Abstract
Aquaculture offers a promising source of economic and healthy protein for human consumption, which can improve wellbeing. Viral diseases are the most serious type of diseases affecting aquatic animals and a major obstacle to the development of the aquaculture industry. In the background of antibiotic-free farming, the development and application of antibiotic alternatives has become one of the most important issues in aquaculture. In recent years, many medicinal plants and their active pharmaceutical ingredients have been found to be effective in the treatment and prevention of viral diseases in aquatic animals. Compared with chemical drugs and antibiotics, medicinal plants have fewer side-effects, produce little drug resistance, and exhibit low toxicity to the water environment. Most medicinal plants can effectively improve the growth performance of aquatic animals; thus, they are becoming increasingly valued and widely used in aquaculture. The present review summarizes the promising antiviral activities of medicinal plants and their active pharmaceutical ingredients against aquatic viruses. Furthermore, it also explains their possible mechanisms of action and possible implications in the prevention or treatment of viral diseases in aquaculture. This article could lay the foundation for the future development of harmless drugs for the prevention and control of viral disease outbreaks in aquaculture.
1. Introduction
With the increasing demand for high-quality food in modern society, aquatic products account for an increasing proportion of meat consumption [1], because modern nutrition believes that excessive intake of red meat increases the risk of rectal cancer, advocating its replacement with other foods [2], while fish and shrimp foods are also able to provide the body with essential amino acids, lipids, and minerals, representing an excellent substitute [3]. With the increasing tension in global aquatic wild fishing resources and the increasing demand for aquaculture production, the aquaculture industry has been developing rapidly while facing increased challenges, especially the steep increase in the outbreak of aquatic animal diseases due to intensive farming, resulting in the death of a large number of farmed species and serious economic losses [4,5]. More importantly, antibiotics cannot control viral diseases; when aquatic animals are infected with viral diseases, the use of antibiotics by unprofessional farmers not only fails to alleviate the condition, but also exacerbates water pollution, resulting in an increase in mortality instead of a decrease [6].
Studies have shown that only 20–30% of antibiotics can be absorbed by farmed fish, with most of them entering the water environment [7]. The addition of antibiotics to fish and shellfish production sites via feed is a direct route to aquatic environmental pollution [8]. Intensive aquaculture leads to the overfeeding of aquatic animals and the flow of large amounts of antibiotics from ponds to lakes and then to the oceans, contributing to the deterioration of global biodiversity [9]. Abuse of antibiotics can easily cause irreversible consequences in the ecosystem. More seriously, the harmful components of antibiotic and chemical agents will remain in aquatic products, and then enter the human body through ingestion, which can directly endanger human health, causing allergic reactions, disrupting the balance of the human microbiota, affecting the growth and development of children, and even causing cancer [10]. For example, tetracycline antibiotics can inhibit bone marrow hematopoietic function, causing human aplastic anemia [11]; furan antibiotics can cause human hemolytic anemia and acute liver necrosis [12].
In order to ensure the green and sustainable development of aquaculture, it is urgent to find alternatives to antibiotics and chemical drugs. In fact, medicinal plants are very suitable candidates for antibiotic alternatives. Medicinal plants contain a variety of active ingredients, including polysaccharides, alkaloids, organic acids, flavonoids, and phenols, which are antibacterial and antiviral, in addition to promoting the body’s immune function and improving the body’s ability to resist diseases [13]. In recent years, because medicinal plants have the advantages of low toxicity, few side-effects, no drug resistance, few drug residues, and low prices, they have attracted much attention in the prevention and treatment of aquatic animal diseases, and substantial progress has been made in research. For example, methanolic extracts of Urtica dioica and Pleurotus ostreatus were able to exert antibacterial effects against Aeromonas hydrophila in rainbow trout (Oncorhynchus mykiss) [14]; Zingiber officinale Roscoe enhanced disease resistance of Lates calcarifer (Bloch) against Vibrio harveyi and enhanced the nonspecific immunity of Lates calcarifer (Bloch) [15]; the compound pentagalloylglucose extracted from Galla chinensis was highly resistant to Ichthyophthirius multifiliis (Ich) and significantly increased the survival of infected channel catfish (Ictalurus punctatus) [16]; Ophiopogon japonicus extract inhibited the proliferation of white spot syndrome virus (WSSV) in Chinese mitten crab (Eriocheir sinensis) and enhanced the immune response of Chinese mitten crab [17].
Viral disease is one of the biggest obstacles facing the aquaculture industry; viruses are highly contagious and fast-spreading, have a wide host range and high mortality rate, and are the most serious type of disease affecting aquaculture species [18]. At present, most viral diseases in aquaculture are not treatable by drugs and are usually preventative in nature. Most farmers can only prevent and control viral diseases via an improvement the aquaculture environment and disinfection, but they do not achieve good results [19]. It is a very urgent task to find more effective methods of virus diseases prevention and control, and herbal medicines have been confirmed by many studies in this regard. Therefore, this article summarizes several common aquatic viruses that are very destructive, collates the components of medicinal plants or natural compounds of plants that have antiviral effects against these viruses, and analyzes the current obstacles and problems that need to be solved in applying medicinal plants to aquaculture, aiming to provide new ideas for the prevention and treatment of viral diseases in aquatic animals.
3. Challenges and Perspectives
The rise of aquaculture is considered to be one of the most profound changes in global food production in a century [178] and one of the most environmentally friendly and sustainable food industries to meet the needs of humans today [179]. However, almost all kinds of farmed aquatic animals are threatened by infections from viruses, bacteria, parasites, or other nascent and regenerating pathogenic microorganisms [180]. Epidemics have become a constraint to the sustainable development of the aquaculture industry, especially viral diseases, which are highly contagious, spread rapidly, and have a wide range of hosts with high mortality rates [181]. The occurrence of aquatic animal viral diseases not only leads to a decline in the quality of aquatic products and food safety hazards, but also seriously hinders the sustainable development of fisheries.
Medicinal plants and active pharmaceutical ingredients have unique advantages in terms of antiviral activity. On the premise of being able to effectively inhibit viral infection, medicinal plants and active pharmaceutical ingredients possess the advantages of low drug resistance, fewer toxic side-effects, fewer drug residues, and less pollution of the farmed water environment [182]. Consequently, the search for new antiviral drugs with high efficiency and low toxicity from natural plants is an important way to develop antiviral drugs. At present, the development and the research of safe and efficient new herbal medicine products are getting more and more attention. An investigation found that healthy aquaculture has certain advantages and great potential for the future [183]. The antivirus mechanisms of medicinal plants are diverse, such as direct inactivation of viral particles [184], interdiction of viral attachment and penetration phases [185], inhibition of virus replication [186], involvement in transcriptional regulation [187], disruption of virus protein synthesis or expression [188], inhibition of viral cell-to-cell transmission [189], and immunomodulatory roles [190]. The same medicinal plants may exert different mechanisms of action against different viruses, and different medicinal plants exert even more different effects, which makes the utilization of medicinal plants promising.
Medicinal plants contain numerous active ingredients such as phenolic substances, flavonoids, alkaloids, terpenoids, pigments, starch, steroids, and essential oils [191]. In aquaculture, medicinal plants and active ingredients can be used as growth promoters [192], immunostimulants [193], antibacterial agents [194], antifungal agents [195], antistress agents [196], appetite stimulants [197], and even aphrodisiacs [198], in addition to being antiviral agents. In many cases, medicinal plants exert antiviral effects by acting as immunostimulants, with antiviral activity being only an added effect. At this point, although researchers have used particular viruses to confirm whether a medicinal plant exerts an antiviral effect in fish or shellfish, it is likely that the resistance effect is not limited to that virus. When host nonspecific immunity is increased, it is usually elevated against a wide range of pathogens. Preventing diseases by improving the immunity of fish and shellfish represents a new direction in the development of pollution-free aquaculture, which is important for disease control, health safety, and environmental protection in aquaculture.
Although the advantages and efficacy of herbal medicine in aquaculture have been proven in production practice and have great potential for development in the future, herbal medicine in aquaculture is still in its infancy and has many shortcomings at this stage, mainly manifested in the following aspects: (1) there is no unified standard for medication, because most herbal medicines are not measured by ingredient content, but rely on practical effectiveness accumulated over the years, which is difficult to quantify; (2) most products are crude products. The ingredients are limited by multiple influences such as geography, climate, and time, and the effect is always unstable; (3) the therapeutic effect is not rapid, and the effect on the treatment of acute infectious diseases is not obvious; (4) combined application is not effective. The ratio tests are not enough, and the interactions between medicinal plants of different genera are not clear. Thus, it is difficult to achieve a scientific ratio; (5) commercial production is faced with difficulties, and the technical process of isolation and mass extraction of active pharmaceutical ingredients in medicinal plants is not perfect. Therefore, it is difficult to control low-cost production.
Therefore, future research on the application of medicinal plants in aquaculture should mainly focus on combining medical theory with modern technology, establishing sound techniques for cultivation, extraction, and refinement of medicinal plants, and achieving standardized and commercialized production of new medicinal plant products through improved processing techniques. Moreover, it is necessary to strengthen the research on the specific mechanisms of the role of medicinal plants in aquaculture. It is not enough to focus only on the effect of action, because there are many uncertainties in practical application, and if the specific mechanism of action is not clear, then only the rigid use of medicinal plants is likely to be counterproductive in the end. In conclusion, the effects of medicinal plants in aquatic animals is an exciting topic in aquaculture.
4. Conclusions
Medicinal plants have great potential in terms of antivirals; whereas most of the current studies on the antiviral effects of medicinal plants focused on the inhibitory effects of plants on viruses, relatively few established a clear understanding of the antiviral mechanisms of the active pharmaceutical ingredients. In addition, few studies on the synergistic and antagonistic effects of different medicinal plants have been reported. Future research work should focus on the basic research of medicinal plants to clarify their active pharmaceutical ingredients, as well as their pharmacological and toxicological effects; accordingly, they can then be better applied in the prevention and treatment of aquatic animal diseases
Author Contributions
W.L. and L.H. conceived and wrote this review together, and W.L. made the final revisions to the article. S.H. (Shuyu Han); D.H.; Y.X.; M.L.; Q.Y.; S.H. (Shuaishuai Huang) all provided valuable suggestions to this review and participated in the proofreading. D.W.; P.L. guided the authors in the writing of this paper and provided funding support for this paper. All authors have read and agreed to the published version of the manuscript.
