.-Y.; Park, M.-A.; Kaewintajuk, K.; Kim, S.R.; Oh, M.-J.; Choi, J.-S.; Kwon, J.; Kim, D. Identification of Regulators of the Early Stage of Viral Hemorrhagic Septicemia Virus Infection during Curcumin Treatment. Fish Shellfish Immunol. 2015, 45, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Alesci, A.; Miller, A.; Tardugno, R.; Pergolizzi, S. Chemical Analysis, Biological and Therapeutic Activities of Olea Europaea L. Extracts. Nat. Prod. Res. 2021, 36, 2932–2945. [Google Scholar] [CrossRef] [PubMed]
- Micol, V.; Caturla, N.; Pérez-Fons, L.; Más, V.; Pérez, L.; Estepa, A. The Olive Leaf Extract Exhibits Antiviral Activity against Viral Haemorrhagic Septicaemia Rhabdovirus (VHSV). Antivir. Res. 2005, 66, 129–136. [Google Scholar] [CrossRef]
- Monserrat, J.M.; Lima, J.V.; Ferreira, J.L.R.; Acosta, D.; Garcia, M.L.; Ramos, P.B.; Moraes, T.B.; dos Santos, L.C.; Amado, L.L. Modulation of Antioxidant and Detoxification Responses Mediated by Lipoic Acid in the Fish Corydoras Paleatus (Callychthyidae). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2008, 148, 287–292. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, X.; Yu, F.; Li, F.; Li, W.; Yi, M.; Jia, K. α-Lipoic Acid Exerts Its Antiviral Effect against Viral Hemorrhagic Septicemia Virus (VHSV) by Promoting Upregulation of Antiviral Genes and Suppressing VHSV-Induced Oxidative Stress. Virol. Sin. 2021, 36, 1520–1531. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-X.; Liu, S.-B.; Guan, H.; Lu, L.-F.; Tu, J.-G.; Ouyang, S.; Zhang, Y.-A. Structural and Functional Characterization of the Phosphoprotein Central Domain of Spring Viremia of Carp Virus. J. Virol. 2020, 94, e0085-20. [Google Scholar] [CrossRef] [PubMed]
- Emmenegger, E.J.; Sanders, G.E.; Conway, C.M.; Binkowski, F.P.; Winton, J.R.; Kurath, G. Experimental Infection of Six North American Fish Species with the North Carolina Strain of Spring Viremia of Carp Virus. Aquaculture 2016, 450, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Shao, L.; Zhao, J. Isolation of a Highly Pathogenic Spring Viraemia of Carp Virus Strain from Grass Carp (Ctenopharyngodon Idella) in Late Summer, China, 2016. Virus Res. 2017, 238, 183–192. [Google Scholar] [CrossRef]
- Padhi, A.; Verghese, B. Detecting Positively Selected Codons in the Glycoprotein of Spring Viraemia of Carp Virus (SVCV) Isolates from the USA and China. J. Fish Dis. 2008, 31, 785–791. [Google Scholar] [CrossRef]
- Ahne, W.; Bjorklund, H.V.; Essbauer, S.; Fijan, N.; Kurath, G.; Winton, J.R. Spring Viremia of Carp (SVC). Dis. Aquat. Org. 2002, 52, 261–272. [Google Scholar] [CrossRef]
- Ghasemi, M.; Zamani, H.; Hosseini, S.M.; Haghighi Karsidani, S.; Bergmann, S.M. Caspian White Fish (Rutilus Frisii Kutum) as a Host for Spring Viraemia of Carp Virus. Vet. Microbiol. 2014, 170, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Ahne, W. Uptake and Multiplication of Spring Viraemia of Carp Virus in Carp, Cyprinus carpio L. J. Fish Dis. 1978, 1, 265–268. [Google Scholar] [CrossRef]
- Ahne, W. Argulus foliaceus L. and Piscicola geometra L. as Mechanical Vectors of Spring Viraemia of Carp Virus (SVCV). J. Fish Dis. 2010, 8, 241–242. [Google Scholar] [CrossRef]
- Fijan, N. Spring Viraemia of Carp and Other Viral Diseases and Agents of Warm-Water Fish; CAB International: Wallingford, UK, 1999; Volume 3, pp. 177–244. [Google Scholar]
- Douxfils, J.; Fierro-Castro, C.; Mandiki, S.N.M.; Emile, W.; Tort, L.; Kestemont, P. Dietary β-Glucans Differentially Modulate Immune and Stress-Related Gene Expression in Lymphoid Organs from Healthy and Aeromonas hydrophila-infected Rainbow Trout (Oncorhynchus Mykiss). Fish Shellfish Immunol. 2017, 63, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Medina-Gali, R.M.; del Mar Ortega-Villaizan, M.; Mercado, L.; Novoa, B.; Coll, J.; Perez, L. Beta-Glucan Enhances the Response to SVCV Infection in Zebrafish. Dev. Comp. Immunol. 2018, 84, 307–314. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Zhang, Y.; Zhu, R.; Wu, Y.; Liu, X.; Wang, X. Red Elemental Selenium (Se0) Improves the Immunoactivities of EPC Cells, Crucian Carp and Zebrafish against Spring Viremia of Carp Virus (SVCV). J. Fish Biol. 2021, 98, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Jablonska, E.; Li, Q.; Reszka, E.; Wieczorek, E.; Tarhonska, K.; Wang, T. Therapeutic Potential of Selenium and Selenium Compounds in Cervical Cancer. Cancer Control 2021, 28, 107327482110018. [Google Scholar] [CrossRef]
- Wang, J.; Jia, J.; Song, L.; Gong, X.; Xu, J.; Yang, M.; Li, M. Extraction, Structure, and Pharmacological Activities of Astragalus Polysaccharides. Appl. Sci. 2018, 9, 122. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Ran, C.; Wei, K.; Xie, Y.; Xie, M.; Zhou, W.; Yang, Y.; Zhang, Z.; Lv, H.; Ma, X.; et al. The Effect of Astragalus Polysaccharide on Growth, Gut and Liver Health, and Anti-Viral Immunity of Zebrafish. Aquaculture 2021, 540, 736677. [Google Scholar] [CrossRef]
- Librán-Pérez, M.; Pereiro, P.; Figueras, A.; Novoa, B. Antiviral Activity of Palmitic Acid via Autophagic Flux Inhibition in Zebrafish (Danio Rerio). Fish Shellfish Immunol. 2019, 95, 595–605. [Google Scholar] [CrossRef]
