Seroprevalence of SARS-CoV-2 IgG Antibodies and Factors Associated with SARS-CoV-2 IgG Neutralizing Activity among Primary Health Care Workers 6 Months after Vaccination Rollout in France
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Time Frame, and Population
2.2. Participant Sampling
2.3. Data Collection and Sample Preparation
2.4. Laboratory Analysis
2.5. Outcomes
2.6. Variable Definitions
2.7. Statistical Analysis
2.8. Ethics
3. Results
3.1. Characteristics of Study Participants
3.2. Characteristics of Participants with Self-Reported SARS-CoV-2 infection after Primary COVID-19 Vaccination
3.3. Seroprevalence of SARS-CoV-2 Antibodies
3.4. Seroprevalence of Antibodies against the SARS-CoV-2 N Protein
3.5. Seroprevalence of Antibodies against the SARS-CoV-2 S Protein and Quantitative ELISA-S Results
3.6. Seroneutralizing Antibodies and Correlation with ELISA Test
3.7. Factors Associated with the Detection of Neutralizing Antibodies
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2020, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Sadoff, J.; Gray, G.; Vandebosch, A.; Cárdenas, V.; Shukarev, G.; Grinsztejn, B.; Goepfert, P.A.; Truyers, C.; Fennema, H.; Spiessens, B.; et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against COVID-19. N. Engl. J. Med. 2021, 384, 2187–2201. [Google Scholar] [CrossRef] [PubMed]
- Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111. [Google Scholar] [CrossRef]
- Haute Autorité de Santé. Stratégie de Vaccination Contre le SARS-CoV-2—Vaccination des Personnes Ayant un Antécédent de COVID-19. 2021. Available online: https://www.has-sante.fr/jcms/p_3237355/fr/strategie-de-vaccination-contre-le-sars-cov-2-vaccination-des-personnes-ayant-un-antecedent-de-covid-19-synthese (accessed on 2 March 2022).
- Haute Autorité de Santé. Décision n° 2021.0139/DC/SEESP du 31 Mai 2021 du Collège de la Haute Autorité de Santé Complétant les Recommandations du 11 Février 2021 Relatives à «la Vaccination des Personnes Ayant un Antécédent de COVID-19». 2021. Available online: https://www.has-sante.fr/jcms/p_3269858/fr/decision-n2021-0139-dc-seesp-du-31-mai-2021-du-college-de-la-has-completant-les-reco-du-11-fevrier-2021-relatives-a-la-vaccination-des-personnes-ayant-un-antecedent-de-covid-19 (accessed on 2 March 2022).
- Regev-Yochay, G.; Amit, S.; Bergwerk, M.; Lipsitch, M.; Leshem, E.; Kahn, R.; Lustig, Y.; Cohen, C.; Doolman, R.; Ziv, A.; et al. Decreased infectivity following BNT162b2 vaccination: A prospective cohort study in Israel. Lancet Reg. Health 2021, 7, 100150. [Google Scholar] [CrossRef]
- Levine-Tiefenbrun, M.; Yelin, I.; Alapi, H.; Katz, R.; Herzel, E.; Kuint, J.; Chodick, G.; Gazit, S.; Patalon, T.; Kishony, R. Viral loads of Delta-variant SARS-CoV-2 breakthrough infections after vaccination and booster with BNT162b2. Nat. Med. 2021, 27, 2108–2110. [Google Scholar] [CrossRef]
- Yewdell, J.W. Individuals cannot rely on COVID-19 herd immunity: Durable immunity to viral disease is limited to viruses with obligate viremic spread. PLoS Pathog. 2021, 17, e1009509. [Google Scholar] [CrossRef]
- Vaccines and Related Biological Products Advisory Committee. BNT162b2 [COMIRNATY (COVID-19 Vaccine, mRNA)]. Evaluation of a Booster Dose (Third Dose). In Vaccines and Related Biological Products Advisory Committee Briefing Document Meeting Date: 17 September 2021; VRBPAC: Silver Spring, MD, USA, 2021. Available online: https://www.fda.gov/media/152161/download (accessed on 14 March 2022).
