Targeting of Silver Cations, Silver-Cystine Complexes, Ag Nanoclusters, and Nanoparticles towards SARS-CoV-2 RNA and Recombinant Virion Proteins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Transmission and Scanning Electron Microscopy (TEM and SEM)
2.2. Atomic Force Microscopy (AFM)
2.3. Ultraviolet (UV)—Visible (Vis) Light Spectroscopy
2.4. Fluorescence Spectroscopy
2.5. RNA Isolation
2.6. RNA Cleavage
2.7. Reverse Transcription and Real Time PCR
2.8. ELISA
- (1)
- SARS-CoV-2 N gene full-length coding region:CoVgN-N 5′-GGGATCCTCTGATAATGGACCCCAAAATCA-3′CoVgN-C 5′-ATAGAATTCTTAGTCGACGGCCTGAGTTGAGTCAGCAC-3′;
- (2)
- 5′-terminal fragment of the SARS-CoV-2 gene S coding N-terminal part of Spike protein (S) without signal peptide (16–685 aa):CoVgS1-N 5′-GGGATCCGTTAATCTTACAACCAGAACTC-3′CoVgS1-C 5′-TCAGGTACCGTCGACACGTGCCCGCCGAGGAGA-3′;
- (3)
- 3′-terminal fragment of the SARS-CoV-2 gene S encoding C-terminal part of S protein without transmembrane peptide (686–1213 aa):CoVgS2-N 5′-GGGATCCAGTGTAGCTAGTCAATCCATC-3′CoVgS2-C 5′-TCAGGTACCGTCGACTGGCCATTTTATATACTGCTCA-3′.
2.9. Cell Cultures
2.10. Cytotoxicity Analysis
2.11. Multiplex Immunofluorescent Analysis with Magnetic Microspheres
2.12. Statistical Analysis
3. Results and Discussion
3.1. Structure and Physico-Chemical Properties of Silver Nanomaterials
3.2. RNA Cleavage
3.2.1. RNase Properties of Ag-2S Complex
3.2.2. Partial RNA Cleavage with AgNO3 and Citrate Coated Ag NPs
3.2.3. Fluorescent Ag NCs and Ag NPs Covered with BSA and IgG without RNase Activity
3.3. Impairments of SARS-CoV-2 S2 and N Antigenic Structures
3.4. Anti-Inflammation Properties of the Nanosilver
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munir, M.U.; Ahmed, A.; Usman, M.; Salman, S. Recent Advances in Nanotechnology-Aided Materials in Combating Microbial Resistance and Functioning as Antibiotics Substitutes. Int. J. Nanomed. 2020, 15, 7329–7358. [Google Scholar] [CrossRef]
- Pryshchepa, O.; Pomastowski, P.; Buszewski, B. Silver nanoparticles: Synthesis, investigation techniques, and properties. Adv. Colloid Interface Sci. 2020, 284, 102246. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lenhart, J.J.; Walker, W.H. Aggregation kinetics and dissolution of coated silver nanoparticles. Langmuir 2012, 28, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Morozova, O.V.; Volosneva, O.N.; Levchenko, O.A.; Barinov, N.A.; Klinov, D.V. Protein corona on gold and silver nanoparticles. Mater. Sci. Forum 2018, 936, 42–46. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Kafshdooz, L.; Razban, Z.; Tbrizi, A.D.; Rasoulpour, S.; Khalilov, R.; Kavetskyy, T.; Saghfi, S.; Nasibova, A.N.; Kaamyabi, S.; et al. An overview application of silver nanoparticles in inhibition of herpes simplex virus. Artif. Cells Nanomed. Biotechnol. 2018, 46, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Trefry, J.C.; Wooley, D.P. Rapid assessment of antiviral activity and cytotoxicity of silver nanoparticles using a novel application of the tetrazolium-based colorimetric assay. J. Virol. Methods 2012, 183, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Fatima, M.; Zaidi, N.U.; Amraiz, D.; Afzal, F. In Vitro Antiviral Activity of Cinnamomum cassia and Its Nanoparticles Against H7N3 Influenza a Virus. J. Microbiol. Biotechnol. 