- Carta, G.; Murru, E.; Banni, S.; Manca, C. Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications. Front. Physiol. 2017, 8, 902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, F.; Khan, G.N.; Asad, M.H.H.B. Psoralea corylifolia L: Ethnobotanical, Biological, and Chemical Aspects: A Review. Phytother. Res. 2018, 32, 597–615. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Yu-Feng, S.; Yang, H.; Lei, L.; Wei-Chao, C.; Gao-Xue, W.; Bin, Z. Highly Efficient Inhibition of Spring Viraemia of Carp Virus Replication in Vitro Mediated by Bavachin, a Major Constituent of Psoralea Corlifonia Lynn. Virus Res. 2018, 255, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.-F.; Hu, Y.; Zhang, Z.; Liu, L.; Chen, C.; Tu, X.; Wang, G.-X.; Zhu, B. Saikosaponin D Efficiently Inhibits SVCV Infection in Vitro and in Vivo. Aquaculture 2019, 504, 281–290. [Google Scholar] [CrossRef]
- Mori, K.-I.; Nakai, T.; Muroga, K.; Arimoto, M.; Mushiake, K.; Furusawa, I. Properties of a New Virus Belonging to Nodaviridae Found in Larval Striped Jack (Pseudocaranx Dentex) with Nervous Necrosis. Virology 1992, 187, 368–371. [Google Scholar] [CrossRef]
- Barsøe, S.; Allal, F.; Vergnet, A.; Vandeputte, M.; Olesen, N.J.; Schmidt, J.G.; Larsen, C.A.; Cuenca, A.; Vendramin, N. Different Survival of Three Populations of European Sea Bass (Dicentrarchus Labrax) Following Challenge with Two Variants of Nervous Necrosis Virus (NNV). Aquac. Rep. 2021, 19, 100621. [Google Scholar] [CrossRef]
- Tanaka, S.; Kuriyama, I.; Nakai, T.; Miyazaki, T. Susceptibility of Cultured Juveniles of Several Marine Fish to the Sevenband Grouper Nervous Necrosis Virus. J. Fish Dis. 2003, 26, 109–115. [Google Scholar] [CrossRef]
- Krishnan, R.; Jang, Y.-S.; Kim, J.-O.; Oh, M.-J. Altered Expression of Immune Factors in Sevenband Grouper, Hyporthodus Septemfasciatus Following Nervous Necrosis Virus Challenge at Optimal and Suboptimal Temperatures. Fish Shellfish Immunol. 2021, 119, 442–451. [Google Scholar] [CrossRef]
- Zhu, S.; Miao, B.; Zhang, Y.-Z.; Zeng, W.-W.; Wang, D.-S.; Su, S.-Q. In Vitro Neutralization of Nervous Necrosis Virus by a Nanobody Binding to the Protrusion Domain of Capsid Protein. Aquaculture 2022, 548, 737654. [Google Scholar] [CrossRef]
- Zhang, W.; Jia, K.; Jia, P.; Xiang, Y.; Lu, X.; Liu, W.; Yi, M. Marine Medaka Heat Shock Protein 90ab1 Is a Receptor for Red-Spotted Grouper Nervous Necrosis Virus and Promotes Virus Internalization through Clathrin-Mediated Endocytosis. PLoS Pathog. 2020, 16, e1008668. [Google Scholar] [CrossRef]
- Yi, L.; Qin, Z.; Lin, H.; Zhou, Y.; Li, J.; Xu, Z.; Babu, V.S.; Lin, L. Features of Chicken Egg Yolk Immunoglobulin (IgY) against the Infection of Red-Spotted Grouper Nervous Necrosis Virus. Fish Shellfish Immunol. 2018, 80, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P.; Ahmad, K.; Hassan Baig, M. Gymnema Sylvestre for Diabetes: From Traditional Herb to Future’s Therapeutic. Curr. Pharm. Des. 2017, 23, 1667–1676. [Google Scholar] [CrossRef] [PubMed]
- Gopiesh Khanna, V.; Kannabiran, K.; Sarath Babu, V.; Sahul Hameed, A.S. Inhibition of Fish Nodavirus by Gymnemagenol Extracted from Gymnema Sylvestre. J. Ocean Univ. China 2011, 10, 402–408. [Google Scholar] [CrossRef]
- Asim, M.; Jiang, S.; Yi, L.; Chen, W.; Sun, L.; Zhao, L.; Khan Khattak, M.N.; Tu, J.; Lin, L. Glutamine Is Required for Red-Spotted Grouper Nervous Necrosis Virus Replication via Replenishing the Tricarboxylic Acid Cycle. Virus Res. 2017, 227, 245–248. [Google Scholar] [CrossRef]
- Krishnan, R.; Jang, Y.-S.; Oh, M.-J. Beta Glucan Induced Immune Priming Protects against Nervous Necrosis Virus Infection in Sevenband Grouper. Fish Shellfish Immunol. 2022, 121, 163–171. [Google Scholar] [CrossRef]
- Qiu, T.; Lu, R.; Zhang, J.; Zhu, Z. Complete Nucleotide Sequence of the S10 Genome Segment of Grass Carp Reovirus (GCRV). Dis. Aquat. Org. 2001, 44, 69–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winton, J.R.; Lannan, C.N.; Fryer, J.L.; Hedrick, R.P.; Meyers, T.R.; Plumb, J.A.; Yamamoto, T. Morphological and Biochemical Properties of Four Members of a Novel Group of Reoviruses Isolated from Aquatic Animals. J. Gen. Virol. 1987, 68, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Rangel, A.A.C.; Rockemann, D.D.; Hetrick, F.M.; Samal, S.K. Identification of Grass Carp Haemorrhage Virus as a New Genogroup of Aquareovirus. J. Gen. Virol. 1999, 80, 2399–2402. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Zhou, M.; Lin, Y.; Ma, Y.; Cao, H. TBK1 Regulates the Induction of Innate Immune Response against GCRV by Phosphorylating IRF3 in Rare Minnow (Gobiocypris Rarus). Dev. Comp. Immunol. 2021, 115, 103883. [Google Scholar] [CrossRef]
- Tang, Y.; Zeng, W.; Wang, Y.; Wang, Q.; Yin, J.; Li, Y.; Wang, C.; Bergmann, S.M.; Gao, C.; Hu, H. Comparison of the Blood Parameters and Histopathology between Grass Carp Infected with a Virulent and Avirulent Isolates of Genotype II Grass Carp Reovirus. Microb. Pathog. 2020, 139, 103859. [Google Scholar] [CrossRef]
- Chen, G.; Xiong, L.; Wang, Y.; He, L.; Huang, R.; Liao, L.; Zhu, Z.; Wang, Y. ITGB1b-Deficient Rare Minnows Delay Grass Carp Reovirus (GCRV) Entry and Attenuate GCRV-Triggered Apoptosis. Int. J. Mol. Sci. 2018, 19, 3175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, P.; Zhu, Y.; Zhuang, M.; He, L.; Zhang, X. Autophagy Signaling Pathway Is a Therapeutic Target to Inhibit GCRV Replication. Aquaculture 2022, 548, 737657. [Google Scholar] [CrossRef]
- Chen, X.; Hao, K.; Yu, X.; Huang, A.; Zhu, B.; Wang, G.; Ling, F. Magnolol Protects Ctenopharyngodon Idella Kidney Cells from Apoptosis Induced by Grass Carp Reovirus. Fish Shellfish Immunol. 2018, 74, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Hu, Y.; Shan, L.; Yu, X.; Hao, K.; Wang, G. Magnolol and Honokiol from Magnolia Officinalis Enhanced Antiviral Immune Responses against Grass Carp Reovirus in Ctenopharyngodon Idella Kidney Cells. Fish Shellfish Immunol. 2017, 63, 245–254. [Google Scholar] [CrossRef]