Funding
This work was supported by grants from the National Natural Science Foundation of China (Pengfei Li, 41966004), the Natural Science Foundation of Guangxi (Mingzhu Liu, 2020GXNSFBA297161, 2022GXNSFBA035521), Guangxi Innovation Team Project of National Modern Agricultural Industrial Technology System (Pengfei Li, nycytxgxcxtd-2021-08-02), and the Basic Research Fund of Guangxi Academy of Sciences (Mingzhu Liu, 2019YJJ1005).
Institutional Review Board Statement
Not applicable.
Informed Consent Statement
Not applicable.
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Acknowledgments
This work was supported by grants from the National Natural Science Foundation of China (41966004; U20A20102), the Natural Science Foundation of Guangxi (2020GXNSFBA297161; 2022GXNSFBA035521), the Guangxi Innovation Team Project of the National Modern Agricultural Industrial Technology System (nycytxgxcxtd-2021-08-02), and the Basic Research Fund of Guangxi Academy of Sciences (2019YJJ1005).
Conflicts of Interest
The authors of this study declare no conflict of interest.
Abbreviations
| Ich | Ichthyophthirius multifiliis |
| WSSV | White spot syndrome virus |
| IPNV | Infectious pancreatic necrosis virus |
| MPA | Mycophenolic acid |
| IMPDH | Inosine monophosphate dehydrogenase |
| GTP | Guanosine triphosphate |
| VHSV | Viral hemorrhagic septicemia virus |
| IPN | Infectious hematopoietic necrosis virus |
| IHNV | Invasive pneumococcal disease |
| RPS | Relative survival |
| LNT | Lentinan |
| TNF | Tumor necrosis factor |
| IL | Interleukin |
| IFNs | Interferon |
| MOI | Multiplicity of infectivity |
| EPC | Epithelioma papulosum cyprini |
| PVL | Prunella vulgaris L. |
| UA | Ursolic acid |
| CPE | Cytopathic effect |
| IHN | Infectious hematopoietic necrosis |
| GUF | Glycyrrhiza uralensis |
| GL | Glycyrrhizin |
| GLA | Glycyrrhizinic acid |
| PI3K | Phosphatidylinositol-3-kinase |
| NF-κB | Nuclear factor kappa B |
| FN | Fibronectin |
| GSN | Gelsolin |
| LA | α-Lipoic acid |
| SVCV | Spring viremia of carp virus |
| APS | Astragalus polysaccharide |
| PA | Palmitic acid |
| IFN | Type I interferon |
| BVN | Bavachin |
| SSD | Saikosaponin D |
| ROS | Reactive oxygen species |
| SVC | Spring viremia of carp |
| NNV | Nervous necrosis virus |
| α-KG | α-Ketoglutarate |
| GLS | Glutaminase |
| TCA | Tricarboxylic acid |
| OAA | Oxaloacetic acid |
| NLRC3 | NLR family CARD domain-containing 3 |
| LDH | Lactate dehydrogenase |
| VER | Viral encephalopathy and retinopathy |
| VNN | Viral nervous necrosis |
| GCRV | Grass carp reovirus |
| CIK | Ctenopharyngodon idella kidney |
| EGCG | Epigallocatechin-3-gallate |
| VOPBA | Virus overlay protein binding assay |
| LamR | Laminin receptor |
| MDA | Malondialdehyde |
| GSH | Glucuronide |
| LZM | Lysozyme |
| ECG | Epicatechin-3-gallate |
| CO | Carp ovarian |
| HSF | Heat-shock factor |
| Hsp | Heat-shock protein |
| Qct | Quercetin |
| GCHD | Grass carp haemorrhagic disease |
| SGIV | Grouper iridovirus |
| TAT | trans-Anethole |
| DDBA | 3,4-Dihydroxybenzoic acid |
| Q2-AFMP | (Q2)-based fluorescent molecular probe |
| CKEE | Curcuma kwangsiensis ethanol ingredient |
| LAE | Lonicera japonica aqueous extract |
| CGA | Chlorogenic acid |
| CCGA | Cryptochlorogenic acid |
| IAA | Isochlorogenic acid A |
| IAB | Isochlorogenic acid B |
| IAC | Isochlorogenic acid C |
| CA | Caffeic acid |
| LT | Luteolin |
| IS | Inositol |
| GUF | Glycyrrhiza uralensis |
| IMD | Immune deficiency pathway |
| proPO | Prophenoloxidase |
| MAPK | Mitogen-activated protein kinase |
| NOS | Nitric oxide synthase |
| JAK | Janus kinase |
| STAT | Signal transducers and activators of transcription |
| NAR | Naringenin |
| COX | Cyclooxygenase |
| CAT | Catalase |
| FBW | Final body weight |
| SGR | Specific growth rate |
| WG | Weight gain |
| T-AOC | Total antioxidant capacity |
| GPx | Glutathione peroxidase |
| SOD | Superoxide dismutase |
| ACP | Activities of acid phosphatase |
| AKP | Alkaline phosphatase |
| PO | Phenoloxidase |
| CypA | Cyclophilin A |
| GN | Genipin |
| GPA | Geniposidic acid |
| LUT | Luteolin |
| CP | Chicory polysaccharides |
| GML | Glycerol monolaurate |
| THC | Total hemocyte count |
| ARPs | Anoectochilus roxburghii polysaccharides |
| AMPs | Antimicrobial peptides |
References
- Sudhakaran, G.; Guru, A.; Haridevamuthu, B.; Murugan, R.; Arshad, A.; Arockiaraj, J. Molecular Properties of Postbiotics and Their Role in Controlling Aquaculture Diseases. Aquac. Res. 2022, 53, 3257–3273. [Google Scholar] [CrossRef]
- Ekmekcioglu, C.; Wallner, P.; Kundi, M.; Weisz, U.; Haas, W.; Hutter, H.-P. Red Meat, Diseases, and Healthy Alternatives: A Critical Review. Crit. Rev. Food Sci. Nutr. 2018, 58, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Fiorella, K.J.; Okronipa, H.; Baker, K.; Heilpern, S. Contemporary Aquaculture: Implications for Human Nutrition. Curr. Opin. Biotechnol. 2021, 70, 83–90. [Google Scholar] [CrossRef]
- Brugere, C.; Onuigbo, D.M.; Morgan, K.L. People Matter in Animal Disease Surveillance: Challenges and Opportunities for the Aquaculture Sector. Aquaculture 2017, 467, 158–169. [Google Scholar] [CrossRef]
- Sargenti, M.; Bartolacci, S.; Luciani, A.; Di Biagio, K.; Baldini, M.; Galarini, R.; Giusepponi, D.; Capuccella, M. Investigation of the Correlation between the Use of Antibiotics in Aquaculture Systems and Their Detection in Aquatic Environments: A Case Study of the Nera River Aquafarms in Italy. Sustainability 2020, 12, 5176. [Google Scholar] [CrossRef]
- Watts, J.; Schreier, H.; Lanska, L.; Hale, M. The Rising Tide of Antimicrobial Resistance in Aquaculture: Sources, Sinks and Solutions. Mar. Drugs 2017, 15, 158. [Google Scholar] [CrossRef] [PubMed]
- Samuelsen, O.B.; Lunestad, B.T.; Jelmert, A. Pharmacokinetic and Efficacy Studies on Bath-Administering Potentiated Sulphonamides in Atlantic Halibut, Hippoglossus hippoglossus L. J. Fish Dis. 1997, 20, 287–296. [Google Scholar] [CrossRef]
- Topp, E.; Larsson, D.G.J.; Miller, D.N.; Van den Eede, C.; Virta, M.P.J. Antimicrobial Resistance and the Environment: Assessment of Advances, Gaps and Recommendations for Agriculture, Aquaculture and Pharmaceutical Manufacturing. FEMS Microbiol. Ecol. 2018, 94, 3. [Google Scholar] [CrossRef]
- Done, H.Y.; Halden, R.U. Reconnaissance of 47 Antibiotics and Associated Microbial Risks in Seafood Sold in the United States. J. Hazard. Mater. 2015, 282, 10–17. [Google Scholar] [CrossRef]
- Limbu, S.M.; Chen, L.-Q.; Zhang, M.-L.; Du, Z.-Y. A Global Analysis on the Systemic Effects of Antibiotics in Cultured Fish and Their Potential Human Health Risk: A Review. Rev. Aquac. 2021, 13, 1015–1059. [Google Scholar] [CrossRef]
- Liu, X.; Lv, Y.; Xu, K.; Xiao, X.; Xi, B.; Lu, S. Response of Ginger Growth to a Tetracycline-Contaminated Environment and Residues of Antibiotic and Antibiotic Resistance Genes. Chemosphere 2018, 201, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Griboff, J.; Carrizo, J.C.; Bonansea, R.I.; Valdés, M.E.; Wunderlin, D.A.; Amé, M.V. Multiantibiotic Residues in Commercial Fish from Argentina. The Presence of Mixtures of Antibiotics in Edible Fish, a Challenge to Health Risk Assessment. Food Chem. 2020, 332, 127380. [Google Scholar] [CrossRef] [PubMed]
- Nik Mohamad Nek Rahimi, N.; Natrah, I.; Loh, J.-Y.; Ervin Ranzil, F.K.; Gina, M.; Lim, S.-H.E.; Lai, K.-S.; Chong, C.-M. Phytocompounds as an Alternative Antimicrobial Approach in Aquaculture. Antibiotics 2022, 11, 469. [Google Scholar] [CrossRef] [PubMed]
- Bilen, S.; Ünal, S.; Güvensoy, H. Effects of Oyster Mushroom (Pleurotus Ostreatus) and Nettle (Urtica Dioica) Methanolic Extracts on Immune Responses and Resistance to Aeromonas hydrophila in Rainbow Trout (Oncorhynchus Mykiss). Aquaculture 2016, 454, 90–94. [Google Scholar] [CrossRef]