- Santé Publique France. Coronavirus: Circulation des Variants du SARS-CoV-2. 2022. Available online: https://www.santepubliquefrance.fr/dossiers/coronavirus-covid-19/coronavirus-circulation-des-variants-du-sars-cov-2#block-331390 (accessed on 14 March 2022).
- Dolscheid-Pommerich, R.; Bartok, E.; Renn, M.; Kümmerer, B.M.; Schulte, B.; Schmithausen, R.M.; Stoffel-Wagner, B.; Streeck, H.; Saschenbrecker, S.; Steinhagen, K.; et al. Correlation between a quantitative anti-SARS-CoV-2 IgG ELISA and neutralization activity. J. Med. Virol. 2022, 94, 388–392. [Google Scholar] [CrossRef]
- Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 1205–1211. [Google Scholar] [CrossRef]
- Wei, J.; Pouwels, K.B.; Stoesser, N.; Matthews, P.C.; Diamond, I.; Studley, R.; Rourke, E.; Cook, D.; Bell, J.I.; Newton, J.N.; et al. Antibody responses and correlates of protection in the general population after two doses of the ChAdOx1 or BNT162b2 vaccines. Nat. Med. 2022, 1–11. [Google Scholar] [CrossRef]
- Rivett, L.; Sridhar, S.; Sparkes, D.; Routledge, M.; Jones, N.K.; Forrest, S.; Young, J.; Pereira-Dias, J.; Hamilton, W.L.; Ferris, M.; et al. Screening of healthcare workers for SARS-CoV-2 highlights the role of asymptomatic carriage in COVID-19 transmission. eLife 2020, 9, e58728. [Google Scholar] [CrossRef] [PubMed]
- Pouquet, M.; Decarreaux, D.; Prévot-Monsacré, P.; Hervé, C.; Werner, A.; Grosgogeat, B.; Blanché, H.; Rabiega, P.; Laupie, J.; Kochert, F.; et al. Nationwide Seroprevalence of SARS-CoV-2 IgG Antibodies among Four Groups of Primary Health-Care Workers and Their Household Contacts 6 Months after the Initiation of the COVID-19 Vaccination Campaign in France: SeroPRIM Study Protocol. Pathogens 2021, 10, 911. [Google Scholar] [CrossRef] [PubMed]
- Patel, E.U.; Bloch, E.M.; Clarke, W.; Hsieh, Y.H.; Boon, D.; Eby, Y.; Fernandez, R.E.; Baker, O.R.; Keruly, M.; Kirby, C.S.; et al. Comparative Performance of Five Commercially Available Serologic Assays to Detect Antibodies to SARS-CoV-2 and Identify Individuals with High Neutralizing Titers. J. Clin. Microbiol. 2021, 59, e02257-20. [Google Scholar] [CrossRef] [PubMed]
- Gallian, P.; Pastorino, B.; Morel, P.; Chiaroni, J.; Ninove, L.; de Lamballerie, X. Lower prevalence of antibodies neutralizing SARS-CoV-2 in group O French blood donors. Antivir. Res. 2020, 181, 104880. [Google Scholar] [CrossRef]
- Haute Autorité de Santé. Avis n° 2021.0069/AC/SESPEV du 23 Septembre 2021 du Collège de la Haute Autorité de Santé Venant Compléter l’Avis du 23 août 2021 Relatif à la Définition des Populations à Cibler par la Campagne de Rappel Vaccinal Chez les Personnes Ayant eu une Primovaccination Complète Contre la COVID-19. 2021. Available online: https://www.has-sante.fr/jcms/p_3288596/fr/avis-n-2021-0069/ac/sespev-du-23-septembre-2021-du-college-de-la-haute-autorite-de-sante-venant-completer-l-avis-du-23-aout-2021-relatif-a-la-definition-des-populations-a-cibler-par-la-campagne-de-rappel-vaccinal-chez-les-personnes-ayant-eu-une-primovaccination-complete-contre-la-covid-19 (accessed on 2 March 2022).
- Clopper, C.J.; Pearson, E.S. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 1934, 26, 404–413. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2006; Available online: https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/rdevelopment-core-team-2006 (accessed on 3 March 2022).