- Chakrawarti, L.; Agrawal, R.; Dang, S.; Gupta, S.; Gabrani, R. Therapeutic Effects of EGCG: A Patent Review. Expert Opin. Ther. Pat. 2016, 26, 907–916. [Google Scholar] [CrossRef]
- Wang, H.; Liu, W.; Yu, F.; Lu, L. Identification of (-)-Epigallocatechin-3-Gallate as a Potential Agent for Blocking Infection by Grass Carp Reovirus. Arch Virol 2016, 161, 1053–1059. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Ru, G.; Xu, Y.; Lu, L. EGCG: Potential Application as a Protective Agent against Grass Carp Reovirus in Aquaculture. J. Fish Dis. 2018, 41, 1259–1267. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Su, M.; Lu, L. (-)-Epicatechin Gallate, a Metabolite of (-)-epigallocatechin Gallate in Grass Carp, Exhibits Antiviral Activity in Vitro against Grass Carp Reovirus. Aquac. Res. 2020, 51, 1673–1680. [Google Scholar] [CrossRef]
- Dai, J.; Zhang, L.; Zhang, P.; Shu, H.; Mao, A.; Li, Y. Ginsenoside Rg3 Inhibits Grass Carp Reovirus Replication in Grass Carp Ovarian Epithelial Cells. Microb. Pathog. 2020, 144, 104174. [Google Scholar] [CrossRef]
- Sliutz, G.; Karlseder, J.; Tempfer, C.; Orel, L.; Holzer, G.; Simon, M. Drug Resistance against Gemcitabine and Topotecan Mediated by Constitutive Hsp70 Overexpression in Vitro: Implication of Quercetin as Sensitiser in Chemotherapy. Br. J. Cancer 1996, 74, 172–177. [Google Scholar] [CrossRef] [Green Version]
- Shan, L.-P.; Chen, X.-H.; Ling, F.; Zhu, B.; Wang, G.-X. Targeting Heat Shock Protein 70 as an Antiviral Strategy against Grass Carp Reovirus Infection. Virus Res. 2018, 247, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Xu, N.; Sun, H.; Xuan, J.; Lu, L. Quercetin Protects Rare Minnow Gobiocypris Rarus from Infection of Genotype II Grass Carp Reovirus. Aquac. Res. 2021, 52, 4867–4873. [Google Scholar] [CrossRef]
- Wang, S.; Huang, X.; Huang, Y.; Hao, X.; Xu, H.; Cai, M.; Wang, H.; Qin, Q. Entry of a Novel Marine DNA Virus, Singapore Grouper Iridovirus, into Host Cells Occurs via Clathrin-Mediated Endocytosis and Macropinocytosis in a PH-Dependent Manner. J. Virol. 2014, 88, 13047–13063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, Q.; Chang, S.; Ngoh-Lim, G.; Gibson-Kueh, S.; Shi, C.; Lam, T. Characterization of a Novel Ranavirus Isolated from Grouper Epinephelus Tauvina. Dis. Aquat. Org. 2003, 53, 1–9. [Google Scholar] [CrossRef]
- Liu, M.; Xiao, H.; Wu, S.; Yu, Q.; Li, P. Aptamer-based High-throughput Screening Model for Medicinal Plant Drugs against SGIV. J. Fish Dis. 2020, 43, 1479–1482. [Google Scholar] [CrossRef]
- Chinchar, V.G. Ranaviruses (Family Iridoviridae): Emerging Cold-Blooded Killers. Arch. Virol. 2002, 147, 447–470. [Google Scholar] [CrossRef]
- Wei, S.; Wang, S.; Yang, M.; Huang, Y.; Wei, J.; Huang, X.; Qin, Q. Characterization of Cathepsin C from Orange-Spotted Grouper, Epinephelus Coioides Involved in SGIV Infection. Fish Shellfish Immunol. 2019, 84, 423–433. [Google Scholar] [CrossRef]
- Yu, Q.; Liu, M.; Wei, S.; Qin, X.; Qin, Q.; Li, P. Research Progress and Prospects for the Use of Aptamers in Aquaculture Biosecurity. Aquaculture 2021, 534, 736257. [Google Scholar] [CrossRef]
- Xiao, H.; Liu, M.; Li, S.; Shi, D.; Zhu, D.; Ke, K.; Xu, Y.; Dong, D.; Zhu, L.; Yu, Q.; et al. Isolation and Characterization of a Ranavirus Associated with Disease Outbreaks in Cultured Hybrid Grouper (♀ Tiger Grouper Epinephelus Fuscoguttatus × ♂ Giant Grouper E. Lanceolatus) in Guangxi, China. J. Aquat. Anim. Health 2019, 31, 364–370. [Google Scholar] [CrossRef]
- Zhou, B.-G.; Wang, S.; Dou, T.-T.; Liu, S.; Li, M.-Y.; Hua, R.-M.; Li, S.-G.; Lin, H.-F. Aphicidal Activity of Illicium Verum Fruit Extracts and Their Effects on the Acetylcholinesterase and Glutathione S-Transferases Activities in Myzus Persicae (Hemiptera: Aphididae). J. Insect Sci. 2016, 16, 11. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Yu, Q.; Xiao, H.; Yi, Y.; Cheng, H.; Putra, D.F.; Huang, Y.; Zhang, Q.; Li, P. Antiviral Activity of Illicium Verum Hook. f. Extracts against Grouper Iridovirus Infection. J. Fish Dis. 2020, 43, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Yu, Q.; Xiao, H.; Li, M.; Huang, Y.; Zhang, Q.; Li, P. The Inhibitory Activities and Antiviral Mechanism of Medicinal Plant Ingredient Quercetin Against Grouper Iridovirus Infection. Front. Microbiol. 2020, 11, 586331. [Google Scholar] [CrossRef]
- Huang, L.; Li, M.; Wei, H.; Yu, Q.; Huang, S.; Wang, T.; Liu, M.; Li, P. Research on the Indirect Antiviral Function of Medicinal Plant Ingredient Quercetin against Grouper Iridovirus Infection. Fish Shellfish Immunol. 2022, 124, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.-X.; Zhang, L.-J.; Xu, R.; Zhang, G.; Zhou, Y.-B.; Han, X.-Q.; Zhang, Y.; Sun, Y.-X. Structural Characterization and Immunostimulating Activity of a Levan-Type Fructan from Curcuma Kwangsiensis. Int. J. Biol. Macromol. 2015, 77, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Xiao, H.; Zhang, Q.; Wu, S.; Putra, D.F.; Xiong, X.; Xu, M.; Dong, L.; Li, S.; Yu, Q.; et al. Antiviral Abilities of Curcuma Kwangsiensis Ingredients against Grouper Iridoviral Infection in Vitro and in Vivo. Aquac. Res. 2020, 51, 351–361. [Google Scholar] [CrossRef]
- Liu, M.; Yu, Q.; Yi, Y.; Xiao, H.; Putra, D.F.; Ke, K.; Zhang, Q.; Li, P. Antiviral Activities of Lonicera Japonica Thunb. Components against Grouper Iridovirus in Vitro and in Vivo. Aquaculture 2020, 519, 734882. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Zhang, L.; Li, M.-Y.; Wang, L.-W.; Ma, C.-M. Lignans, Flavonoids and Coumarins from Viola Philippica and Their α-Glucosidase and HCV Protease Inhibitory Activities. Nat. Prod. Res. 2019, 33, 1550–1555. [Google Scholar] [CrossRef]