- Talpur, A.D.; Ikhwanuddin, M.; Ambok Bolong, A.-M. Nutritional Effects of Ginger (Zingiber Officinale Roscoe) on Immune Response of Asian Sea Bass, Lates calcarifer (Bloch) and Disease Resistance against Vibrio Harveyi. Aquaculture 2013, 400–401, 46–52. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, D.-H.; Klesius, P.H. Evaluation of an Antiparasitic Compound Extracted from Galla Chinensis against Fish Parasite Ichthyophthirius Multifiliis. Vet. Parasitol. 2013, 198, 45–53. [Google Scholar] [CrossRef]
- Chen, C.; Shen, J.-L.; Wang, T.; Yang, B.; Liang, C.-S.; Jiang, H.-F.; Wang, G.-X. Ophiopogon japonicus Inhibits White Spot Syndrome Virus Proliferation in Vivo and Enhances Immune Response in Chinese Mitten Crab Eriocheir Sinensis. Fish Shellfish Immunol. 2021, 119, 432–441. [Google Scholar] [CrossRef]
- Oidtmann, B.; Dixon, P.; Way, K.; Joiner, C.; Bayley, A.E. Risk of Waterborne Virus Spread—Review of Survival of Relevant Fish and Crustacean Viruses in the Aquatic Environment and Implications for Control Measures. Rev. Aquac. 2018, 10, 641–669. [Google Scholar] [CrossRef]
- Kibenge, F.S. Emerging Viruses in Aquaculture. Curr. Opin. Virol. 2019, 34, 97–103. [Google Scholar] [CrossRef]
- Dobos, P.; Hill, B.J.; Hallett, R.; Kells, D.T.; Becht, H.; Teninges, D. Biophysical and Biochemical Characterization of Five Animal Viruses with Bisegmented Double-Stranded RNA Genomes. J. Virol. 1979, 32, 593–605. [Google Scholar] [CrossRef]
- Dobos, P. The Molecular Biology of Infectious Pancreatic Necrosis Virus (IPNV). Annu. Rev. Fish Dis. 1995, 5, 25–54. [Google Scholar] [CrossRef]
- Ahne, W. Isolation and Characterization of Infectious Pancreatic Necrosis Virus from Pike (Esox Lucius). Arch. Virol. 1978, 58, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Lyoo, Y.S.; Chang, C.H.; Jeon, Y.H.; Lee, J.O.; Rhee, J.C. Isolation of Infectious Pancreatic Necrosis Virus from Rainbow Trout in Korea. Korean J. Vet. Res. 1991, 31, 195–199. [Google Scholar]
- Ahmadivand, S.; Weidmann, M.; El-Matbouli, M.; Rahmati-Holasoo, H. Low Pathogenic Strain of Infectious Pancreatic Necrosis Virus (IPNV) Associated with Recent Outbreaks in Iranian Trout Farms. Pathogens 2020, 9, 782. [Google Scholar] [CrossRef] [PubMed]
- Rønneseth, A.; Haugland, G.T.; Wergeland, H.I. Flow Cytometry Detection of Infectious Pancreatic Necrosis Virus (IPNV) within Subpopulations of Atlantic Salmon (Salmo salar L.) Leucocytes after Vaccination and during the Time Course of Experimental Infection. Fish Shellfish Immunol. 2013, 34, 1294–1305. [Google Scholar] [CrossRef]
- Kamil, A.; Raae, A.; Fjelldal, P.G.; Koppang, E.O.; Fladmark, K.E.; Hordvik, I. Comparative Analysis of IgM Sub-Variants in Salmonid Fish and Identification of a Residue in Μ3 Which Is Essential for MAb4C10 Reactivity. Fish Shellfish Immunol. 2013, 34, 667–672. [Google Scholar] [CrossRef]
- Modak, B.; Galeno, H.; Torres, R. Antiviral Activity on Hantavirus and Apoptosis of Vero Cells of Natural and Semi-Synthetic Compounds from Heliotropium Filifolium Resin. J. Chil. Chem. Soc. 2004, 49, 143–145. [Google Scholar] [CrossRef]
- Modak, B.; Sandino, A.M.; Arata, L.; Cárdenas-Jirón, G.; Torres, R. Inhibitory Effect of Aromatic Geranyl Derivatives Isolated from Heliotropium Filifolium on Infectious Pancreatic Necrosis Virus Replication. Vet. Microbiol. 2010, 141, 53–58. [Google Scholar] [CrossRef]
- Sintchak, M.D.; Fleming, M.A.; Futer, O.; Raybuck, S.A.; Chambers, S.P.; Caron, P.R.; Murcko, M.A.; Wilson, K.P. Structure and Mechanism of Inosine Monophosphate Dehydrogenase in Complex with the Immunosuppressant Mycophenolic Acid. Cell 1996, 85, 921–930. [Google Scholar] [CrossRef]
- Marroquí, L.; Estepa, A.; Perez, L. Inhibitory Effect of Mycophenolic Acid on the Replication of Infectious Pancreatic Necrosis Virus and Viral Hemorrhagic Septicemia Virus. Antivir. Res. 2008, 80, 332–338. [Google Scholar] [CrossRef]
- Min, L.; Li-Li, Z.; Jun-Wei, G.; Xin-Yuan, Q.; Yi-Jing, L.; Di-Qiu, L. Immunogenicity of Lactobacillus-Expressing VP2 and VP3 of the Infectious Pancreatic Necrosis Virus (IPNV) in Rainbow Trout. Fish Shellfish Immunol. 2012, 32, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Dopazo, C.P. The Infectious Pancreatic Necrosis Virus (IPNV) and Its Virulence Determinants: What Is Known and What Should Be Known. Pathogens 2020, 9, 94. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhong, J.; Xiong, Y.; Song, X.; Li, C.; He, Z. Development of Broad-Spectrum Antiviral Agents—Inspiration from Immunomodulatory Natural Products. Viruses 2021, 13, 1257. [Google Scholar] [CrossRef] [PubMed]
- Morzunov, S.P.; Winton, J.R.; Nichol, S.T. The Complete Genome Structure and Phylogenetic Relationship of Infectious Hematopoietic Necrosis Virus. Virus Res. 1995, 38, 175–192. [Google Scholar] [CrossRef]
- Schutze, H.; Enzmann, P.-J.; Kuchling, R.; Mundt, E.; Niemann, H.; Mettenleiter, T.C. Complete Genomic Sequence of the Fish Rhabdovirus Infectious Haematopoietic Necrosis Virus. J. Gen. Virol. 1995, 76, 2519–2527. [Google Scholar] [CrossRef]
- Amend, D.F.; Yasutake, W.T.; Mead, R.W. A Hematopoietic Virus Disease of Rainbow Trout and Sockeye Salmon. Trans. Am. Fish. Soc. 1969, 98, 796–804. [Google Scholar] [CrossRef]
- Crane, M.; Hyatt, A. Viruses of Fish: An Overview of Significant Pathogens. Viruses 2011, 3, 2025–2046. [Google Scholar] [CrossRef]
- Whipple, M.J.; Rohovec, J.S. The Effect of Heat and Low PH on Selected Viral and Bacterial Fish Pathogens. Aquaculture 1994, 123, 179–189. [Google Scholar] [CrossRef]
- Lapatra, S.E. Factors Affecting Pathogenicity of Infectious Hematopoietic Necrosis Virus (IHNV) for Salmonid Fish. J. Aquat. Anim. Health 1998, 10, 121–131. [Google Scholar] [CrossRef]
- Ahmadivand, S.; Soltani, M.; Mardani, K.; Shokrpoor, S.; Hassanzadeh, R.; Ahmadpoor, M.; Rahmati-Holasoo, H.; Meshkini, S. Infectious Hematopoietic Necrosis Virus (IHNV) Outbreak in Farmed Rainbow Trout in Iran: Viral Isolation, Pathological Findings, Molecular Confirmation, and Genetic Analysis. Virus Res. 2017, 229, 17–23. [Google Scholar] [CrossRef]
- Amar, E.C.; Kiron, V.; Satoh, S.; Watanabe, T. Enhancement of Innate Immunity in Rainbow Trout (Oncorhynchus mykiss Walbaum) Associated with Dietary Intake of Carotenoids from Natural Products. Fish Shellfish Immunol. 2004, 16, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Amar, E.C.; Kiron, V.; Akutsu, T.; Satoh, S.; Watanabe, T. Resistance of Rainbow Trout Oncorhynchus mykiss to Infectious Hematopoietic Necrosis Virus (IHNV) Experimental Infection Following Ingestion of Natural and Synthetic Carotenoids. Aquaculture 2012, 330–333, 148–155. [Google Scholar] [CrossRef]
- Ren, G.; Xu, L.; Lu, T.; Yin, J. Structural Characterization and Antiviral Activity of Lentinan from Lentinus Edodes Mycelia against Infectious Hematopoietic Necrosis Virus. Int. J. Biol. Macromol. 2018, 115, 1202–1210. [Google Scholar] [CrossRef] [PubMed]
- Roh, K.-B.; Park, D.; Jung, E. Inhibitory Effects of Prunella vulgaris L. Extract on 11 β -HSD1 in Human Skin Cells. Evid.-Based Complementary Altern. Med. 2018, 2018, 1–8. [Google Scholar] [CrossRef]
- Li, B.-Y.; Hu, Y.; Li, J.; Shi, K.; Shen, Y.-F.; Zhu, B.; Wang, G.-X. Ursolic Acid from Prunella vulgaris L. Efficiently Inhibits IHNV Infection in Vitro and in Vivo. Virus Res. 2019, 273, 197741. [Google Scholar] [CrossRef]
- Kim, M.S.; Lee, C.W.; Kim, J.-H.; Lee, J.-C.; An, W.G. Extract of Rhus Verniciflua Stokes Induces P53-Mediated Apoptosis in MCF-7 Breast Cancer Cells. Evid.-Based Complementary Altern. Med. 2019, 2019, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.Y.; Kang, J.-Y.; Oh, M.-J. Antiviral Activities of Flavonoids Isolated from the Bark of Rhus verniciflua Stokes against Fish Pathogenic Viruses In Vitro. J. Microbiol. 2012, 50, 293–300. [Google Scholar] [CrossRef]