- Saadat, S.; Rikhtegaran Tehrani, Z.; Logue, J.; Newman, M.; Frieman, M.B.; Harris, A.D.; Sajadi, M.M. Binding and Neutralization Antibody Titers after a Single Vaccine Dose in Health Care Workers Previously Infected with SARS-CoV-2. JAMA 2021, 325, 1467–1469. [Google Scholar] [CrossRef]
- Moncunill, G.; Aguilar, R.; Ribes, M.; Ortega, N.; Rubio, R.; Salmerón, G.; Molina, M.J.; Vidal, M.; Barrios, D.; Mitchell, R.A.; et al. Determinants of early antibody responses to COVID-19 mRNA vaccines in a cohort of exposed and naïve healthcare workers. eBioMedicine 2022, 75, 103805. [Google Scholar] [CrossRef]
- Ward, H.; Whitaker, M.; Flower, B.; Tang, S.N.; Atchison, C.; Darzi, A.; Donnelly, C.A.; Cann, A.; Diggle, P.J.; Ashby, D.; et al. Population antibody responses following COVID-19 vaccination in 212,102 individuals. Nat. Commun. 2022, 13, 907. [Google Scholar] [CrossRef]
- Havervall, S.; Marking, U.; Greilert-Norin, N.; Gordon, M.; Ng, H.; Christ, W.; Phillipson, M.; Nilsson, P.; Hober, S.; Blom, K.; et al. Impact of SARS-CoV-2 infection on vaccine-induced immune responses over time. Clin. Transl. Immunol. 2022, 11, e1388. [Google Scholar] [CrossRef]
- Krammer, F.; Srivastava, K.; Alshammary, H.; Amoako, A.A.; Awawda, M.H.; Beach, K.F.; Bermúdez-González, M.C.; Bielak, D.A.; Carreño, J.M.; Chernet, R.L.; et al. Antibody Responses in Seropositive Persons after a Single Dose of SARS-CoV-2 mRNA Vaccine. N. Engl. J. Med. 2021, 384, 1372–1374. [Google Scholar] [CrossRef]
- Perkmann, T.; Perkmann-Nagele, N.; Koller, T.; Mucher, P.; Radakovics, A.; Marculescu, R.; Wolzt, M.; Wagner, O.F.; Binder, C.J.; Haslacher, H. Anti-Spike Protein Assays to Determine SARS-CoV-2 Antibody Levels: A Head-to-Head Comparison of Five Quantitative Assays. Microbiol. Spectr. 2021, 9, e0024721. [Google Scholar] [CrossRef] [PubMed]
- Ontañón, J.; Blas, J.; de Cabo, C.; Santos, C.; Ruiz-Escribano, E.; García, A.; Marín, L.; Sáez, L.; Beato, J.L.; Rada, R.; et al. Influence of past infection with SARS-CoV-2 on the response to the BNT162b2 mRNA vaccine in health care workers: Kinetics and durability of the humoral immune response. eBioMedicine 2021, 73, 103656. [Google Scholar] [CrossRef] [PubMed]
- Rudberg, A.-S.; Havervall, S.; Månberg, A.; Jernbom Falk, A.; Aguilera, K.; Ng, H.; Gabrielsson, L.; Salomonsson, A.-C.; Hanke, L.; Murrell, B.; et al. SARS-CoV-2 exposure, symptoms and seroprevalence in healthcare workers in Sweden. Nat. Commun. 2020, 11, 5064. [Google Scholar] [CrossRef] [PubMed]
- Levin, E.G.; Lustig, Y.; Cohen, C.; Fluss, R.; Indenbaum, V.; Amit, S.; Doolman, R.; Asraf, K.; Mendelson, E.; Ziv, A.; et al. Waning Immune Humoral Response to BNT162b2 COVID-19 Vaccine over 6 Months. N. Engl. J. Med. 2021, 385, e84. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, E.N.; Devlin, J.C.; Buus, T.B.; Koide, A.; Shwetar, J.; Cornelius, A.; Samanovic, M.I.; Herrera, A.; Mimitou, E.P.; Zhang, C.; et al. SARS-CoV-2 mRNA vaccine elicits a potent adaptive immune response in the absence of IFN-mediated inflammation observed in COVID-19. medRxiv 2021. [Google Scholar] [CrossRef]