- Yu, Q.; Liu, M.; Xiao, H.; Wu, S.; Qin, X.; Lu, Z.; Shi, D.; Li, S.; Mi, H.; Wang, Y.; et al. The Inhibitory Activities and Antiviral Mechanism of Viola Philippica Aqueous Extracts against Grouper Iridovirus Infection in Vitro and in Vivo. J. Fish Dis. 2019, 42, 859–868. [Google Scholar] [CrossRef]
- Li, M.; Liu, M.; Wei, H.; Huang, L.; Yu, Q.; Huang, S.; Li, J.; Li, P. Antiviral Activities of Glycyrrhiza Uralensis Components against Singapore Grouper Iridovirus. J. World Aquac. Soc. 2022, 1–16. [Google Scholar] [CrossRef]
- Rajendran, K.V.; Vijayan, K.K.; Santiago, T.C.; Krol, R.M. Experimental Host Range and Histopathology of White Spot Syndrome Virus (WSSV) Infection in Shrimp, Prawns, Crabs and Lobsters from India. J. Fish Dis. 2010, 22, 183–191. [Google Scholar] [CrossRef]
- Sahul Hameed, A.S.; Yoganandhan, K.; Sathish, S.; Rasheed, M.; Murugan, V.; Jayaraman, K. White Spot Syndrome Virus (WSSV) in Two Species of Freshwater Crabs (Paratelphusa hydrodomous and P. pulvinata). Aquaculture 2001, 201, 179–186. [Google Scholar] [CrossRef]
- Leu, J.H.; Yang, F.; Zhang, X.; Xu, X.; Lo, C.F. Whispovirus. Curr. Top. Microbiol. Immunol. 2009, 328, 197–227. [Google Scholar] [CrossRef] [PubMed]
- van Hulten, M.C.W.; Witteveldt, J.; Peters, S.; Kloosterboer, N.; Tarchini, R.; Fiers, M.; Sandbrink, H.; Lankhorst, R.K.; Vlak, J.M. The White Spot Syndrome Virus DNA Genome Sequence. Virology 2001, 286, 7–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, Y.; Itami, T.; Kondo, M.; Maeda, M.; Fujii, R.; Tomonaga, S.; Supamattaya, K.; Boonyaratpalin, S. Electron Microscopic Evidence of Bacilliform Virus Infection in Kuruma Shrimp(Penaeus Japonicus). Fish Pathol. 1994, 29, 121–125. [Google Scholar] [CrossRef] [Green Version]
- Alavandi, S.V.; Muralidhar, M.; Syama Dayal, J.; Rajan, J.S.; Ezhil Praveena, P.; Bhuvaneswari, T.; Saraswathy, R.; Chitra, V.; Vijayan, K.K.; Otta, S.K. Investigation on the Infectious Nature of Running Mortality Syndrome (RMS) of Farmed Pacific White Leg Shrimp, Penaeus Vannamei in Shrimp Farms of India. Aquaculture 2019, 500, 278–289. [Google Scholar] [CrossRef]
- Cock, J.; Gitterle, T.; Salazar, M.; Rye, M. Breeding for Disease Resistance of Penaeid Shrimps. Aquaculture 2009, 286, 1–11. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, B.; Zhu, F. Epigallocatechin-3-Gallate Inhibit Replication of White Spot Syndrome Virus in Scylla Paramamosain. Fish Shellfish Immunol. 2017, 67, 612–619. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, B.; Zhu, F. Epigallocatechin-3-Gallate Protects Kuruma Shrimp Marsupeneaus Japonicus from White Spot Syndrome Virus and Vibrio Alginolyticus. Fish Shellfish Immunol. 2018, 78, 1–9. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, C.; Xu, F.; Li, B.; Shen, J.; Wang, T.; Jiang, H.; Wang, G. Evaluation of the Antiviral Activity of Naringenin, a Major Constituent of Typha angustifolia, against White Spot Syndrome Virus in Crayfish Procambarus Clarkii. J. Fish Dis. 2021, 44, 1503–1513. [Google Scholar] [CrossRef]
- Peng, H.; Wei, Z.; Luo, H.; Yang, Y.; Wu, Z.; Gan, L.; Yang, X. Inhibition of Fat Accumulation by Hesperidin in Caenorhabditis elegans. J. Agric. Food Chem. 2016, 64, 5207–5214. [Google Scholar] [CrossRef]
- Liu, F.; Qu, Y.-K.; Geng, C.; Wang, A.-M.; Zhang, J.-H.; Chen, K.-J.; Liu, B.; Tian, H.-Y.; Yang, W.-P.; Yu, Y.-B. Effects of Hesperidin on the Growth Performance, Antioxidant Capacity, Immune Responses and Disease Resistance of Red Swamp Crayfish (Procambarus Clarkii). Fish Shellfish Immunol. 2020, 99, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.-G.; Tu, X.; Qi, X.-Z.; Ling, F.; Zhu, B.; Wang, G.-X. Gardenia Jasminoides Ellis Inhibit White Spot Syndrome Virus Replication in Red Swamp Crayfish Procambarus Clarkii. Aquaculture 2019, 504, 239–247. [Google Scholar] [CrossRef]
- Huang, A.-G.; Tan, X.-P.; Cui, H.-B.; Qi, X.-Z.; Zhu, B.; Wang, G.-X. Antiviral Activity of Geniposidic Acid against White Spot Syndrome Virus Replication in Red Swamp Crayfish Procambarus Clarkii. Aquaculture 2020, 528, 735533. [Google Scholar] [CrossRef]
- Nakamura, K.; Hosoo, S.; Yamaguchi, S.; Koyama, M.; Yamazaki, R.; Hirata, T.; Yamaguchi, Y.; Yamasaki, H.; Minamino, N.; Wada, K.; et al. Geniposidic Acid Upregulates Atrial Natriuretic Peptide Secretion and Lowers Blood Pressure in Spontaneously Hypertensive Rats. J. Funct. Foods 2018, 40, 634–638. [Google Scholar] [CrossRef]
- Rameshthangam, P.; Ramasamy, P. Antiviral Activity of Bis(2-Methylheptyl)Phthalate Isolated from Pongamia Pinnata Leaves against White Spot Syndrome Virus of Penaeus Monodon Fabricius. Virus Res. 2007, 126, 38–44. [Google Scholar] [CrossRef]
- Klongklaew, N.; Praiboon, J.; Tamtin, M.; Srisapoome, P. Chemical Composition of a Hot Water Crude Extract (HWCE) from Ulva Intestinalis and Its Potential Effects on Growth Performance, Immune Responses, and Resistance to White Spot Syndrome Virus and Yellowhead Virus in Pacific White Shrimp (Litopenaeus Vannamei). Fish Shellfish Immunol. 2021, 112, 8–22. [Google Scholar] [CrossRef]
- Sirirustananun, N.; Chen, J.-C.; Lin, Y.-C.; Yeh, S.-T.; Liou, C.-H.; Chen, L.-L.; Sim, S.S.; Chiew, S.L. Dietary Administration of a Gracilaria Tenuistipitata Extract Enhances the Immune Response and Resistance against Vibrio Alginolyticus and White Spot Syndrome Virus in the White Shrimp Litopenaeus Vannamei. Fish Shellfish Immunol. 2011, 31, 848–855. [Google Scholar] [CrossRef]