2016, 26, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Mehrbod, P.; Motamed, N.; Tabatabaian, M.; Soleimani Estyar, R.; Amini, E.; Shahidi, M.; Kheiri, M.T. In Vitro Antiviral Effect of “Nanosilver” on Influenza Virus. DARU-J. Fac. Pharm. Tehran Univ. Med. Sci. 2008, 17, 88–93. [Google Scholar]
- Mori, Y.; Ono, T.; Miyahira, Y.; Nguyen, V.Q.; Matsui, T.; Ishihara, M. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Res. Lett. 2013, 8, 93. [Google Scholar] [CrossRef] [Green Version]
- Xiang, D.; Zheng, Y.; Duan, W.; Li, X.; Yin, J.; Shigdar, S.; O’Connor, M.L.; Marappan, M.; Zhao, X.; Miao, Y.; et al. Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. Int. J. Nanomed. 2013, 8, 4103–4113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.; Ko, Y.S.; Lee, S.J.; Lee, C.; Woo, K.; Ko, G. Inactivation of influenza A virus via exposure to silver nanoparticle-decorated silica hybrid composites. Environ. Sci. Pollut. Res. 2018, 25, 27021–27030. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Singh, A.; Vig, K.; Pillai, S.; Singh, S. Silver Nanoparticles Inhibit Replication of Respiratory Syncytial Virus. J. Biomed. Nanotechnol. 2008, 4, 149–158. [Google Scholar] [CrossRef]
- Morris, D.; Ansar, M.; Speshock, J.; Ivanciuc, T.; Qu, Y.; Casola, A.; Garofalo, R. Antiviral and Immunomodulatory Activity of Silver Nanoparticles in Experimental RSV Infection. Viruses 2019, 11, 732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, L.; Sun, R.W.-Y.; Chen, R.; Hui, C.-K.; Ho, C.-M.; Luk, J.M.; Lau, G.K.K.; Che, C.M. Silver nanoparticles inhibit hepatitis B virus replication. Antivir. Ther. 2008, 13, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.V.; Parkinson, C.V.; Choi, Y.W.; Speshock, J.L.; Hussain, S.M. A Preliminary Assessment of Silver Nanoparticle Inhibition of Monkeypox Virus Plaque Formation. Nanoscale Res. Lett. 2008, 3, 129. [Google Scholar] [CrossRef] [Green Version]
- Trefry, J.C.; Wooley, D.P. Silver nanoparticles inhibit vaccinia virus infection by preventing viral entry through a macropinocytosis-dependent mechanism. J. Biomed. Nanotechnol. 2013, 9, 1624–1635. [Google Scholar] [CrossRef] [PubMed]
- Gaikwad, S.; Ingle, A.; Gade, A.; Rai, M.; Falanga, A.; Incoronato, N.; Russo, L.; Galdiero, S.; Galdiero, M. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int. J. Nanomed. 2013, 8, 4303–4314. [Google Scholar] [CrossRef] [Green Version]
- Elechiguerra, J.L.; Burt, J.L.; Morones, J.R.; Camacho-Bragado, A.; Gao, X.; Lara, H.H.; Yacaman, M.J. Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnol. 2005, 3, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morozova, O.V. Silver Nanostructures: Limited Sensitivity of Detection, Toxicity and Anti-Inflammation Effects. Int. J. Mol. Sci. 2021, 22, 9928. [Google Scholar] [CrossRef] [PubMed]