- Shan, L.; Wang, H.; Hu, Y. A Preliminary Investigation on the Mechanism of Action of 4-(8-(2-Ethylimidazole)Octyloxy)-Arctigenin against IHNV. Virus Res. 2021, 294, 198287. [Google Scholar] [CrossRef]
- Wang, H.; Hu, Y.; Song, D.; Shan, L.; Liu, L. Synthesis and Application of a Potential Therapeutic Coumarin Derivative against IHNV in Aquaculture. Aquaculture 2021, 543, 736999. [Google Scholar] [CrossRef]
- Ammayappan, A.; Vakharia, V.N. Molecular Characterization of the Great Lakes Viral Hemorrhagic Septicemia Virus (VHSV) Isolate from USA. Virol. J. 2009, 6, 171. [Google Scholar] [CrossRef]
- Isshiki, T.; Nishizawa, T.; Kobayashi, T.; Nagano, T.; Miyazaki, T. An Outbreak of VHSV (Viral Hemorrhagic Septicemia Virus) Infection in Farmed Japanese Flounder Paralichthys Olivaceus in Japan. Dis. Aquat. Org. 2001, 47, 87–99. [Google Scholar] [CrossRef] [PubMed]
- López-Vázquez, C.; Dopazo, C.P.; Barja, J.L.; Bandín, I. Experimental Infection of Turbot, Psetta Maxima (L.), with Strains of Viral Haemorrhagic Septicaemia Virus Isolated from Wild and Farmed Marine Fish. J. Fish Dis. 2007, 30, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Hawley, L.; Garver, K. Stability of Viral Hemorrhagic Septicemia Virus (VHSV) in Freshwater and Seawater at Various Temperatures. Dis. Aquat. Org. 2008, 82, 171–178. [Google Scholar] [CrossRef]
- Cabon, J.; Almeras, F.; Baud, M.; Pallandre, L.; Morin, T.; Louboutin, L. Susceptibility of Pike Esox Lucius to VHSV and IHNV and Potential Transmission to Rainbow Trout Oncorhynchus Mykiss. Dis. Aquat. Org. 2020, 139, 175–187. [Google Scholar] [CrossRef]
- Brudeseth, B.; Evensen, Ø. Occurrence of Viral Haemorrhagic Septicaemia Virus (VHSV) in Wild Marine Fish Species in the Coastal Regions of Norway. Dis. Aquat. Org. 2002, 52, 21–28. [Google Scholar] [CrossRef][Green Version]
- Ahmadivand, S.; Soltani, M.; Mardani, K.; Shokrpoor, S.; Rahmati-Holasoo, H.; Mokhtari, A.; Hasanzadeh, R. Isolation and Identification of Viral Hemorrhagic Septicemia Virus (VHSV) from Farmed Rainbow Trout (Oncorhynchus Mykiss) in Iran. Acta Trop. 2016, 156, 30–36. [Google Scholar] [CrossRef]
- Park, Y.J.; Moon, C.; Kang, J.-H.; Choi, T.-J. Antiviral Effects of Extracts from Celosia cristata and Raphanus sativus Roots against Viral Hemorrhagic Septicemia Virus. Arch Virol 2017, 162, 1711–1716. [Google Scholar] [CrossRef] [PubMed]
- Pastorino, G.; Cornara, L.; Soares, S.; Rodrigues, F.; Oliveira, M.B.P.P. Liquorice (Glycyrrhiza Glabra): A Phytochemical and Pharmacological Review: Liquorice (Glycyrrhiza Glabra): A Review. Phytother. Res. 2018, 32, 2323–2339. [Google Scholar] [CrossRef]
- Lim, J.; Seo, J.; Jung, S.; Kang, S.Y. Efficacy of an Optimized Extract from Licorice Roots (Glycyrrhiza Uralensis Fischer) against Viral Hemorrhagic Septicemia Virus in Olive Flounder (Paralichthys Olivaceus). Aquac. Res. 2021, 52, 2609–2621. [Google Scholar] [CrossRef]
- Mathew, D.; Hsu, W.-L. Antiviral Potential of Curcumin. J. Funct. Foods 2018, 40, 692–699. [Google Scholar] [CrossRef]
- Jeong, E.-H.; Vaidya, B.; Cho, S.-Y.; Park, M.-A.; Kaewintajuk, K.; Kim, S.R.; Oh, M.-J.; Choi, J.-S.; Kwon, J.; Kim, D. Identification of Regulators of the Early Stage of Viral Hemorrhagic Septicemia Virus Infection during Curcumin Treatment. Fish Shellfish Immunol. 2015, 45, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Alesci, A.; Miller, A.; Tardugno, R.; Pergolizzi, S. Chemical Analysis, Biological and Therapeutic Activities of Olea Europaea L. Extracts. Nat. Prod. Res. 2021, 36, 2932–2945. [Google Scholar] [CrossRef] [PubMed]
- Micol, V.; Caturla, N.; Pérez-Fons, L.; Más, V.; Pérez, L.; Estepa, A. The Olive Leaf Extract Exhibits Antiviral Activity against Viral Haemorrhagic Septicaemia Rhabdovirus (VHSV). Antivir. Res. 2005, 66, 129–136. [Google Scholar] [CrossRef]
- Monserrat, J.M.; Lima, J.V.; Ferreira, J.L.R.; Acosta, D.; Garcia, M.L.; Ramos, P.B.; Moraes, T.B.; dos Santos, L.C.; Amado, L.L. Modulation of Antioxidant and Detoxification Responses Mediated by Lipoic Acid in the Fish Corydoras Paleatus (Callychthyidae). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2008, 148, 287–292. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, X.; Yu, F.; Li, F.; Li, W.; Yi, M.; Jia, K. α-Lipoic Acid Exerts Its Antiviral Effect against Viral Hemorrhagic Septicemia Virus (VHSV) by Promoting Upregulation of Antiviral Genes and Suppressing VHSV-Induced Oxidative Stress. Virol. Sin. 2021, 36, 1520–1531. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-X.; Liu, S.-B.; Guan, H.; Lu, L.-F.; Tu, J.-G.; Ouyang, S.; Zhang, Y.-A. Structural and Functional Characterization of the Phosphoprotein Central Domain of Spring Viremia of Carp Virus. J. Virol. 2020, 94, e0085-20. [Google Scholar] [CrossRef] [PubMed]
- Emmenegger, E.J.; Sanders, G.E.; Conway, C.M.; Binkowski, F.P.; Winton, J.R.; Kurath, G. Experimental Infection of Six North American Fish Species with the North Carolina Strain of Spring Viremia of Carp Virus. Aquaculture 2016, 450, 273–282. [Google Scholar] [CrossRef]
- Shao, L.; Zhao, J. Isolation of a Highly Pathogenic Spring Viraemia of Carp Virus Strain from Grass Carp (Ctenopharyngodon Idella) in Late Summer, China, 2016. Virus Res. 2017, 238, 183–192. [Google Scholar] [CrossRef]
- Padhi, A.; Verghese, B. Detecting Positively Selected Codons in the Glycoprotein of Spring Viraemia of Carp Virus (SVCV) Isolates from the USA and China. J. Fish Dis. 2008, 31, 785–791. [Google Scholar] [CrossRef]
- Ahne, W.; Bjorklund, H.V.; Essbauer, S.; Fijan, N.; Kurath, G.; Winton, J.R. Spring Viremia of Carp (SVC). Dis. Aquat. Org. 2002, 52, 261–272. [Google Scholar] [CrossRef]
- Ghasemi, M.; Zamani, H.; Hosseini, S.M.; Haghighi Karsidani, S.; Bergmann, S.M. Caspian White Fish (Rutilus Frisii Kutum) as a Host for Spring Viraemia of Carp Virus. Vet. Microbiol. 2014, 170, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Ahne, W. Uptake and Multiplication of Spring Viraemia of Carp Virus in Carp, Cyprinus carpio L. J. Fish Dis. 1978, 1, 265–268. [Google Scholar] [CrossRef]
- Ahne, W. Argulus foliaceus L. and Piscicola geometra L. as Mechanical Vectors of Spring Viraemia of Carp Virus (SVCV). J. Fish Dis. 2010, 8, 241–242. [Google Scholar] [CrossRef]
- Fijan, N. Spring Viraemia of Carp and Other Viral Diseases and Agents of Warm-Water Fish; CAB International: Wallingford, UK, 1999; Volume 3, pp. 177–244. [Google Scholar]
- Douxfils, J.; Fierro-Castro, C.; Mandiki, S.N.M.; Emile, W.; Tort, L.; Kestemont, P. Dietary β-Glucans Differentially Modulate Immune and Stress-Related Gene Expression in Lymphoid Organs from Healthy and Aeromonas hydrophila-infected Rainbow Trout (Oncorhynchus Mykiss). Fish Shellfish Immunol. 2017, 63, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Medina-Gali, R.M.; del Mar Ortega-Villaizan, M.; Mercado, L.; Novoa, B.; Coll, J.; Perez, L. Beta-Glucan Enhances the Response to SVCV Infection in Zebrafish. Dev. Comp. Immunol. 2018, 84, 307–314. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, Y.; Zhu, R.; Wu, Y.; Liu, X.; Wang, X. Red Elemental Selenium (Se0) Improves the Immunoactivities of EPC Cells, Crucian Carp and Zebrafish against Spring Viremia of Carp Virus (SVCV). J. Fish Biol. 2021, 98, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Jablonska, E.; Li, Q.; Reszka, E.; Wieczorek, E.; Tarhonska, K.; Wang, T. Therapeutic Potential of Selenium and Selenium Compounds in Cervical Cancer. Cancer Control 2021, 28, 107327482110018. [Google Scholar] [CrossRef]
- Wang, J.; Jia, J.; Song, L.; Gong, X.; Xu, J.; Yang, M.; Li, M. Extraction, Structure, and Pharmacological Activities of Astragalus Polysaccharides. Appl. Sci. 2018, 9, 122. [Google Scholar] [CrossRef]