- Kulkarni, A.; Krishnan, S.; Anand, D.; Kokkattunivarthil Uthaman, S.; Otta, S.K.; Karunasagar, I.; Kooloth Valappil, R. Immune Responses and Immunoprotection in Crustaceans with Special Reference to Shrimp. Rev. Aquacult. 2021, 13, 431–459. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, P.; Wang, B.; Lu, Y.; Li, L.; Li, Y.; Liu, S. Evaluation of the Effects of Astragalus Polysaccharides as Immunostimulants on the Immune Response of Crucian Carp and against SVCV in Vitro and in Vivo. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 253, 109249. [Google Scholar] [CrossRef]
- Huang, A.-G.; Tan, X.-P.; Qu, S.-Y.; Wang, G.-X.; Zhu, B. Evaluation on the Antiviral Activity of Genipin against White Spot Syndrome Virus in Crayfish. Fish Shellfish Immunol. 2019, 93, 380–386. [Google Scholar] [CrossRef]
- Mariot, L.V.; Bolívar, N.; Coelho, J.D.R.; Goncalves, P.; Colombo, S.M.; do Nascimento, F.V.; Schleder, D.D.; Hayashi, L. Diets Supplemented with Carrageenan Increase the Resistance of the Pacific White Shrimp to WSSV without Changing Its Growth Performance Parameters. Aquaculture 2021, 545, 737172. [Google Scholar] [CrossRef]
- Medina-Beltrán, V.; Luna-González, A.; Fierro-Coronado, J.A.; Campa-Córdova, Á.I.; Peraza-Gómez, V.; Flores-Miranda, M.d.C.; Gutiérrez Rivera, J.N. Echinacea Purpurea and Uncaria Tomentosa Reduce the Prevalence of WSSV in Witheleg Shrimp (Litopenaeus Vannamei) Cultured under Laboratory Conditions. Aquaculture 2012, 358–359, 164–169. [Google Scholar] [CrossRef]
- Palanikumar, P.; Daffni Benitta, D.J.; Lelin, C.; Thirumalaikumar, E.; Michaelbabu, M.; Citarasu, T. Effect of Argemone Mexicana Active Principles on Inhibiting Viral Multiplication and Stimulating Immune System in Pacific White Leg Shrimp Litopenaeus Vannamei against White Spot Syndrome Virus. Fish Shellfish Immunol. 2018, 75, 243–252. [Google Scholar] [CrossRef]
- Fierro Coronado, J.; Luna Gonzalez, A.; Caceres Martinez, C.; Ruiz Verdugo, C.; Escamilla Montes, R.; Diarte Plata, G.; Flores Miranda, M.; Alvarez Ruiz, P.; Peraza Gomez, V. Effect of Medicinal Plants on the Survival of White Shrimp (Penaeus Vannamei) Challenged with WSSV and Vibrio Parahaemolyticus. Lat. Am. J. Aquat. Res. 2019, 47, 377–381. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.-F.; Chen, C.; Jiang, X.-Y.; Shen, J.-L.; Ling, F.; Li, P.-F.; Wang, G.-X. Luteolin in Lonicera Japonica Inhibits the Proliferation of White Spot Syndrome Virus in the Crayfish Procambarus Clarkii. Aquaculture 2022, 550, 737852. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, L.Y.; Zhou, G.Q.; Jiang, G.C.; Ding, Z.F. Effects of Chicory Polysaccharides on the Growth, Antioxidant Activity, and Disease Resistance in the Chinese Mitten Crab Eriocheir Sinensis H. Milne Edwards, 1853 (Decapoda: Brachyura: Varunidae). J. Crustacean Biol. 2021, 41, ruab023. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, C.; Zhu, F. Effects of Dietary Quercetin on the Innate Immune Response and Resistance to White Spot Syndrome Virus in Procambarus Clarkii. Fish Shellfish Immunol. 2021, 118, 205–212. [Google Scholar] [CrossRef]
- Dewi, N.R.; Huang, H.-T.; Wu, Y.-S.; Liao, Z.-H.; Lin, Y.-J.; Lee, P.-T.; Nan, F.-H. Guava (Psidium Guajava) Leaf Extract Enhances Immunity, Growth, and Resistance against Vibrio Parahaemolyticus in White Shrimp Penaeus Vannamei. Fish Shellfish Immunol. 2021, 118, 1–10. [Google Scholar] [CrossRef]
- Qian, X.; Zhu, F. Hesperetin Protects Crayfish Procambarus Clarkii against White Spot Syndrome Virus Infection. Fish Shellfish Immunol. 2019, 93, 116–123. [Google Scholar] [CrossRef]
- Bindhu, F.; Velmurugan, S.; Donio, M.B.S.; Michaelbabu, M.; Citarasu, T. Influence of Agathi Grandiflora Active Principles Inhibit Viral Multiplication and Stimulate Immune System in Indian White Shrimp Fenneropenaeus Indicus against White Spot Syndrome Virus Infection. Fish Shellfish Immunol. 2014, 41, 482–492. [Google Scholar] [CrossRef]
- Citarasu, T.; Sivaram, V.; Immanuel, G.; Rout, N.; Murugan, V. Influence of Selected Indian Immunostimulant Herbs against White Spot Syndrome Virus (WSSV) Infection in Black Tiger Shrimp, Penaeus Monodon with Reference to Haematological, Biochemical and Immunological Changes. Fish Shellfish Immunol. 2006, 21, 372–384. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, G.; Sarathi, M.; Venkatesan, C.; Thomas, J.; Sahul Hameed, A.S. Oral Administration of Antiviral Plant Extract of Cynodon Dactylon on a Large Scale Production against White Spot Syndrome Virus (WSSV) in Penaeus Monodon. Aquaculture 2008, 279, 2–5. [Google Scholar] [CrossRef]
- Balasubramanian, G.; Sarathi, M.; Venkatesan, C.; Thomas, J.; Sahul Hameed, A.S. Studies on the Immunomodulatory Effect of Extract of Cyanodon Dactylon in Shrimp, Penaeus Monodon, and Its Efficacy to Protect the Shrimp from White Spot Syndrome Virus (WSSV). Fish Shellfish Immunol. 2008, 25, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Tomazelli Junior, O.; Kuhn, F.; Mendonça Padilha, P.J.; Mota Vicente, L.R.; Winckler da Costa, S.; Corrêa da Silva, B.; Dias Schleder, D.; Boligon, A.A.; Scapinello, J.; Nunes Nesi, C.; et al. Effect of Cynodon Dactylon Extract on White Spot Virus-Infected Litopenaeus Vannamei. Aquac. Int. 2017, 25, 1107–1122. [Google Scholar] [CrossRef]
- Trejo-Flores, J.V.; Luna-González, A.; Álvarez-Ruíz, P.; Escamilla-Montes, R.; Peraza-Gómez, V.; Diarte-Plata, G.; Esparza-Leal, H.M.; Campa-Córdova, Á.I.; Gámez-Jiménez, C.; Rubio-Castro, A. Protective Effect of Aloe Vera in Litopenaeus Vannamei Challenged with Vibrio Parahaemolyticus and White Spot Syndrome Virus. Aquaculture 2016, 465, 60–64. [Google Scholar] [CrossRef]