- Morozova, O.V.; Klinov, D.V. Nanosilver in Biomedicine: Advantages and Restrictions. In Silver Micro-Nanoparticles—Properties, Synthesis, Characterization, and Applications; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Szymczak, M.; Maciejewska, M.; Laskowski, Ł.; Laskowska, M.; Ostaszewski, R.; Skiba, G.; Franiak-Pietryga, I. All That Glitters Is Not Silver—A New Look at Microbiological and Medical Applications of Silver Nanoparticles. Int. J. Mol. Sci. 2021, 22, 854. [Google Scholar] [CrossRef] [PubMed]
- Jeevanandam, J.; Krishnan, S.; Hii, Y.S.; Pan, S.; Chan, Y.S.; Acquah, C.; Danquah, M.K.; Rodrigues, J. Synthesis approach-dependent antiviral properties of silver nanoparticles and nanocomposites. J. Nanostruct. Chem. 2022, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Qin, N.; Hemmes, P.; Mitchen, K. Characterization of the Silver Nanoparticles in the Sovereign Silver® and Argentyn 23®, Bio-Active Silver Hydrosol™ Products. Int. J. Nanomed. 2022, 17, 983–986. [Google Scholar] [CrossRef] [PubMed]
- Du, T.; Liang, J.; Dong, N.; Lu, J.; Fu, Y.; Fang, L.; Xiao, S.; Han, H. Glutathione-Capped Ag2S Nanoclusters Inhibit Coronavirus Proliferation through Blockage of Viral RNA Synthesis and Budding. ACS Appl. Mater. Interfaces 2018, 10, 4369–4378. [Google Scholar] [CrossRef] [PubMed]
- Pilaquinga, F.; Morey, J.; Torres, M.; Seqqat, R.; Piña, M.L.N. Silver nanoparticles as a potential treatment against SARS-CoV-2: A review. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021, 13, e1707. [Google Scholar] [CrossRef]
- Jeremiah, S.S.; Miyakawa, K.; Morita, T.; Yamaoka, Y.; Ryo, A. Potent antiviral effect of silver nanoparticles on SARS-CoV-2. Biochem. Biophys. Res. Commun. 2020, 533, 195–200. [Google Scholar] [CrossRef]
- Li, D.; Chen, H.; Gao, X.; Mei, X.; Yang, L. Development of General Methods for Detection of Virus by Engineering Fluorescent Silver Nanoclusters. ACS Sens. 2021, 6, 613–627. [Google Scholar] [CrossRef]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. China Novel Coronavirus Investigating and Research Team, A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Fehr, A.R.; Perlman, S. Coronaviruses: An Overview of Their Replication and Pathogenesis. In Methods in Molecular Biology; Humana Press: New York, NY, USA, 2015; Volume 1282, pp. 1–23. [Google Scholar] [CrossRef] [Green Version]
- Ashour, H.M.; Elkhatib, W.F.; Rahman, M.M.; Elshabrawy, H.A. Insights into the Recent 2019 Novel Coronavirus (SARS-CoV-2) in Light of Past Human Coronavirus Outbreaks. Pathogens 2020, 9, 186. [Google Scholar] [CrossRef] [Green Version]
- Daly, J.L.; Simonetti, B.; Klein, K.; Chen, K.-E.; Williamson, M.K.; Antón-Plágaro, C.; Shoemark, D.K.; Simón-Gracia, L.; Bauer, M.; Hollandi, R.; et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science 2020, 370, 861–865. [Google Scholar] [CrossRef]
- Tretyakov, V.V.; Silnikov, V.N.; Vlasov, V.V.; Rikhter, V.A.; Tretyakova, O.V.; Kurbatov, A.V.; Obukhov, A.V.; Zhevachevsky, N.G.; Donchenko, A.S.; Tikhonov, V.L.; et al. Water-Soluble Antiviral Agent Based on Silver-Cistine Compound and Method of Preparing Thereof. WO 2007/061337 A1. 2007. Available online: http://patentscope.wipo.int/search/en/WO2007061337 (accessed on 21 April 2022).