- Li, Y.; Ran, C.; Wei, K.; Xie, Y.; Xie, M.; Zhou, W.; Yang, Y.; Zhang, Z.; Lv, H.; Ma, X.; et al. The Effect of Astragalus Polysaccharide on Growth, Gut and Liver Health, and Anti-Viral Immunity of Zebrafish. Aquaculture 2021, 540, 736677. [Google Scholar] [CrossRef]
- Librán-Pérez, M.; Pereiro, P.; Figueras, A.; Novoa, B. Antiviral Activity of Palmitic Acid via Autophagic Flux Inhibition in Zebrafish (Danio Rerio). Fish Shellfish Immunol. 2019, 95, 595–605. [Google Scholar] [CrossRef]
- Carta, G.; Murru, E.; Banni, S.; Manca, C. Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications. Front. Physiol. 2017, 8, 902. [Google Scholar] [CrossRef] [PubMed]
- Alam, F.; Khan, G.N.; Asad, M.H.H.B. Psoralea corylifolia L: Ethnobotanical, Biological, and Chemical Aspects: A Review. Phytother. Res. 2018, 32, 597–615. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Yu-Feng, S.; Yang, H.; Lei, L.; Wei-Chao, C.; Gao-Xue, W.; Bin, Z. Highly Efficient Inhibition of Spring Viraemia of Carp Virus Replication in Vitro Mediated by Bavachin, a Major Constituent of Psoralea Corlifonia Lynn. Virus Res. 2018, 255, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.-F.; Hu, Y.; Zhang, Z.; Liu, L.; Chen, C.; Tu, X.; Wang, G.-X.; Zhu, B. Saikosaponin D Efficiently Inhibits SVCV Infection in Vitro and in Vivo. Aquaculture 2019, 504, 281–290. [Google Scholar] [CrossRef]
- Mori, K.-I.; Nakai, T.; Muroga, K.; Arimoto, M.; Mushiake, K.; Furusawa, I. Properties of a New Virus Belonging to Nodaviridae Found in Larval Striped Jack (Pseudocaranx Dentex) with Nervous Necrosis. Virology 1992, 187, 368–371. [Google Scholar] [CrossRef]
- Barsøe, S.; Allal, F.; Vergnet, A.; Vandeputte, M.; Olesen, N.J.; Schmidt, J.G.; Larsen, C.A.; Cuenca, A.; Vendramin, N. Different Survival of Three Populations of European Sea Bass (Dicentrarchus Labrax) Following Challenge with Two Variants of Nervous Necrosis Virus (NNV). Aquac. Rep. 2021, 19, 100621. [Google Scholar] [CrossRef]
- Tanaka, S.; Kuriyama, I.; Nakai, T.; Miyazaki, T. Susceptibility of Cultured Juveniles of Several Marine Fish to the Sevenband Grouper Nervous Necrosis Virus. J. Fish Dis. 2003, 26, 109–115. [Google Scholar] [CrossRef]
- Krishnan, R.; Jang, Y.-S.; Kim, J.-O.; Oh, M.-J. Altered Expression of Immune Factors in Sevenband Grouper, Hyporthodus Septemfasciatus Following Nervous Necrosis Virus Challenge at Optimal and Suboptimal Temperatures. Fish Shellfish Immunol. 2021, 119, 442–451. [Google Scholar] [CrossRef]
- Zhu, S.; Miao, B.; Zhang, Y.-Z.; Zeng, W.-W.; Wang, D.-S.; Su, S.-Q. In Vitro Neutralization of Nervous Necrosis Virus by a Nanobody Binding to the Protrusion Domain of Capsid Protein. Aquaculture 2022, 548, 737654. [Google Scholar] [CrossRef]
- Zhang, W.; Jia, K.; Jia, P.; Xiang, Y.; Lu, X.; Liu, W.; Yi, M. Marine Medaka Heat Shock Protein 90ab1 Is a Receptor for Red-Spotted Grouper Nervous Necrosis Virus and Promotes Virus Internalization through Clathrin-Mediated Endocytosis. PLoS Pathog. 2020, 16, e1008668. [Google Scholar] [CrossRef]
- Yi, L.; Qin, Z.; Lin, H.; Zhou, Y.; Li, J.; Xu, Z.; Babu, V.S.; Lin, L. Features of Chicken Egg Yolk Immunoglobulin (IgY) against the Infection of Red-Spotted Grouper Nervous Necrosis Virus. Fish Shellfish Immunol. 2018, 80, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P.; Ahmad, K.; Hassan Baig, M. Gymnema Sylvestre for Diabetes: From Traditional Herb to Future’s Therapeutic. Curr. Pharm. Des. 2017, 23, 1667–1676. [Google Scholar] [CrossRef] [PubMed]
- Gopiesh Khanna, V.; Kannabiran, K.; Sarath Babu, V.; Sahul Hameed, A.S. Inhibition of Fish Nodavirus by Gymnemagenol Extracted from Gymnema Sylvestre. J. Ocean Univ. China 2011, 10, 402–408. [Google Scholar] [CrossRef]
- Asim, M.; Jiang, S.; Yi, L.; Chen, W.; Sun, L.; Zhao, L.; Khan Khattak, M.N.; Tu, J.; Lin, L. Glutamine Is Required for Red-Spotted Grouper Nervous Necrosis Virus Replication via Replenishing the Tricarboxylic Acid Cycle. Virus Res. 2017, 227, 245–248. [Google Scholar] [CrossRef]
- Krishnan, R.; Jang, Y.-S.; Oh, M.-J. Beta Glucan Induced Immune Priming Protects against Nervous Necrosis Virus Infection in Sevenband Grouper. Fish Shellfish Immunol. 2022, 121, 163–171. [Google Scholar] [CrossRef]
- Qiu, T.; Lu, R.; Zhang, J.; Zhu, Z. Complete Nucleotide Sequence of the S10 Genome Segment of Grass Carp Reovirus (GCRV). Dis. Aquat. Org. 2001, 44, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Winton, J.R.; Lannan, C.N.; Fryer, J.L.; Hedrick, R.P.; Meyers, T.R.; Plumb, J.A.; Yamamoto, T. Morphological and Biochemical Properties of Four Members of a Novel Group of Reoviruses Isolated from Aquatic Animals. J. Gen. Virol. 1987, 68, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Rangel, A.A.C.; Rockemann, D.D.; Hetrick, F.M.; Samal, S.K. Identification of Grass Carp Haemorrhage Virus as a New Genogroup of Aquareovirus. J. Gen. Virol. 1999, 80, 2399–2402. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, M.; Lin, Y.; Ma, Y.; Cao, H. TBK1 Regulates the Induction of Innate Immune Response against GCRV by Phosphorylating IRF3 in Rare Minnow (Gobiocypris Rarus). Dev. Comp. Immunol. 2021, 115, 103883. [Google Scholar] [CrossRef]
- Tang, Y.; Zeng, W.; Wang, Y.; Wang, Q.; Yin, J.; Li, Y.; Wang, C.; Bergmann, S.M.; Gao, C.; Hu, H. Comparison of the Blood Parameters and Histopathology between Grass Carp Infected with a Virulent and Avirulent Isolates of Genotype II Grass Carp Reovirus. Microb. Pathog. 2020, 139, 103859. [Google Scholar] [CrossRef]
- Chen, G.; Xiong, L.; Wang, Y.; He, L.; Huang, R.; Liao, L.; Zhu, Z.; Wang, Y. ITGB1b-Deficient Rare Minnows Delay Grass Carp Reovirus (GCRV) Entry and Attenuate GCRV-Triggered Apoptosis. Int. J. Mol. Sci. 2018, 19, 3175. [Google Scholar] [CrossRef] [PubMed]
- Chu, P.; Zhu, Y.; Zhuang, M.; He, L.; Zhang, X. Autophagy Signaling Pathway Is a Therapeutic Target to Inhibit GCRV Replication. Aquaculture 2022, 548, 737657. [Google Scholar] [CrossRef]
- Chen, X.; Hao, K.; Yu, X.; Huang, A.; Zhu, B.; Wang, G.; Ling, F. Magnolol Protects Ctenopharyngodon Idella Kidney Cells from Apoptosis Induced by Grass Carp Reovirus. Fish Shellfish Immunol. 2018, 74, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Hu, Y.; Shan, L.; Yu, X.; Hao, K.; Wang, G. Magnolol and Honokiol from Magnolia Officinalis Enhanced Antiviral Immune Responses against Grass Carp Reovirus in Ctenopharyngodon Idella Kidney Cells. Fish Shellfish Immunol. 2017, 63, 245–254. [Google Scholar] [CrossRef]
- Chakrawarti, L.; Agrawal, R.; Dang, S.; Gupta, S.; Gabrani, R. Therapeutic Effects of EGCG: A Patent Review. Expert Opin. Ther. Pat. 2016, 26, 907–916. [Google Scholar] [CrossRef]
- Wang, H.; Liu, W.; Yu, F.; Lu, L. Identification of (-)-Epigallocatechin-3-Gallate as a Potential Agent for Blocking Infection by Grass Carp Reovirus. Arch Virol 2016, 161, 1053–1059. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Ru, G.; Xu, Y.; Lu, L. EGCG: Potential Application as a Protective Agent against Grass Carp Reovirus in Aquaculture. J. Fish Dis. 2018, 41, 1259–1267. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Su, M.; Lu, L. (-)-Epicatechin Gallate, a Metabolite of (-)-epigallocatechin Gallate in Grass Carp, Exhibits Antiviral Activity in Vitro against Grass Carp Reovirus. Aquac. Res. 2020, 51, 1673–1680. [Google Scholar] [CrossRef]
- Dai, J.; Zhang, L.; Zhang, P.; Shu, H.; Mao, A.; Li, Y. Ginsenoside Rg3 Inhibits Grass Carp Reovirus Replication in Grass Carp Ovarian Epithelial Cells. Microb. Pathog. 2020, 144, 104174. [Google Scholar] [CrossRef]
- Sliutz, G.; Karlseder, J.; Tempfer, C.; Orel, L.; Holzer, G.; Simon, M. Drug Resistance against Gemcitabine and Topotecan Mediated by Constitutive Hsp70 Overexpression in Vitro: Implication of Quercetin as Sensitiser in Chemotherapy. Br. J. Cancer 1996, 74, 172–177. [Google Scholar] [CrossRef]