- Dagan, N.; Barda, N.; Kepten, E.; Miron, O.; Perchik, S.; Katz, M.A.; Hernán, M.A.; Lipsitch, M.; Reis, B.; Balicer, R.D. BNT162b2 mRNA COVID-19 Vaccine in a Nationwide Mass Vaccination Setting. N. Engl. J. Med. 2021, 384, 1412–1423. [Google Scholar] [CrossRef]
- Chodick, G.; Tene, L.; Rotem, R.S.; Patalon, T.; Gazit, S.; Ben-Tov, A.; Weil, C.; Goldshtein, I.; Twig, G.; Cohen, D.; et al. The Effectiveness of the Two-Dose BNT162b2 Vaccine: Analysis of Real-World Data. Clin. Infect. Dis. 2022, 74, 472–478. [Google Scholar] [CrossRef]
- Vicenti, I.; Gatti, F.; Scaggiante, R.; Boccuto, A.; Zago, D.; Basso, M.; Dragoni, F.; Parisi, S.G.; Zazzi, M. The second dose of the BNT162b2 mRNA vaccine does not boost SARS-CoV-2 neutralizing antibody response in previously infected subjects. Infection 2022, 50, 541–543. [Google Scholar] [CrossRef]
- Shrotri, M.; Fragaszy, E.; Geismar, C.; Nguyen, V.; Beale, S.; Braithwaite, I.; Byrne, T.E.; Fong, W.L.E.; Kovar, J.; Navaratnam, A.M.D.; et al. Spike-antibody responses to ChAdOx1 and BNT162b2 vaccines by demographic and clinical factors (Virus Watch study). medRxiv 2021. [Google Scholar] [CrossRef]
- Seow, J.; Graham, C.; Merrick, B.; Acors, S.; Pickering, S.; Steel, K.J.A.; Hemmings, O.; O’Byrne, A.; Kouphou, N.; Galao, R.P.; et al. Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nat. Microbiol. 2020, 5, 1598–1607. [Google Scholar] [CrossRef]
- Mizrahi, B.; Lotan, R.; Kalkstein, N.; Peretz, A.; Perez, G.; Ben-Tov, A.; Chodick, G.; Gazit, S.; Patalon, T. Correlation of SARS-CoV-2-breakthrough infections to time-from-vaccine. Nat. Commun. 2021, 12, 6379. [Google Scholar] [CrossRef] [PubMed]
- Jo, D.H.; Minn, D.; Lim, J.; Lee, K.D.; Kang, Y.M.; Choe, K.W.; Kim, K.-N. Rapidly Declining SARS-CoV-2 Antibody Titers within 4 Months after BNT162b2 Vaccination. Vaccines 2021, 9, 1145. [Google Scholar] [CrossRef] [PubMed]
- Abu Jabal, K.; Ben-Amram, H.; Beiruti, K.; Batheesh, Y.; Sussan, C.; Zarka, S.; Edelstein, M. Impact of age, ethnicity, sex and prior infection status on immunogenicity following a single dose of the BNT162b2 mRNA COVID-19 vaccine: Real-world evidence from healthcare workers, Israel, December 2020 to January 2021. Eurosurveillance 2021, 26, 2100096. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.W.X.; Chiew, C.J.; Ang, L.W.; Mak, T.M.; Cui, L.; Toh, M.; Lim, Y.D.; Lee, P.H.; Lee, T.H.; Chia, P.Y.; et al. Clinical and virological features of SARS-CoV-2 variants of concern: A retrospective cohort study comparing B.1.1.7 (Alpha), B.1.315 (Beta), and B.1.617.2 (Delta). Clin. Infect. Dis. 2021; in press. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Phillips, D.; White, T.; Sayal, H.; Aley, P.; Bibi, S.; Dold, C.; Fuskova, M.; Gilbert, S.C.; Hirsch, I.; et al. Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. medRxiv 2021. [Google Scholar] [CrossRef]