- Ivleva, E.A.; Obraztsova, E.A.; Pavlova, E.R.; Morozova, O.V.; Ivanov, D.G.; Kononikhin, A.S.; Klinov, D.V. Albumin-stabilized fluorescent metal nanoclusters: Fabrication, physico-chemical properties and cytotoxicity. Mater. Des. 2020, 192, 108771. [Google Scholar] [CrossRef]
- Usachev, E.V.; Pankova, A.V.; Rafailova, E.A.; Pyankov, O.V.; Agranovski, I.E. Portable automatic bioaerosol sampling system for rapid on-site detection of targeted airborne microorganisms. J. Environ. Monit. 2012, 14, 2739–2745. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, N.A.; Pochtovyy, A.A.; Nikiforova, M.A.; Gushchin, V.A. Design strategy of RT-PCR systems and organization of SARS-CoV-2 monitoring. Bull. RSMU 2020, 2, 21–25. (In Russian) [Google Scholar] [CrossRef]
- Dreier, J.; Stormer, M.; Kleesiek, K. Use of Bacteriophage MS2 as an Internal Control in Viral Reverse Transcription-PCR Assays. J. Clin. Microbiol. 2005, 43, 4551–4557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kharlampieva, D.; Manuvera, V.; Podgorny, O.; Grafskaia, E.; Kovalchuk, S.; Pobeguts, O.; Altukhov, I.; Govorun, V.; Lazarev, V. Recombinant fragilysin isoforms cause E-cadherin cleavage of intact cells and do not cleave isolated E-cadherin. Microb. Pathog. 2015, 83–84, 47–56. [Google Scholar] [CrossRef]
- Barinov, N.A.; Prokhorov, V.V.; Dubrovin, E.V.; Klinov, D.V. AFM visualization at a single-molecule level of denaturated states of proteins on graphite. Colloids Surf. B Biointerfaces 2016, 146, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Morozova, O.V.; Isaeva, E.I.; Koroleva, L.S.; Klinov, D.V.; Silnikov, V.N. Inhibition of RNA-containing viruses by artificial RNases. Drug Target Rev. 2016, 3, 49–54. Available online: https://www.drugtargetreview.com/article/12263/inhibition-rna-containing-viruses-artificial-rnases/ (accessed on 21 April 2022).
- Gerasimova, Y.V.; Bobik, T.V.; Ponomarenko, N.A.; Shakirov, M.M.; Zenkova, M.A.; Tamkovich, N.V.; Popova, T.V.; Knorre, D.G.; Godovikova, T.S. RNA-hydrolyzing activity of human serum albumin and its recombinant analogue. Bioorg. Med. Chem. Lett. 2010, 20, 1427–1431. [Google Scholar] [CrossRef]
- Hu, Y.; Guo, W.; Wei, H. Protein- and peptide-directed approaches to fluorescent metal nanoclusters. Isr. J. Chem. 2015, 55, 682–697. [Google Scholar] [CrossRef]
- Ou, G.; Zhao, J.; Chen, P.; Xiong, C.; Dong, F.; Li, B.; Feng, X. Fabrication and application of noble metal nanoclusters as optical sensors for toxic metal ions. Anal. Bioanal. Chem. 2018, 410, 2485–2498. [Google Scholar] [CrossRef]
Ag Nanomaterials | HEp-2 | L41 | HT-29 |
---|---|---|---|
AgNO3 | 50 (31.75 Ag+) * | 100 (63.49 Ag+) | 100 (63.49 Ag+) |
Ag-2S | 5.3 (1.08 Ag+) | 21.2 (4.32 Ag+) | 15.9 (3.24 Ag+) |
Ag NCs-IgG | 7 | 10 | 7 |