- Shan, L.-P.; Chen, X.-H.; Ling, F.; Zhu, B.; Wang, G.-X. Targeting Heat Shock Protein 70 as an Antiviral Strategy against Grass Carp Reovirus Infection. Virus Res. 2018, 247, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Xu, N.; Sun, H.; Xuan, J.; Lu, L. Quercetin Protects Rare Minnow Gobiocypris Rarus from Infection of Genotype II Grass Carp Reovirus. Aquac. Res. 2021, 52, 4867–4873. [Google Scholar] [CrossRef]
- Wang, S.; Huang, X.; Huang, Y.; Hao, X.; Xu, H.; Cai, M.; Wang, H.; Qin, Q. Entry of a Novel Marine DNA Virus, Singapore Grouper Iridovirus, into Host Cells Occurs via Clathrin-Mediated Endocytosis and Macropinocytosis in a PH-Dependent Manner. J. Virol. 2014, 88, 13047–13063. [Google Scholar] [CrossRef] [PubMed]
- Qin, Q.; Chang, S.; Ngoh-Lim, G.; Gibson-Kueh, S.; Shi, C.; Lam, T. Characterization of a Novel Ranavirus Isolated from Grouper Epinephelus Tauvina. Dis. Aquat. Org. 2003, 53, 1–9. [Google Scholar] [CrossRef]
- Liu, M.; Xiao, H.; Wu, S.; Yu, Q.; Li, P. Aptamer-based High-throughput Screening Model for Medicinal Plant Drugs against SGIV. J. Fish Dis. 2020, 43, 1479–1482. [Google Scholar] [CrossRef]
- Chinchar, V.G. Ranaviruses (Family Iridoviridae): Emerging Cold-Blooded Killers. Arch. Virol. 2002, 147, 447–470. [Google Scholar] [CrossRef]
- Wei, S.; Wang, S.; Yang, M.; Huang, Y.; Wei, J.; Huang, X.; Qin, Q. Characterization of Cathepsin C from Orange-Spotted Grouper, Epinephelus Coioides Involved in SGIV Infection. Fish Shellfish Immunol. 2019, 84, 423–433. [Google Scholar] [CrossRef]
- Yu, Q.; Liu, M.; Wei, S.; Qin, X.; Qin, Q.; Li, P. Research Progress and Prospects for the Use of Aptamers in Aquaculture Biosecurity. Aquaculture 2021, 534, 736257. [Google Scholar] [CrossRef]
- Xiao, H.; Liu, M.; Li, S.; Shi, D.; Zhu, D.; Ke, K.; Xu, Y.; Dong, D.; Zhu, L.; Yu, Q.; et al. Isolation and Characterization of a Ranavirus Associated with Disease Outbreaks in Cultured Hybrid Grouper (♀ Tiger Grouper Epinephelus Fuscoguttatus × ♂ Giant Grouper E. Lanceolatus) in Guangxi, China. J. Aquat. Anim. Health 2019, 31, 364–370. [Google Scholar] [CrossRef]
- Zhou, B.-G.; Wang, S.; Dou, T.-T.; Liu, S.; Li, M.-Y.; Hua, R.-M.; Li, S.-G.; Lin, H.-F. Aphicidal Activity of Illicium Verum Fruit Extracts and Their Effects on the Acetylcholinesterase and Glutathione S-Transferases Activities in Myzus Persicae (Hemiptera: Aphididae). J. Insect Sci. 2016, 16, 11. [Google Scholar] [CrossRef]
- Liu, M.; Yu, Q.; Xiao, H.; Yi, Y.; Cheng, H.; Putra, D.F.; Huang, Y.; Zhang, Q.; Li, P. Antiviral Activity of Illicium Verum Hook. f. Extracts against Grouper Iridovirus Infection. J. Fish Dis. 2020, 43, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Yu, Q.; Xiao, H.; Li, M.; Huang, Y.; Zhang, Q.; Li, P. The Inhibitory Activities and Antiviral Mechanism of Medicinal Plant Ingredient Quercetin Against Grouper Iridovirus Infection. Front. Microbiol. 2020, 11, 586331. [Google Scholar] [CrossRef]
- Huang, L.; Li, M.; Wei, H.; Yu, Q.; Huang, S.; Wang, T.; Liu, M.; Li, P. Research on the Indirect Antiviral Function of Medicinal Plant Ingredient Quercetin against Grouper Iridovirus Infection. Fish Shellfish Immunol. 2022, 124, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.-X.; Zhang, L.-J.; Xu, R.; Zhang, G.; Zhou, Y.-B.; Han, X.-Q.; Zhang, Y.; Sun, Y.-X. Structural Characterization and Immunostimulating Activity of a Levan-Type Fructan from Curcuma Kwangsiensis. Int. J. Biol. Macromol. 2015, 77, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Xiao, H.; Zhang, Q.; Wu, S.; Putra, D.F.; Xiong, X.; Xu, M.; Dong, L.; Li, S.; Yu, Q.; et al. Antiviral Abilities of Curcuma Kwangsiensis Ingredients against Grouper Iridoviral Infection in Vitro and in Vivo. Aquac. Res. 2020, 51, 351–361. [Google Scholar] [CrossRef]
- Liu, M.; Yu, Q.; Yi, Y.; Xiao, H.; Putra, D.F.; Ke, K.; Zhang, Q.; Li, P. Antiviral Activities of Lonicera Japonica Thunb. Components against Grouper Iridovirus in Vitro and in Vivo. Aquaculture 2020, 519, 734882. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Zhang, L.; Li, M.-Y.; Wang, L.-W.; Ma, C.-M. Lignans, Flavonoids and Coumarins from Viola Philippica and Their α-Glucosidase and HCV Protease Inhibitory Activities. Nat. Prod. Res. 2019, 33, 1550–1555. [Google Scholar] [CrossRef]
- Yu, Q.; Liu, M.; Xiao, H.; Wu, S.; Qin, X.; Lu, Z.; Shi, D.; Li, S.; Mi, H.; Wang, Y.; et al. The Inhibitory Activities and Antiviral Mechanism of Viola Philippica Aqueous Extracts against Grouper Iridovirus Infection in Vitro and in Vivo. J. Fish Dis. 2019, 42, 859–868. [Google Scholar] [CrossRef]
- Li, M.; Liu, M.; Wei, H.; Huang, L.; Yu, Q.; Huang, S.; Li, J.; Li, P. Antiviral Activities of Glycyrrhiza Uralensis Components against Singapore Grouper Iridovirus. J. World Aquac. Soc. 2022, 1–16. [Google Scholar] [CrossRef]
- Rajendran, K.V.; Vijayan, K.K.; Santiago, T.C.; Krol, R.M. Experimental Host Range and Histopathology of White Spot Syndrome Virus (WSSV) Infection in Shrimp, Prawns, Crabs and Lobsters from India. J. Fish Dis. 2010, 22, 183–191. [Google Scholar] [CrossRef]
- Sahul Hameed, A.S.; Yoganandhan, K.; Sathish, S.; Rasheed, M.; Murugan, V.; Jayaraman, K. White Spot Syndrome Virus (WSSV) in Two Species of Freshwater Crabs (Paratelphusa hydrodomous and P. pulvinata). Aquaculture 2001, 201, 179–186. [Google Scholar] [CrossRef]
- Leu, J.H.; Yang, F.; Zhang, X.; Xu, X.; Lo, C.F. Whispovirus. Curr. Top. Microbiol. Immunol. 2009, 328, 197–227. [Google Scholar] [CrossRef] [PubMed]
- van Hulten, M.C.W.; Witteveldt, J.; Peters, S.; Kloosterboer, N.; Tarchini, R.; Fiers, M.; Sandbrink, H.; Lankhorst, R.K.; Vlak, J.M. The White Spot Syndrome Virus DNA Genome Sequence. Virology 2001, 286, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Itami, T.; Kondo, M.; Maeda, M.; Fujii, R.; Tomonaga, S.; Supamattaya, K.; Boonyaratpalin, S. Electron Microscopic Evidence of Bacilliform Virus Infection in Kuruma Shrimp(Penaeus Japonicus). Fish Pathol. 1994, 29, 121–125. [Google Scholar] [CrossRef]
- Alavandi, S.V.; Muralidhar, M.; Syama Dayal, J.; Rajan, J.S.; Ezhil Praveena, P.; Bhuvaneswari, T.; Saraswathy, R.; Chitra, V.; Vijayan, K.K.; Otta, S.K. Investigation on the Infectious Nature of Running Mortality Syndrome (RMS) of Farmed Pacific White Leg Shrimp, Penaeus Vannamei in Shrimp Farms of India. Aquaculture 2019, 500, 278–289. [Google Scholar] [CrossRef]
- Cock, J.; Gitterle, T.; Salazar, M.; Rye, M. Breeding for Disease Resistance of Penaeid Shrimps. Aquaculture 2009, 286, 1–11. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, B.; Zhu, F. Epigallocatechin-3-Gallate Inhibit Replication of White Spot Syndrome Virus in Scylla Paramamosain. Fish Shellfish Immunol. 2017, 67, 612–619. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, B.; Zhu, F. Epigallocatechin-3-Gallate Protects Kuruma Shrimp Marsupeneaus Japonicus from White Spot Syndrome Virus and Vibrio Alginolyticus. Fish Shellfish Immunol. 2018, 78, 1–9. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, C.; Xu, F.; Li, B.; Shen, J.; Wang, T.; Jiang, H.; Wang, G. Evaluation of the Antiviral Activity of Naringenin, a Major Constituent of Typha angustifolia, against White Spot Syndrome Virus in Crayfish Procambarus Clarkii. J. Fish Dis. 2021, 44, 1503–1513. [Google Scholar] [CrossRef]
- Peng, H.; Wei, Z.; Luo, H.; Yang, Y.; Wu, Z.; Gan, L.; Yang, X. Inhibition of Fat Accumulation by Hesperidin in Caenorhabditis elegans. J. Agric. Food Chem. 2016, 64, 5207–5214. [Google Scholar] [CrossRef]
- Liu, F.; Qu, Y.-K.; Geng, C.; Wang, A.-M.; Zhang, J.-H.; Chen, K.-J.; Liu, B.; Tian, H.-Y.; Yang, W.-P.; Yu, Y.-B. Effects of Hesperidin on the Growth Performance, Antioxidant Capacity, Immune Responses and Disease Resistance of Red Swamp Crayfish (Procambarus Clarkii). Fish Shellfish Immunol. 2020, 99, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.-G.; Tu, X.; Qi, X.-Z.; Ling, F.; Zhu, B.; Wang, G.-X. Gardenia Jasminoides Ellis Inhibit White Spot Syndrome Virus Replication in Red Swamp Crayfish Procambarus Clarkii. Aquaculture 2019, 504, 239–247. [Google Scholar] [CrossRef]