- Dobaño, C.; Santano, R.; Jiménez, A.; Vidal, M.; Chi, J.; Rodrigo Melero, N.; Popovic, M.; López-Aladid, R.; Fernández-Barat, L.; Tortajada, M.; et al. Immunogenicity and crossreactivity of antibodies to the nucleocapsid protein of SARS-CoV-2: Utility and limitations in seroprevalence and immunity studies. Transl. Res. 2021, 232, 60–74. [Google Scholar] [CrossRef]
- Lozano-Ojalvo, D.; Camara, C.; Lopez-Granados, E.; Nozal, P.; Del Pino-Molina, L.; Bravo-Gallego, L.Y.; Paz-Artal, E.; Pion, M.; Correa-Rocha, R.; Ortiz, A.; et al. Differential effects of the second SARS-CoV-2 mRNA vaccine dose on T cell immunity in naive and COVID-19 recovered individuals. Cell Rep. 2021, 36, 109570. [Google Scholar] [CrossRef]
- Krutikov, M.; Palmer, T.; Tut, G.; Fuller, C.; Azmi, B.; Giddings, R.; Shrotri, M.; Kaur, N.; Sylla, P.; Lancaster, T.; et al. Prevalence and duration of detectable SARS-CoV-2 nucleocapsid antibodies in staff and residents of long-term care facilities over the first year of the pandemic (VIVALDI study): Prospective cohort study in England. Lancet Healthy Longev. 2022, 3, e13–e21. [Google Scholar] [CrossRef]
Variable | Total (N = 1612) | |
---|---|---|
n | % | |
Median age (min–max) | 47 (21–79) | |
Age group (years) | ||
<40 | 430 | 26.7 |
40–49 | 460 | 28.5 |
50–59 | 420 | 26.1 |
≥60 | 302 | 18.7 |
Sex | ||
Female | 1112 | 69.0 |
Geographical area | ||
Ile de France | 297 | 18.4 |
Northeast | 387 | 24.0 |
Southeast | 362 | 22.5 |
Northwest | 304 | 18.9 |
Southwest | 262 | 16.3 |
Occupation | ||
GP | 527 | 32.7 |
Pediatrician | 430 | 26.7 |
Dentist | 331 | 20.5 |
Dental assistant | 50 | 3.1 |
Pharmacist | 238 | 14.8 |
Pharmacist assistant | 36 | 2.2 |
Chronic disease | ||
Yes | 309 | 19.2 |
Self-reported SARS-CoV-2 infection confirmed biologically * since January 2020 | 253 | 15.7 |
RT-qPCR and/or antigenic confirmed | 191 | 75.5 |
Symptomatic infection¥¥¥ | 185 | 94.4 |
Historical strain¥ ELISA confirmed | 138 62 | 72.3 3.8 |
SARS-CoV-2 infection ≤6 months ¥¥ | 126 | 50.2 |
COVID-19 vaccination and/or reported SARS-CoV-2 infection * (N = 1604) | ||
Not vaccinated | 124 | 7.8 |
No self-reported SARS-CoV-2 infection | 62 | 3.9 |
Self-reported SARS-CoV-2 infection | 62 | 3.9 |
One vaccine dose | 186 | 11.6 |
No self-reported SARS-CoV-2 infection | 45 | 2.8 |
Self-reported SARS-CoV-2 infection | 141 | 8.8 |
Two vaccine doses | 1292 | 80.5 |
No self-reported SARS-CoV-2 infection | 1244 | 77.6 |
Self-reported SARS-CoV-2 infection | 48 | 3.0 |
Three vaccine doses without self-reported SARS-CoV-2 infection ** | 2 | 0.1 |
Sociodemographic Characteristics | Vaccination | Infection | Seropositivity | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PHCW | Age (Years) | Sex | Occupation | Number of Doses | Vaccine (Name First Vaccine Dose* Name Second Vaccine Dose) | Time between Vaccination (Last Injection) and Study Sampling (Months) | Before Vaccination | After Vaccination: Variant | Time between Vaccination and Infection (Months) | Time between Infection and Study Sampling (Months) | Symptoms | Spike | Nucleocapsid | Neutralizing Antibodies (VNT Titer) |
