Environmental Effects on Viable Virus Transport and Resuspension in Ventilation Airflow
Abstract
:1. Introduction
2. Materials and Methods
2.1. Media and Sample Preparation
Phage Isolation and Propagation via Plate Lysate
2.2. Plexiglass Model Chamber Test
2.2.1. Plexiglass Model Chamber Set-Up
2.2.2. Virus Quantitation by qPCR
2.2.3. Surface Virus Assessment
2.3. Model Hospital Room Test
2.3.1. Model Hospital Room and Equipment Setup
2.3.2. Sample Assessment
2.3.3. Computational Fluid Dynamics (CFD) Modeling and Validation
2.4. Statistical Analysis
3. Results
3.1. Plexiglass Model Chamber
3.2. Hospital Model Room
3.3. Air Flow Modeling
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Coronavirus Disease (COVID-2019) Situation Reports; World Health Organization: Geneva, Switzerland, 2020; Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/ (accessed on 11 March 2022).
- Chan, K.H.; Peiris, J.S.; Lam, S.Y.; Poon, L.L.; Yuen, K.Y.; Seto, W.H. The Effects of Temperature and Relative Humidity on the Viability of the SARS Coronavirus. Adv. Virol. 2011, 2021, 734690. [Google Scholar] [CrossRef] [PubMed]
- Gerba, C.P.; Betancourt, W.Q. Viral Aggregation: Impact on Virus Behavior in the Environment. Environ. Sci. Technol. 2017, 51, 7318–7325. [Google Scholar] [CrossRef]
- Ong, S.W.X.; Tan, Y.K.; Chia, P.Y.; Lee, T.H.; Ng, O.T.; Wong, M.S.Y.; Marimuthu, K. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA 2020, 323, 1610–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Santarpia, J.L.; Rivera, D.N.; Herrera, V.; Morwitzer, M.J.; Creager, H.; Santarpia, G.W.; Crown, K.K.; Brett-Major, D.; Schnaubelt, E.; Broadhurst, M.J.; et al. Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Sci. Rep. 2020, 10, 12732. [Google Scholar] [CrossRef] [PubMed]
- Bourouiba, L. Turbulent Gas Clouds and Respiratory Pathogen Emissions: Potential Implications for Reducing Transmission of COVID-19. JAMA 2020, 323, 1837–1838. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.Y.; Weng, W.G.; Huang, Q.Y. Characterizations of particle size distribution of the droplets exhaled by sneeze. J. R. Soc. Interface 2013, 10, 20130560. [Google Scholar] [CrossRef]
- Fabian, P.; McDevitt, J.J.; De Haan, W.H.; Fung, R.O.P.; Cowling, B.J.; Chan, K.H.; Leung, G.M.; Milton, D.K. Influenza virus in human exhaled breath: An observational study. PLoS ONE 2008, 3, e2691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabian, P.; Brain, J.; Houseman, E.A.; Gern, J.; Milton, D.K. Origin of exhaled breath particles from healthy and human rhinovirus-infected subjects. J. Aerosol Med. Pulm. Drug Deliv. 2011, 24, 137–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuorinen, V.; Hellsten, A.; Karvinen, A.; Sironen, T.; Raback, P. Researchers Modelling the Spread of the Coronavirus Emphasise the Importance of Avoiding Busy Indoor Spaces. 2020. Available online: https://www.aalto.fi/en/news/researchers-modelling-the-spread-of-the-coronavirus-emphasise-the-importance-of-avoiding-busy (accessed on 11 March 2022).
- Han, Z.; To, G.N.; Fu, S.C.; Chao, C.Y.; Weng, W.; Huang, Q. Effect of human movement on airborne disease transmission in an airplane cabin: Study using numerical modeling and quantitative risk analysis. BMC Infect. Dis. 2014, 14, 434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, H.; Zheng, X. Ventilation control for airborne transmission of human exhaled bio-aerosols in buildings. J. Thorac. Dis. 2018, 10, S2295–S2304. [Google Scholar] [CrossRef] [PubMed]
- Kalosh, A. Study Finds Transmission of Aerosol Particles in Cruise HVAC System ‘Undetectable’. 2021. Available online: https://www.seatrade-cruise.com/environmental-health/study-finds-transmission-aerosol-particles-cruise-hvac-system-undetectable (accessed on 11 March 2022).
- Azimi, P.; Keshavarz, Z.; Cedeno Laurent, J.-G.; Stephens, B.; Allen, J.G. Mechanistic transmission modeling of COVID-19 on the Diamond Princess cruise ship demonstrates the importance of aerosol transmission. Proc. Natl. Acad. Sci. USA 2021, 118, e2015482118. [Google Scholar] [CrossRef] [PubMed]
- Brown, L. Coronavirus found on Diamond Princess surfaces 17 days later. New York Post. 2020. Available online: https://nypost.com/2020/03/24/coronavirus-found-on-diamond-princess-surfaces-17-days-later/ (accessed on 11 March 2022).