- Huang, A.-G.; Tan, X.-P.; Cui, H.-B.; Qi, X.-Z.; Zhu, B.; Wang, G.-X. Antiviral Activity of Geniposidic Acid against White Spot Syndrome Virus Replication in Red Swamp Crayfish Procambarus Clarkii. Aquaculture 2020, 528, 735533. [Google Scholar] [CrossRef]
- Nakamura, K.; Hosoo, S.; Yamaguchi, S.; Koyama, M.; Yamazaki, R.; Hirata, T.; Yamaguchi, Y.; Yamasaki, H.; Minamino, N.; Wada, K.; et al. Geniposidic Acid Upregulates Atrial Natriuretic Peptide Secretion and Lowers Blood Pressure in Spontaneously Hypertensive Rats. J. Funct. Foods 2018, 40, 634–638. [Google Scholar] [CrossRef]
- Rameshthangam, P.; Ramasamy, P. Antiviral Activity of Bis(2-Methylheptyl)Phthalate Isolated from Pongamia Pinnata Leaves against White Spot Syndrome Virus of Penaeus Monodon Fabricius. Virus Res. 2007, 126, 38–44. [Google Scholar] [CrossRef]
- Klongklaew, N.; Praiboon, J.; Tamtin, M.; Srisapoome, P. Chemical Composition of a Hot Water Crude Extract (HWCE) from Ulva Intestinalis and Its Potential Effects on Growth Performance, Immune Responses, and Resistance to White Spot Syndrome Virus and Yellowhead Virus in Pacific White Shrimp (Litopenaeus Vannamei). Fish Shellfish Immunol. 2021, 112, 8–22. [Google Scholar] [CrossRef]
- Sirirustananun, N.; Chen, J.-C.; Lin, Y.-C.; Yeh, S.-T.; Liou, C.-H.; Chen, L.-L.; Sim, S.S.; Chiew, S.L. Dietary Administration of a Gracilaria Tenuistipitata Extract Enhances the Immune Response and Resistance against Vibrio Alginolyticus and White Spot Syndrome Virus in the White Shrimp Litopenaeus Vannamei. Fish Shellfish Immunol. 2011, 31, 848–855. [Google Scholar] [CrossRef]
- Kulkarni, A.; Krishnan, S.; Anand, D.; Kokkattunivarthil Uthaman, S.; Otta, S.K.; Karunasagar, I.; Kooloth Valappil, R. Immune Responses and Immunoprotection in Crustaceans with Special Reference to Shrimp. Rev. Aquacult. 2021, 13, 431–459. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, P.; Wang, B.; Lu, Y.; Li, L.; Li, Y.; Liu, S. Evaluation of the Effects of Astragalus Polysaccharides as Immunostimulants on the Immune Response of Crucian Carp and against SVCV in Vitro and in Vivo. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 253, 109249. [Google Scholar] [CrossRef]
- Huang, A.-G.; Tan, X.-P.; Qu, S.-Y.; Wang, G.-X.; Zhu, B. Evaluation on the Antiviral Activity of Genipin against White Spot Syndrome Virus in Crayfish. Fish Shellfish Immunol. 2019, 93, 380–386. [Google Scholar] [CrossRef]
- Mariot, L.V.; Bolívar, N.; Coelho, J.D.R.; Goncalves, P.; Colombo, S.M.; do Nascimento, F.V.; Schleder, D.D.; Hayashi, L. Diets Supplemented with Carrageenan Increase the Resistance of the Pacific White Shrimp to WSSV without Changing Its Growth Performance Parameters. Aquaculture 2021, 545, 737172. [Google Scholar] [CrossRef]
- Medina-Beltrán, V.; Luna-González, A.; Fierro-Coronado, J.A.; Campa-Córdova, Á.I.; Peraza-Gómez, V.; Flores-Miranda, M.d.C.; Gutiérrez Rivera, J.N. Echinacea Purpurea and Uncaria Tomentosa Reduce the Prevalence of WSSV in Witheleg Shrimp (Litopenaeus Vannamei) Cultured under Laboratory Conditions. Aquaculture 2012, 358–359, 164–169. [Google Scholar] [CrossRef]
- Palanikumar, P.; Daffni Benitta, D.J.; Lelin, C.; Thirumalaikumar, E.; Michaelbabu, M.; Citarasu, T. Effect of Argemone Mexicana Active Principles on Inhibiting Viral Multiplication and Stimulating Immune System in Pacific White Leg Shrimp Litopenaeus Vannamei against White Spot Syndrome Virus. Fish Shellfish Immunol. 2018, 75, 243–252. [Google Scholar] [CrossRef]
- Fierro Coronado, J.; Luna Gonzalez, A.; Caceres Martinez, C.; Ruiz Verdugo, C.; Escamilla Montes, R.; Diarte Plata, G.; Flores Miranda, M.; Alvarez Ruiz, P.; Peraza Gomez, V. Effect of Medicinal Plants on the Survival of White Shrimp (Penaeus Vannamei) Challenged with WSSV and Vibrio Parahaemolyticus. Lat. Am. J. Aquat. Res. 2019, 47, 377–381. [Google Scholar] [CrossRef]
- Jiang, H.-F.; Chen, C.; Jiang, X.-Y.; Shen, J.-L.; Ling, F.; Li, P.-F.; Wang, G.-X. Luteolin in Lonicera Japonica Inhibits the Proliferation of White Spot Syndrome Virus in the Crayfish Procambarus Clarkii. Aquaculture 2022, 550, 737852. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, L.Y.; Zhou, G.Q.; Jiang, G.C.; Ding, Z.F. Effects of Chicory Polysaccharides on the Growth, Antioxidant Activity, and Disease Resistance in the Chinese Mitten Crab Eriocheir Sinensis H. Milne Edwards, 1853 (Decapoda: Brachyura: Varunidae). J. Crustacean Biol. 2021, 41, ruab023. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, C.; Zhu, F. Effects of Dietary Quercetin on the Innate Immune Response and Resistance to White Spot Syndrome Virus in Procambarus Clarkii. Fish Shellfish Immunol. 2021, 118, 205–212. [Google Scholar] [CrossRef]
- Dewi, N.R.; Huang, H.-T.; Wu, Y.-S.; Liao, Z.-H.; Lin, Y.-J.; Lee, P.-T.; Nan, F.-H. Guava (Psidium Guajava) Leaf Extract Enhances Immunity, Growth, and Resistance against Vibrio Parahaemolyticus in White Shrimp Penaeus Vannamei. Fish Shellfish Immunol. 2021, 118, 1–10. [Google Scholar] [CrossRef]
- Qian, X.; Zhu, F. Hesperetin Protects Crayfish Procambarus Clarkii against White Spot Syndrome Virus Infection. Fish Shellfish Immunol. 2019, 93, 116–123. [Google Scholar] [CrossRef]
- Bindhu, F.; Velmurugan, S.; Donio, M.B.S.; Michaelbabu, M.; Citarasu, T. Influence of Agathi Grandiflora Active Principles Inhibit Viral Multiplication and Stimulate Immune System in Indian White Shrimp Fenneropenaeus Indicus against White Spot Syndrome Virus Infection. Fish Shellfish Immunol. 2014, 41, 482–492. [Google Scholar] [CrossRef]
- Citarasu, T.; Sivaram, V.; Immanuel, G.; Rout, N.; Murugan, V. Influence of Selected Indian Immunostimulant Herbs against White Spot Syndrome Virus (WSSV) Infection in Black Tiger Shrimp, Penaeus Monodon with Reference to Haematological, Biochemical and Immunological Changes. Fish Shellfish Immunol. 2006, 21, 372–384. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, G.; Sarathi, M.; Venkatesan, C.; Thomas, J.; Sahul Hameed, A.S. Oral Administration of Antiviral Plant Extract of Cynodon Dactylon on a Large Scale Production against White Spot Syndrome Virus (WSSV) in Penaeus Monodon. Aquaculture 2008, 279, 2–5. [Google Scholar] [CrossRef]
- Balasubramanian, G.; Sarathi, M.; Venkatesan, C.; Thomas, J.; Sahul Hameed, A.S. Studies on the Immunomodulatory Effect of Extract of Cyanodon Dactylon in Shrimp, Penaeus Monodon, and Its Efficacy to Protect the Shrimp from White Spot Syndrome Virus (WSSV). Fish Shellfish Immunol. 2008, 25, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Tomazelli Junior, O.; Kuhn, F.; Mendonça Padilha, P.J.; Mota Vicente, L.R.; Winckler da Costa, S.; Corrêa da Silva, B.; Dias Schleder, D.; Boligon, A.A.; Scapinello, J.; Nunes Nesi, C.; et al. Effect of Cynodon Dactylon Extract on White Spot Virus-Infected Litopenaeus Vannamei. Aquac. Int. 2017, 25, 1107–1122. [Google Scholar] [CrossRef]
- Trejo-Flores, J.V.; Luna-González, A.; Álvarez-Ruíz, P.; Escamilla-Montes, R.; Peraza-Gómez, V.; Diarte-Plata, G.; Esparza-Leal, H.M.; Campa-Córdova, Á.I.; Gámez-Jiménez, C.; Rubio-Castro, A. Protective Effect of Aloe Vera in Litopenaeus Vannamei Challenged with Vibrio Parahaemolyticus and White Spot Syndrome Virus. Aquaculture 2016, 465, 60–64. [Google Scholar] [CrossRef]
- Balasubramanian, G.; Sarathi, M.; Kumar, S.R.; Hameed, A.S.S. Screening the Antiviral Activity of Indian Medicinal Plants against White Spot Syndrome Virus in Shrimp. Aquaculture 2007, 263, 15–19. [Google Scholar] [CrossRef]
- Júnior, O.T.; Kuhn, F.; Mendonça Padilha, P.J.; Mota Vicente, L.R.; Winckler da Costa, S.; Corrêa da Silva, B.; Schleder, D.D.; Nunes Nesi, C.; Dal Magro, J.; de Lamo-Castellví, S. Survival of White Spot Syndrome Virus–Infected Litopenaeus Vannamei Fed with Ethanol Extract of Uncaria Tomentosa. J. World Aquac. Soc. 2018, 49, 165–174. [Google Scholar] [CrossRef]