- Balasubramanian, G.; Sarathi, M.; Kumar, S.R.; Hameed, A.S.S. Screening the Antiviral Activity of Indian Medicinal Plants against White Spot Syndrome Virus in Shrimp. Aquaculture 2007, 263, 15–19. [Google Scholar] [CrossRef]
- Júnior, O.T.; Kuhn, F.; Mendonça Padilha, P.J.; Mota Vicente, L.R.; Winckler da Costa, S.; Corrêa da Silva, B.; Schleder, D.D.; Nunes Nesi, C.; Dal Magro, J.; de Lamo-Castellví, S. Survival of White Spot Syndrome Virus–Infected Litopenaeus Vannamei Fed with Ethanol Extract of Uncaria Tomentosa. J. World Aquac. Soc. 2018, 49, 165–174. [Google Scholar] [CrossRef]
- Muliani; Nurbaya; Kadriah, I.A.K. The Effect of Several Types of Mangrove Exctracs on Tiger Shrimp Penaeus Monodon Survival Rate Challenged with White Spot Syndrome Virus (WSSV). IOP Conf. Ser. Earth Environ. Sci. 2020, 564, 012054. [Google Scholar] [CrossRef]
- Qian, X.; Zhu, F. Use of Glycerol Monolaurate as a Treatment against White Spot Syndrome Virus in Crayfish (Procambarus Clarkii). Aquaculture 2021, 541, 736853. [Google Scholar] [CrossRef]
- Gholamhosseini, A.; Kheirandish, M.R.; Shiry, N.; Akhlaghi, M.; Soltanian, S.; Roshanpour, H.; Banaee, M. Use of a Methanolic Olive Leaf Extract (Olea Europaea) against White Spot Virus Syndrome in Penaeus Vannamei: Comparing the Biochemical, Hematological and Immunological Changes. Aquaculture 2020, 528, 735556. [Google Scholar] [CrossRef]
- Jin, Q.-R.; Mao, J.-W.; Zhu, F. The Effects of Anoectochilus Roxburghii Polysaccharides on the Innate Immunity and Disease Resistance of Procambarus Clarkii. Aquaculture 2022, 555, 738210. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, J.; Xu, Y.; Wang, H.; Lu, L.; Song, R.; Zou, J. Epigallocatechin-3-Gallate Inhibits Replication of White Spot Syndrome Virus in the Freshwater Crayfish Procambarus Clarkii. J. Fish Dis. 2022, 45, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Shan, L.-P.; Zhang, X.; Hu, Y.; Liu, L.; Chen, J. Antiviral Activity of Esculin against White Spot Syndrome Virus: A New Starting Point for Prevention and Control of White Spot Disease Outbreaks in Shrimp Seedling Culture. J. Fish Dis. 2022, 45, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Liu, L.; Shan, L.-P.; Chen, J. Natural Ingredient Paeoniflorin Could Be a Lead Compound against White Spot Syndrome Virus Infection in Litopenaeus Vannamei. J. Fish Dis. 2022, 45, 349–359. [Google Scholar] [CrossRef]
- Huang, A.-G.; He, W.-H.; Zhang, F.-L.; Wei, C.-S.; Wang, Y.-H. Natural Component Geniposide Enhances Survival Rate of Crayfish Procambarus Clarkii Infected with White Spot Syndrome Virus. Fish Shellfish Immunol. 2022, 126, 96–103. [Google Scholar] [CrossRef]
- Xj, A.; Wj, A.; Fei, Z.B. Dietary Hizikia fusiforme Enhance Survival of White Spot Syndrome Virus Infected Crayfish Procambarus Clarkii—ScienceDirect. Fish Shellfish Immunol. 2020, 103, 88–94. [Google Scholar] [CrossRef]
- Walker, P.J.; Winton, J.R. Emerging Viral Diseases of Fish and Shrimp. Vet. Res. 2010, 41, 51. [Google Scholar] [CrossRef] [Green Version]
- Frankic, A.; Hershner, C. Sustainable Aquaculture: Developing the Promise of Aquaculture. Aquac. Int. 2003, 11, 517–530. [Google Scholar] [CrossRef]
- Gui, J.; Zhu, Z. Molecular Basis and Genetic Improvement of Economically Important Traits in Aquaculture Animals. Chin. Sci. Bull. 2012, 57, 1751–1760. [Google Scholar] [CrossRef] [Green Version]
- Bacharach, E.; Mishra, N.; Briese, T.; Zody, M.C.; Kembou Tsofack, J.E.; Zamostiano, R.; Berkowitz, A.; Ng, J.; Nitido, A.; Corvelo, A.; et al. Characterization of a Novel Orthomyxo-like Virus Causing Mass Die-Offs of Tilapia. mBio 2016, 7, e00431-16. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.-T.; Hsu, W.-C.; Lin, C.-C. Antiviral Natural Products and Herbal Medicines. J. Tradit. Complementary Med. 2014, 4, 24–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawood, M.A.O.; Habotta, O.A.E.; Elsabagh, M.; Azra, M.N.; Van Doan, H.; Kari, Z.A.; Sewilam, H. Fruit Processing By-products in the Aquafeed Industry: A Feasible Strategy for Aquaculture Sustainability. Rev. Aquac. 2022, raq.12680. [Google Scholar] [CrossRef]
- Cheng, H.-Y.; Yang, C.-M.; Lin, T.-C.; Lin, L.-T.; Chiang, L.-C.; Lin, C.-C. Excoecarianin, Isolated from Phyllanthus Urinaria Linnea, Inhibits Herpes Simplex Virus Type 2 Infection through Inactivation of Viral Particles. Evid.-Based Complement. Altern. Med. 2011, 2011, 259103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gescher, K.; Kühn, J.; Lorentzen, E.; Hafezi, W.; Derksen, A.; Deters, A.; Hensel, A. Proanthocyanidin-Enriched Extract from Myrothamnus Flabellifolia Welw. Exerts Antiviral Activity against Herpes Simplex Virus Type 1 by Inhibition of Viral Adsorption and Penetration. J. Ethnopharmacol. 2011, 134, 468–474. [Google Scholar] [CrossRef]
- Chiang, L.-C.; Ng, L.-T.; Cheng, P.-W.; Chiang, W.; Lin, C.-C. Antiviral Activities of Extracts and Selected Pure Constituents of Ocimum Basilicum. Clin. Exp. Pharmacol. Physiol. 2005, 32, 811–816. [Google Scholar] [CrossRef]
- Mouler Rechtman, M.; Har-Noy, O.; Bar-Yishay, I.; Fishman, S.; Adamovich, Y.; Shaul, Y.; Halpern, Z.; Shlomai, A. Curcumin Inhibits Hepatitis B Virus via Down-Regulation of the Metabolic Coactivator PGC-1α. FEBS Lett. 2010, 584, 2485–2490. [Google Scholar] [CrossRef] [Green Version]
- Kuo, Y.-C.; Lin, L.-C.; Tsai, W.-J.; Chou, C.-J.; Kung, S.-H.; Ho, Y.-H. Samarangenin B from Limonium Sinense Suppresses Herpes Simplex Virus Type 1 Replication in Vero Cells by Regulation of Viral Macromolecular Synthesis. Antimicrob. Agents Chemother. 2002, 46, 2854–2864. [Google Scholar] [CrossRef] [Green Version]