1 | 63 | Male | GP | 2 | BNT162b2*missing value | 5 | No | Not known | 2 | 3 | Rhinorrhea | Pos | Pos | 1280 |
2 | 60 | Male | Dentist | 2 | BNT162b2* BNT162b2 | 4 | No | Alpha | 2 | 2 | Cough, rhinorrhea, sore throat, diarrhea, chest pain or tightness, loss of smell, sleep disorders | Pos | Pos | 160 |
3 | 51 | Male | Pediatrician | 2 | BNT162b2* BNT162b2 | 5 | No | Gamma | 3 | 2 | Cough, fever, rhinorrhea, sore throat, headaches, chest pain or tightness, loss of smell, loss of taste, loss of weight, loss of appetite, tiredness, muscular pains, thrills | Pos | Pos | 320 |
4 | 54 | Female | Pediatrician | 2 | BNT162b2* BNT162b2 | 4 | No | Not known | 1 | 3 | Cough, fever, tiredness, diarrhea, loss of smell, loss of taste, dyspnea while exercising, loss of appetite, muscular pains, heart rhythm disorders, dyspnea while performing activities of daily living, feeling of dizziness, loss of balance | Pos | Pos | 640 |
Variable | Seroprevalence | |||||
---|---|---|---|---|---|---|
Anti-SARS-CoV-2 N Protein Antibodies | Anti-SARS-CoV-2 S Protein Antibodies | Seroneutralization | ||||
N | % (95% CI) | N | % (95% CI) | N | % (95% CI) | |
Total (N = 1612) | 381 | 23.6 (21.6–25.7) | 1526 | 94.7 (93.6–95.7) | 1311 | 81.3 (79.4–83.2) |
COVID-19 vaccination and/or self-reported SARS-CoV-2 infection * (N = 1604) | ||||||
Not vaccinated | ||||||
No self-reported SARS-CoV-2 infection (N = 62) | 7 | 11.3 (3.4–19.2) | 4 | 6.5 (0.3–12.6) | 4 | 6.5 (0.3–12.6) |
Self-reported SARS-CoV-2 infection (N = 62) | 52 | 83.9 (74.7–93.0) | 49 | 79.0 (68.9–89.2) | 39 | 62.9 (50.9–74.9) |
One vaccine dose | ||||||
No self-reported SARS-CoV-2 infection (N = 45) | 8 | 17.8 (6.6–28.9) | 34 | 75.6 (63.0–88.1) | 19 | 42.2 (27.8–56.7) |
Self-reported SARS-CoV-2 infection (N = 141) | 97 | 68.8 (61.1–76.4) | 139 | 98.6 (95.0–99.8) | 133 | 94.3 (90.5–98.1) |
Two vaccine doses | ||||||
No self-reported SARS-CoV-2 infection (N = 1244) | 182 | 14.6 (12.7–16.6) | 1242 | 99.8 (99.4–100.0) | 1062 | 85.4 (83.4–87.3) |
Self-reported SARS-CoV-2 infection (N = 48) | 31 | 64.6 (51.1–78.1) | 48 | 100.0 (92.6–100.0) | 45 | 93.8 (86.9–100.0) |
Three vaccine doses | ||||||
No self-reported SARS-CoV-2 infection (N = 2) | 0 | 0 | 2 | 100.0 (15.8–100.0) | 2 | 100.0 (15.8-100.0) |
Variables * | n (% Positive in VNT) | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|---|
Odds Ratio | 95% CI | p-Value | Odds Ratio | 95% CI | p-Value | ||
Zero vaccine dose | 124 | ||||||
Age (years) | 0.3759 | ||||||
<50 | 73 (31.5) | Reference | |||||
≥50 | 51 (39.2) | 1.40 | (0.66–2.97) | ||||
Sex | 0.9541 | ||||||
Female | 89 (34.8) | Reference | |||||
Male | 35 (34.3) | 0.98 | (0.42–2.20) | ||||
Chronic disease | 0.0555 | ||||||
No | 101 (30.7) | Reference | |||||
Yes | 13 (52.2) | 2.46 | (0.98–6.28) | ||||
Previous SARS-CoV-2 infection ** | <0.0001 | <0.0001 | |||||
No | 55 (92.7) | Reference | Reference | ||||
Yes | 69 (56.5) | 16.57 | (5.96–59.36) | 16.57 | (5.96–59.36) | ||
One vaccine dose | 186 | ||||||
Age (years) | 0.9499 | ||||||
<50 | 114 (81.6) | Reference | |||||
≥50 | 72 (81.9) | 1.02 | (0.48–2.25) | ||||