- Muliani; Nurbaya; Kadriah, I.A.K. The Effect of Several Types of Mangrove Exctracs on Tiger Shrimp Penaeus Monodon Survival Rate Challenged with White Spot Syndrome Virus (WSSV). IOP Conf. Ser. Earth Environ. Sci. 2020, 564, 012054. [Google Scholar] [CrossRef]
- Qian, X.; Zhu, F. Use of Glycerol Monolaurate as a Treatment against White Spot Syndrome Virus in Crayfish (Procambarus Clarkii). Aquaculture 2021, 541, 736853. [Google Scholar] [CrossRef]
- Gholamhosseini, A.; Kheirandish, M.R.; Shiry, N.; Akhlaghi, M.; Soltanian, S.; Roshanpour, H.; Banaee, M. Use of a Methanolic Olive Leaf Extract (Olea Europaea) against White Spot Virus Syndrome in Penaeus Vannamei: Comparing the Biochemical, Hematological and Immunological Changes. Aquaculture 2020, 528, 735556. [Google Scholar] [CrossRef]
- Jin, Q.-R.; Mao, J.-W.; Zhu, F. The Effects of Anoectochilus Roxburghii Polysaccharides on the Innate Immunity and Disease Resistance of Procambarus Clarkii. Aquaculture 2022, 555, 738210. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, J.; Xu, Y.; Wang, H.; Lu, L.; Song, R.; Zou, J. Epigallocatechin-3-Gallate Inhibits Replication of White Spot Syndrome Virus in the Freshwater Crayfish Procambarus Clarkii. J. Fish Dis. 2022, 45, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Shan, L.-P.; Zhang, X.; Hu, Y.; Liu, L.; Chen, J. Antiviral Activity of Esculin against White Spot Syndrome Virus: A New Starting Point for Prevention and Control of White Spot Disease Outbreaks in Shrimp Seedling Culture. J. Fish Dis. 2022, 45, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Liu, L.; Shan, L.-P.; Chen, J. Natural Ingredient Paeoniflorin Could Be a Lead Compound against White Spot Syndrome Virus Infection in Litopenaeus Vannamei. J. Fish Dis. 2022, 45, 349–359. [Google Scholar] [CrossRef]
- Huang, A.-G.; He, W.-H.; Zhang, F.-L.; Wei, C.-S.; Wang, Y.-H. Natural Component Geniposide Enhances Survival Rate of Crayfish Procambarus Clarkii Infected with White Spot Syndrome Virus. Fish Shellfish Immunol. 2022, 126, 96–103. [Google Scholar] [CrossRef]
- Xj, A.; Wj, A.; Fei, Z.B. Dietary Hizikia fusiforme Enhance Survival of White Spot Syndrome Virus Infected Crayfish Procambarus Clarkii—ScienceDirect. Fish Shellfish Immunol. 2020, 103, 88–94. [Google Scholar] [CrossRef]
- Walker, P.J.; Winton, J.R. Emerging Viral Diseases of Fish and Shrimp. Vet. Res. 2010, 41, 51. [Google Scholar] [CrossRef]
- Frankic, A.; Hershner, C. Sustainable Aquaculture: Developing the Promise of Aquaculture. Aquac. Int. 2003, 11, 517–530. [Google Scholar] [CrossRef]
- Gui, J.; Zhu, Z. Molecular Basis and Genetic Improvement of Economically Important Traits in Aquaculture Animals. Chin. Sci. Bull. 2012, 57, 1751–1760. [Google Scholar] [CrossRef]
- Bacharach, E.; Mishra, N.; Briese, T.; Zody, M.C.; Kembou Tsofack, J.E.; Zamostiano, R.; Berkowitz, A.; Ng, J.; Nitido, A.; Corvelo, A.; et al. Characterization of a Novel Orthomyxo-like Virus Causing Mass Die-Offs of Tilapia. mBio 2016, 7, e00431-16. [Google Scholar] [CrossRef]
- Lin, L.-T.; Hsu, W.-C.; Lin, C.-C. Antiviral Natural Products and Herbal Medicines. J. Tradit. Complementary Med. 2014, 4, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Dawood, M.A.O.; Habotta, O.A.E.; Elsabagh, M.; Azra, M.N.; Van Doan, H.; Kari, Z.A.; Sewilam, H. Fruit Processing By-products in the Aquafeed Industry: A Feasible Strategy for Aquaculture Sustainability. Rev. Aquac. 2022, raq.12680. [Google Scholar] [CrossRef]
- Cheng, H.-Y.; Yang, C.-M.; Lin, T.-C.; Lin, L.-T.; Chiang, L.-C.; Lin, C.-C. Excoecarianin, Isolated from Phyllanthus Urinaria Linnea, Inhibits Herpes Simplex Virus Type 2 Infection through Inactivation of Viral Particles. Evid.-Based Complement. Altern. Med. 2011, 2011, 259103. [Google Scholar] [CrossRef] [PubMed]
- Gescher, K.; Kühn, J.; Lorentzen, E.; Hafezi, W.; Derksen, A.; Deters, A.; Hensel, A. Proanthocyanidin-Enriched Extract from Myrothamnus Flabellifolia Welw. Exerts Antiviral Activity against Herpes Simplex Virus Type 1 by Inhibition of Viral Adsorption and Penetration. J. Ethnopharmacol. 2011, 134, 468–474. [Google Scholar] [CrossRef]
- Chiang, L.-C.; Ng, L.-T.; Cheng, P.-W.; Chiang, W.; Lin, C.-C. Antiviral Activities of Extracts and Selected Pure Constituents of Ocimum Basilicum. Clin. Exp. Pharmacol. Physiol. 2005, 32, 811–816. [Google Scholar] [CrossRef]
- Mouler Rechtman, M.; Har-Noy, O.; Bar-Yishay, I.; Fishman, S.; Adamovich, Y.; Shaul, Y.; Halpern, Z.; Shlomai, A. Curcumin Inhibits Hepatitis B Virus via Down-Regulation of the Metabolic Coactivator PGC-1α. FEBS Lett. 2010, 584, 2485–2490. [Google Scholar] [CrossRef]
- Kuo, Y.-C.; Lin, L.-C.; Tsai, W.-J.; Chou, C.-J.; Kung, S.-H.; Ho, Y.-H. Samarangenin B from Limonium Sinense Suppresses Herpes Simplex Virus Type 1 Replication in Vero Cells by Regulation of Viral Macromolecular Synthesis. Antimicrob. Agents Chemother. 2002, 46, 2854–2864. [Google Scholar] [CrossRef]
- Takebe, Y.; Saucedo, C.J.; Lund, G.; Uenishi, R.; Hase, S.; Tsuchiura, T.; Kneteman, N.; Ramessar, K.; Tyrrell, D.L.J.; Shirakura, M.; et al. Antiviral Lectins from Red and Blue-Green Algae Show Potent in Vitro and in Vivo Activity against Hepatitis C Virus. PLoS ONE 2013, 8, e64449. [Google Scholar] [CrossRef]
- Pei-wen, C.; Chiang, L.-C.; Yen, M.-H.; Lin, C.-C. Bupleurum Kaoi Inhibits Coxsackie B Virus Type 1 Infection of CCFS-1 Cells by Induction of Type I Interferons Expression. Food Chem. Toxicol. 2007, 45, 24–31. [Google Scholar] [CrossRef]
- Devi, A.B.; Sarala, R. Substantial Effect of Phytochemical Constituents against the Pandemic Disease Influenza—A Review. Future J. Pharm. Sci. 2021, 7, 120. [Google Scholar] [CrossRef]
- Safari, O.; Sarkheil, M.; Paolucci, M. Dietary Administration of Ferula (Ferula Asafoetida) Powder as a Feed Additive in Diet of Koi Carp, Cyprinus Carpio Koi: Effects on Hemato-Immunological Parameters, Mucosal Antibacterial Activity, Digestive Enzymes, and Growth Performance. Fish Physiol. Biochem. 2019, 45, 1277–1288. [Google Scholar] [CrossRef] [PubMed]
- Maldonado-Garcia, M.; Angulo, C.; Vazquez-Martinez, J.; Sanchez, V.; Lopez, M.G.; Reyes-Becerril, M. Antioxidant and Immunostimulant Potentials of Chenopodium ambrosioides L. in Pacific Red Snapper (Lutjanus Peru). Aquaculture 2019, 513, 734414. [Google Scholar] [CrossRef]
- Bilen, S.; Ispir, S.; Kenanoglu, O.N.; Taştan, Y.; Güney, K.; Terzi, E. Effects of Greek Juniper (Juniperus Excelsa) Extract on Immune Responses and Disease Resistance against Yersinia Ruckeri in Rainbow Trout (Oncorhynchus Mykiss). J. Fish Dis. 2021, 44, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Chitmanat, C.; Tongdonmuan, K.; Khanom, P.; Pachontis, P.; Nunsong, W. Antiparasitic, Antibacterial, and Antifungal Activities Derived from a Terminalia Catappa Solution against Some Tilapia (Oreochromis Niloticus) Pathogens. Acta Hortic. 2005, 678, 179–182. [Google Scholar] [CrossRef]
- Wu, G.; Yuan, C.; Shen, M.; Tang, J.; Gong, Y.; Li, D.; Sun, F.; Huang, C.; Han, X. Immunological and Biochemical Parameters in Carp (Cyprinus Carpio) after Qompsell Feed Ingredients for Long-Term Administration. Aquac. Res. 2007, 38, 246–255. [Google Scholar] [CrossRef]
- VENKATRAMALINGAM, K.; Christopher, G.; Citarasu, T. Zingiber Officinalis an Herbal Appetizer in the Tiger Shrimp Penaeus Monodon (Fabricius) Larviculture. Aquac. Nutr. 2007, 13, 439–443. [Google Scholar] [CrossRef]
- Liñán-Cabello, M.; Medina-Zendejas, R.; Sánchez-Barajas, M.; Herrera, A. Effects of Carotenoids and Retinol in Oocyte Maturation of Crayfish Cherax Quadrucarinatus. Aquac. Res. 2004, 35, 905–911. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).