- Takebe, Y.; Saucedo, C.J.; Lund, G.; Uenishi, R.; Hase, S.; Tsuchiura, T.; Kneteman, N.; Ramessar, K.; Tyrrell, D.L.J.; Shirakura, M.; et al. Antiviral Lectins from Red and Blue-Green Algae Show Potent in Vitro and in Vivo Activity against Hepatitis C Virus. PLoS ONE 2013, 8, e64449. [Google Scholar] [CrossRef] [Green Version]
- Pei-wen, C.; Chiang, L.-C.; Yen, M.-H.; Lin, C.-C. Bupleurum Kaoi Inhibits Coxsackie B Virus Type 1 Infection of CCFS-1 Cells by Induction of Type I Interferons Expression. Food Chem. Toxicol. 2007, 45, 24–31. [Google Scholar] [CrossRef]
- Devi, A.B.; Sarala, R. Substantial Effect of Phytochemical Constituents against the Pandemic Disease Influenza—A Review. Future J. Pharm. Sci. 2021, 7, 120. [Google Scholar] [CrossRef]
- Safari, O.; Sarkheil, M.; Paolucci, M. Dietary Administration of Ferula (Ferula Asafoetida) Powder as a Feed Additive in Diet of Koi Carp, Cyprinus Carpio Koi: Effects on Hemato-Immunological Parameters, Mucosal Antibacterial Activity, Digestive Enzymes, and Growth Performance. Fish Physiol. Biochem. 2019, 45, 1277–1288. [Google Scholar] [CrossRef] [PubMed]
- Maldonado-Garcia, M.; Angulo, C.; Vazquez-Martinez, J.; Sanchez, V.; Lopez, M.G.; Reyes-Becerril, M. Antioxidant and Immunostimulant Potentials of Chenopodium ambrosioides L. in Pacific Red Snapper (Lutjanus Peru). Aquaculture 2019, 513, 734414. [Google Scholar] [CrossRef]
- Bilen, S.; Ispir, S.; Kenanoglu, O.N.; Taştan, Y.; Güney, K.; Terzi, E. Effects of Greek Juniper (Juniperus Excelsa) Extract on Immune Responses and Disease Resistance against Yersinia Ruckeri in Rainbow Trout (Oncorhynchus Mykiss). J. Fish Dis. 2021, 44, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Chitmanat, C.; Tongdonmuan, K.; Khanom, P.; Pachontis, P.; Nunsong, W. Antiparasitic, Antibacterial, and Antifungal Activities Derived from a Terminalia Catappa Solution against Some Tilapia (Oreochromis Niloticus) Pathogens. Acta Hortic. 2005, 678, 179–182. [Google Scholar] [CrossRef]
- Wu, G.; Yuan, C.; Shen, M.; Tang, J.; Gong, Y.; Li, D.; Sun, F.; Huang, C.; Han, X. Immunological and Biochemical Parameters in Carp (Cyprinus Carpio) after Qompsell Feed Ingredients for Long-Term Administration. Aquac. Res. 2007, 38, 246–255. [Google Scholar] [CrossRef]
- VENKATRAMALINGAM, K.; Christopher, G.; Citarasu, T. Zingiber Officinalis an Herbal Appetizer in the Tiger Shrimp Penaeus Monodon (Fabricius) Larviculture. Aquac. Nutr. 2007, 13, 439–443. [Google Scholar] [CrossRef]
- Liñán-Cabello, M.; Medina-Zendejas, R.; Sánchez-Barajas, M.; Herrera, A. Effects of Carotenoids and Retinol in Oocyte Maturation of Crayfish Cherax Quadrucarinatus. Aquac. Res. 2004, 35, 905–911. [Google Scholar] [CrossRef]
Pathogenic Viruses | Medicinal Plants | Active Compounds | The Possible Mechanisms | References |
---|---|---|---|---|
IPNV | Heliotropium filifolium | Filifolinyl senecionate | Inhibiting the synthesis of viral genomic RNA | [28] |
/ | Mycophenolic acid (MPA) | Restraining cellular GMP synthesis by inhibiting IMPDH; disturbing RNA polymerase | [30] | |
IHNV | / | Carotenoid | Improving nonspecific immunity | [42] |
Lentinus edodes mycelia | Lentinan (LNT-I) | Regulating the innate immune response and specific immunity | [43] | |
Prunella vulgaris L. (PVL) | Ursolic acid (UA) | Inhibiting virus replication | [45] | |
Rhus verniciflua Stokes | Flavonoids | Inducing apoptosis of cells | [47] | |
VHSV | / | Mycophenolic acid (MPA) | Restraining cellular GMP synthesis by inhibiting IMPDH; disturbing RNA polymerase | [30] |
Rhus verniciflua Stokes | Flavonoids | Inducing apoptosis of cells | [47] | |
Celosia cristata and Raphanus sativus | Extract | Inducing gene expression involved in the innate immune response | [57] | |
Licorice (Glycyrrhiza uralensis, GUF) | Extract; glycyrrhizin (GL); glycyrrhetinic acid (GLA) | Inhibiting the early fusion steps | [59] | |
/ | Curcumin | Inhibiting virus entry in cells | [61] | |
Olive tree leaf (Olea europaea) (LExt) | Extract; oleuropein (Ole) | Inactivating virus particles; inhibiting cell-to-cell spread | [63] | |
/ | α-Lipoic acid (LA) | Inducing antiviral gene expression; reducing VHSV-induced oxidative stress | [65] | |
SVCV | / | β-Glucose | Regulating the innate immune response | [76] |
Herbaspirillum camelliae | Selenium | Activating IFN-related gene expression | [77] | |
Astragalus membranaceus | Astragalus polysaccharide (APS) | Activating IFN-related gene expression | [80] | |
Astragalus membranaceus | APS | Stimulating the immune response of host; reducing SVCV-induced apoptosis | [150] | |
/ | Palmitic acid (PA) | Inhibiting autophagy | [81] | |
Psoralea corylifolia | Bavachin (BVN) | Blocking SVCV-induced apoptosis | [84] | |
Bupleurum yinchowense | Saikosaponin D (SSD) | Reducing SVCV-induced apoptosis | [85] | |
NNV | Gymnema sylvestre | Gymnemagenol | Inhibiting virus replication | [94] |
/ | GLS inhibitor | Involved in regulation of the TCA cycle | [95] | |
/ | β-Glucan | Stimulating the innate immune memory of macrophages | [96] | |
GCRV | Magnolia | Extract; magnolo; honokiol | Facilitating the expression of innate immune-related genes; restraining GCRV-induced apoptosis | [104,105] |
Green tea | Extract; EGCG | Inhibiting viral particle adhesion to cells | [107] | |
Green tea | ECG | Inhibiting viral particle adhesion to cells | [109] | |
Panax ginseng | Ginsenoside Rg3 | Activating IFN-related gene expression | [110] | |