Sex | 0.1879 | ||||||
Female | 137 (79.6) | Reference | |||||
Male | 49 (87.8) | 1.84 | (0.75–5.20) | ||||
Chronic disease | 0.7136 | ||||||
No | 149 (81.2) | Reference | |||||
Yes | 37 (83.8) | 1.2 | (0.48–3.42) | ||||
Previous SARS-CoV-2 infection ** | <0.0001 | <0.0001 | |||||
No | 35 (29.7) | Reference | Reference | ||||
Yes | 149 (94.6) | 41.66 | (16.05–120.78) | 41.66 | (16.05–120.78) | ||
Time since vaccination (months) | 0.2641 | ||||||
<3 ≥3 | 109 (78.9) 75 (85.3) | 0.64 | (0.28–1.39) Reference | ||||
Two vaccine doses | 1292 | ||||||
Age (years) | <0.0001 | ||||||
<50 | 701 (91.3) | Reference | |||||
≥50 | 591 (79.0) | 0.36 | (0.26–0.50) | ||||
Sex | 0.0385 | ||||||
Female | 882 (87.1) | Reference | |||||
Male | 410 (82.7) | 0.71 | (0.51–0.98) | ||||
Chronic disease | 0.0830 | ||||||
No | 1046 (86.5) | Reference | |||||
Yes | 246 (82.1) | 0.72 | (0.50–1.05) | ||||
Previous SARS-CoV-2 infection ** | 0.2082 | ||||||
No | 1062 (85.1) | Reference | |||||
Yes | 230 (88.3) | 1.31 | (0.86–2.07) | ||||
Time since vaccination (months) | <0.0001 | <0.0001 | |||||
<3 ≥3 | 549 (95.1) 737 (78.6) | 5.28 | (3.51–8.23) Reference | 5.28 | (3.51–8.23) Reference |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Decarreaux, D.; Pouquet, M.; Souty, C.; Vilcu, A.-M.; Prévot-Monsacre, P.; Fourié, T.; Villarroel, P.M.S.; Priet, S.; Blanché, H.; Sebaoun, J.-M.; et al. Seroprevalence of SARS-CoV-2 IgG Antibodies and Factors Associated with SARS-CoV-2 IgG Neutralizing Activity among Primary Health Care Workers 6 Months after Vaccination Rollout in France. Viruses 2022, 14, 957. https://doi.org/10.3390/v14050957
Decarreaux D, Pouquet M, Souty C, Vilcu A-M, Prévot-Monsacre P, Fourié T, Villarroel PMS, Priet S, Blanché H, Sebaoun J-M, et al. Seroprevalence of SARS-CoV-2 IgG Antibodies and Factors Associated with SARS-CoV-2 IgG Neutralizing Activity among Primary Health Care Workers 6 Months after Vaccination Rollout in France. Viruses. 2022; 14(5):957. https://doi.org/10.3390/v14050957
Chicago/Turabian StyleDecarreaux, Dorine, Marie Pouquet, Cecile Souty, Ana-Maria Vilcu, Pol Prévot-Monsacre, Toscane Fourié, Paola Mariela Saba Villarroel, Stephane Priet, Hélène Blanché, Jean-Marc Sebaoun, and et al. 2022. "Seroprevalence of SARS-CoV-2 IgG Antibodies and Factors Associated with SARS-CoV-2 IgG Neutralizing Activity among Primary Health Care Workers 6 Months after Vaccination Rollout in France" Viruses 14, no. 5: 957. https://doi.org/10.3390/v14050957
APA StyleDecarreaux, D., Pouquet, M., Souty, C., Vilcu, A.-M., Prévot-Monsacre, P., Fourié, T., Villarroel, P. M. S., Priet, S., Blanché, H., Sebaoun, J.-M., Deleuze, J.-F., Turbelin, C., Werner, A., Kochert, F., Grosgogeat, B., Rabiega, P., Laupie, J., Abraham, N., Guerrisi, C., ... Falchi, A. (2022). Seroprevalence of SARS-CoV-2 IgG Antibodies and Factors Associated with SARS-CoV-2 IgG Neutralizing Activity among Primary Health Care Workers 6 Months after Vaccination Rollout in France. Viruses, 14(5), 957. https://doi.org/10.3390/v14050957