nanoconjugates Ag NPs-IgG | 5 | 15 | 5 |
Nanosilver | MS2 RNA | MS2 Phage | SARS-CoV-2 RNA | SARS-CoV-2 RNA from COVID-19 Patient Blood |
---|---|---|---|---|
AgNO3 | n/d * | 2.0 ** | 0.9 | 0 *** |
Ag-2S | n/d | 7.5 | n/d | 1.6 |
Ag NCs | 0 | 0 | 0 | 0 |
Ag NPs | 3.7 | 0.9 | 1.8 | 0 |
Ag NPs-BSA | 3.7 | 0 | 1.3 | 0 |
Ag NPs-hIgG | 0 | 0 | 0 | 0 |
Th1 | Th2 | Th17 | Others | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inflammation Biomarkers | IFNγ | TNFα | IL-1β | IL-12(p70) | IL-2 | IL-4 | IL-5 | IL-6 | IL-7 | IL-8 | IL-10 | IL-13 | IL-17A | G-CSF | GM-CSF | MCP-1 (MCAP) | MIP-1β |
AgNO3 | 1.03 | 1.15 ↑ | 1.38 ↑ | 0.70 | 0.74 | 0.84 | 0.88 | 0.85 | 0.70 | 3.71 ↑ | 0.78 | 0.81 | 0.97 | 1.12 ↑ | 0.92 | 1.19 ↑ | 1.17 ↑ |
Ag NCs-BSA * | 0.93 | 0.78 | 0.63 | 0.82 | 0.54 | 0.78 | 0.83 | 1.05 | 0.91 | 0.93 | 0.79 | 0.95 | 0.62 | 0.76 | 0.88 | 0.94 | 0.68 |
Ag NPs-BSA | 0.76 | 0.72 | 0.70 | 0.70 | 0.82 | 0.74 | 0.70 | 0.75 | 0.50 | 0.64 | 0.78 | 0.69 | 0.76 | 0.78 | 0.79 | 0.85 | 0.76 |
Ag NPs-Fb | 0.72 | 0.65 | 1.00 | 0.72 | 0.78 | 0.75 | 0.82 | 0.75 | 0.55 | 1.00 | 0.77 | 0.83 | 0.84 | 1.00 | 0.83 | 1.15 ↑ | 0.97 |
Ag NPs-IgG | 0.68 | 0.51 | 2.11 ↑ | 0.54 | 0.48 | 0.43 | 0.60 | 0.41 | 0.44 | 0.34 | 0.54 | 0.50 | 0.97 | 1.20 ↑ | 0.83 | 0.76 | 0.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morozova, O.V.; Manuvera, V.A.; Grishchechkin, A.E.; Barinov, N.A.; Shevlyagina, N.V.; Zhukhovitsky, V.G.; Lazarev, V.N.; Klinov, D.V. Targeting of Silver Cations, Silver-Cystine Complexes, Ag Nanoclusters, and Nanoparticles towards SARS-CoV-2 RNA and Recombinant Virion Proteins. Viruses 2022, 14, 902. https://doi.org/10.3390/v14050902
Morozova OV, Manuvera VA, Grishchechkin AE, Barinov NA, Shevlyagina NV, Zhukhovitsky VG, Lazarev VN, Klinov DV. Targeting of Silver Cations, Silver-Cystine Complexes, Ag Nanoclusters, and Nanoparticles towards SARS-CoV-2 RNA and Recombinant Virion Proteins. Viruses. 2022; 14(5):902. https://doi.org/10.3390/v14050902
Chicago/Turabian StyleMorozova, Olga V., Valentin A. Manuvera, Alexander E. Grishchechkin, Nikolay A. Barinov, Nataliya V. Shevlyagina, Vladimir G. Zhukhovitsky, Vassili N. Lazarev, and Dmitry V. Klinov. 2022. "Targeting of Silver Cations, Silver-Cystine Complexes, Ag Nanoclusters, and Nanoparticles towards SARS-CoV-2 RNA and Recombinant Virion Proteins" Viruses 14, no. 5: 902. https://doi.org/10.3390/v14050902
APA StyleMorozova, O. V., Manuvera, V. A., Grishchechkin, A. E., Barinov, N. A., Shevlyagina, N. V., Zhukhovitsky, V. G., Lazarev, V. N., & Klinov, D. V. (2022). Targeting of Silver Cations, Silver-Cystine Complexes, Ag Nanoclusters, and Nanoparticles towards SARS-CoV-2 RNA and Recombinant Virion Proteins. Viruses, 14(5), 902. https://doi.org/10.3390/v14050902