/ | Quercetin (Qct) | Counteracting the pro-viral effect of heat-shock response | [113] | |
SGIV | Illicium verum Hook. f. | IVAE; IVEE; DDBA; Qct | Inactivating virus particles; inhibiting early viral entry phases; inhibiting virus replication | [122] |
Illicium verum Hook. f. | Qct | Promoting the recognition of SGIV and activating the IFN pathway | [123,124] | |
Curcuma kwangsiensis | CKEE; urdione | Inhibiting virus replication | [126] | |
Lonicera japonica Thunb. | IAA, IAB, IAC, CA, LT, IS | Inhibiting virus replication | [127] | |
Viola philippica | Extract | Disturbing virus binding, entry, and replication in host cells | [129] | |
Glycyrrhiza uralensis (GUF) | Extract | Impacting the binding of virus particles to cell receptors and the replication of viruses in host cells | [130] | |
WSSV | Green tea | EGCG | Inducing gene expression involved in the innate immune response | [138,139] |
Typha angustifolia | Naringenin (NAR) | Restraining early viral gene replication | [140] | |
Pericarpium Citri Reticulatae | Hesperidin | Improving nonspecific immunity | [142] | |
Gardenia jasminoides | Extract | Blocking viral immediate-early stage gene transcript | [143] | |
Gardenia jasminoides | Genipin (GN) | Attenuating oxidative stress and inflammatory; decreasing signal transducer and activator of transcription gene expression | [151] | |
Eucommia ulmoides | Geniposidic acid (GPA) | Restraining early viral gene replication; promoting apoptosis | [144] | |
Pongamia pinnata | Bis(2-methylheptyl)phthalate | Improving nonspecific immunity | [146] | |
Gracilaria tenuistipitata | Extract | Enhancing the innate immunity | [148] | |
Kappaphycus alvarezii | Carrageenan | Improving nonspecific immunity | [152] | |
Echinacea purpurea; Uncaria tomentosa | Extract | Increasing the activity of phenoloxidase | [153] | |
Argemone mexicana | Extract | Inhibiting viral multiplication; stimulating immune system | [154] | |
Mixture of garlic, echinacea, ginger, and basil | Powdered plants | Improving nonspecific immunity | [155] | |
Lonicera japonica | Luteolin (LUT) | Inhibiting the expression of important viral genes; enhancing antioxidant defenses; mitigating inflammation; inducing apoptosis | [156] | |
/ | Chicory polysaccharides (CP) | Enhancing antioxidant activity; enhancing anti-WSSV resistance | [157] | |
/ | Quercetin | Regulating the innate immune response | [158] | |
Psidium guajava | Extract | Improving nonspecific immunity | [159] | |
Lemon; orange | Hesperetin | Regulating the innate immunity | [160] | |
Agathi grandiflora | Extract | Enhancing antioxidative enzyme gene expression | [161] | |
Mixture of Cyanodon dactylon, Aegle marmelos, Tinospora cordifolia, Picrorhiza kurooa, and Eclipta alba | Extract | Improving nonspecific immunity | [162] | |
Cynodon dactylon | Extract | Preventing the entry of the virus into the host; preventing the multiplication of the virus in the host cell; enhancing the innate immunity | [163,164,165] | |
Aloe vera | Powdered whole leaf | Improving nonspecific immunity | [166] | |
A. marmelos; C. dactylon; L. camara; M. charantia; P. amarus | Extract | Improving nonspecific immunity | [167] | |
Uncaria tomentosa | Extract | Scavenging free radicals; increasing the activity of phenoloxidase | [168] | |
Sonneratia alba | Extract | Reducing the destruction of blood cells by viruses | [169] | |
/ | Glycerol monolaurate (GML) | Increasing hemocyte apoptosis, total hemocyte count (THC), PO, and SOD activity; enhancing the expression of immune-related genes | [170] | |
Olea europaea | Extract | Reducing WSSV-induced oxidative stress | [171] | |
Anoectochilus roxburghii | Anoectochilus roxburghii polysaccharides (ARPs) | Upregulating the expression level of multiple immune genes; promoting the apoptosis of hemocytes | [172] | |
Ophiopogon japonicus | Extract | Blocking early gene transcription; inducing cellular autophagy; attenuating WSSV-induced oxidative stress | [17] | |
Green tea | EGCG | Inhibiting virus replication | [173] | |
/ | Esculin | Attenuating the infectivity of viral particles; increasing the expression of antimicrobial peptides (AMPs) | [174] | |
Paeonia lactiflora | Paeoniflorin | Improving nonspecific immunity, especially by increasing the expression of AMPS | [175] | |
Gardenia jasminoides | Geniposide (GP) | Restraining early and late viral gene expression | [176] | |
Hizikia fusiforme | Extract | regulates the innate immunity | [177] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, W.; Huang, L.; Han, S.; Hu, D.; Xu, Y.; Liu, M.; Yu, Q.; Huang, S.; Wei, D.; Li, P. Review of Medicinal Plants and Active Pharmaceutical Ingredients against Aquatic Pathogenic Viruses. Viruses 2022, 14, 1281. https://doi.org/10.3390/v14061281
Liao W, Huang L, Han S, Hu D, Xu Y, Liu M, Yu Q, Huang S, Wei D, Li P. Review of Medicinal Plants and Active Pharmaceutical Ingredients against Aquatic Pathogenic Viruses. Viruses. 2022; 14(6):1281. https://doi.org/10.3390/v14061281
Chicago/Turabian StyleLiao, Wenyu, Lin Huang, Shuyu Han, Dasheng Hu, Youhou Xu, Mingzhu Liu, Qing Yu, Shuaishuai Huang, Dongdong Wei, and Pengfei Li. 2022. "Review of Medicinal Plants and Active Pharmaceutical Ingredients against Aquatic Pathogenic Viruses" Viruses 14, no. 6: 1281. https://doi.org/10.3390/v14061281
APA StyleLiao, W., Huang, L., Han, S., Hu, D., Xu, Y., Liu, M., Yu, Q., Huang, S., Wei, D., & Li, P. (2022). Review of Medicinal Plants and Active Pharmaceutical Ingredients against Aquatic Pathogenic Viruses. Viruses, 14(6), 1281. https://doi.org/10.3390/v14061281