- Setti, L.; Passarini, F.; De Gennaro, G.; Barbieri, P.; Pallavicini, A.; Ruscio, M.; Piscitelli, P.; Colao, A.; Miani, A. Searching for SARS-COV-2 on Particulate Matter: A Possible Early Indicator of COVID-19 Epidemic Recurrence? Int. J. Environ. Res. Public Health 2020, 17, 2986. [Google Scholar] [CrossRef] [PubMed]
- Beck, S.H.; Castillo, A.; Kinney, K.A.; Zuniga, A.; Mohammad, Z.; Lacey, R.E.; King, M.D. Monitoring of Pathogenic Bioaerosols in Beef Slaughter Facilities Based on Air Sampling and Airflow Modeling. Appl. Eng. Agric. 2019, 35, 1015–1036. [Google Scholar] [CrossRef]
- Bonilla, N.; Rojas, M.I.; Cruz, G.N.F.; Hung, S.H.; Rohwer, F.; Barr, J.J. Phage on tap-a quick and efficient protocol for the preparation of bacteriophage laboratory stocks. PeerJ 2016, 4, e2261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huiskonen, J.T.; Manole, V.; Butcher, S.J. Tale of two spikes in bacteriophage PRD1. Proc. Natl. Acad. Sci. USA 2007, 104, 6666–6671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morawska, L.J.G.R.; Ristowski, Z.D.; Hargreaves, M.; Mengersen, K.; Corbett, S.; Chao, C.Y.H.; Li, Y.; Katoshevski, D. Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. Aerosol Sci. 2009, 40, 256–269. [Google Scholar] [CrossRef] [Green Version]
- Bellini, W.J. SARS-CoV Specific RT-PCR Primers. Available online: https://www.who.int/csr/sars/CDCprimers.pdf (accessed on 11 March 2022).
- Lauterbach, S.E.; Wright, C.M.; Zentkovich, M.M.; Nelson, S.W.; Lorbach, J.; Bliss, N.; Nolting, J.; Pierson, R.; King, M.D.; Bowman, A.S. Detection of influenza A virus from agricultural fair environment: Air and surfaces. Prev. Vet. Med. 2018, 153, 24–29. [Google Scholar] [CrossRef] [PubMed]
- King, M.D.; McFarland, A.R. Bioaerosol Sampling with a Wetted Wall Cyclone: Cell Culturability and DNA Integrity of Escherichia coli Bacteria. Aerosol Sci. Technol. 2012, 46, 82–93. [Google Scholar] [CrossRef]
- Oma, V.S.; Tråvén, M.; Alenius, S.; Myrmel, M.; Stokstad, M. Bovine coronavirus in naturally and experimentally exposed calves; viral shedding and the potential for transmission. Virol. J. 2016, 13, 100. [Google Scholar] [CrossRef] [Green Version]
- PMMA & Science. Polymethyl Methacrylate: Acrylic. 2021. Available online: https://www.pmma-online.eu/pmma-science/ (accessed on 11 March 2022).
- Laad, M.S. Chapter 15-Polymers in Sports, Polymer Science and Innovative Applications: Materials, Techniques, and Future Developments; Elsevier: Amsterdam, The Netherlands, 2020; pp. 485–523. [Google Scholar]
- Formosa, J.P. 3D Printing PP (Polypropylene)—Why and How? 2020. Available online: https://magigoo.com/blog/3d-printing-polypropylene-why-and-how/ (accessed on 11 March 2022).
- Zhang, M.; Wang, H.; Foster, E.; Nikolov, Z.; Fernando, Z.; King, M.D. Binding Behavior of Spike Protein and Receptor Binding Domain of the SARS-CoV-2 Virus at Different Environmental Conditions. Sci. Rep. 2021, 12, 789. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, M.; Gao, J. Enhanced receptor binding of SARS-COV-2 through networks of hydrogen-bonding and hydrophobic interactions. Proc. Natl. Acad. Sci. USA 2020, 117, 13967–13974. [Google Scholar] [CrossRef]
- Yang, T.Y.; Riskowski, G.L.; Chang, A.C.-Z. Effects of air relative humidity and ventilation rate on particle concentrations within a reduced-scale room. Indoor Built Environ. 2018, 28, 335–344. [Google Scholar] [CrossRef]
- Drewry, J.L.; Choi, C.Y.; Powell, J.M. Design and calibration of chambers for the measurement of housed dairy cow gaseous emissions. Trans. ASABE 2017, 60, 1291–1300. [Google Scholar] [CrossRef]
- Drewry, J.L.; Mondaca, M.; Luck, B.D.; Choi, C.Y. A Computational Fluid Dynamics Model of Biological Heat and Gas Generation in a Dairy Holding Area. Trans. ASABE 2018, 61, 449–460. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. FASTSTATS—Body measurements. Centers for Disease Control and Prevention. 2021. Available online: https://www.cdc.gov/nchs/fastats/body-measurements.htm (accessed on 11 March 2022).
- Ansys Fluent 12.0 Theory Guide—4.5.1 Standard-Model. (n.d.). Available online: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node66.htm (accessed on 11 March 2022).
- Foster, J.C.; Akar, I.; Grocott, M.C.; Pearce, A.K.; Mathers, R.T.; O’Reilly, R.K. 100th Anniversary of Macromolecular Science Viewpoint: The Role of Hydrophobicity in Polymer Phenomena. ACS Macro Lett. 2020, 9, 1700–1707. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Lee, G.W.; Chen, C.-M.; Wu, C.-C.; Yu, K.-P. The Size and Concentration of Droplets Generated by Coughing in Human Subjects. J. Aerosol Med. 2007, 20, 484–494. [Google Scholar] [CrossRef] [PubMed]
Temperature | 27 °C |
Inlet | Velocity inlet (1.5 m/s) |
Exhaust | Pressure outlet (0 atm) |
Air curtain (config. ‘c’ only) | Velocity inlet (11.5 m/s) |
Walls | No slip, stationary |
Tolerance (x) | 10−3 |
Tolerance (y) | 10−3 |
Tolerance (velocity) | 10−3 |
Tolerance (k) | 10−3 |
Tolerance (ω) | 10−3 |
Tolerance (energy) | 10−6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baig, T.A.; Zhang, M.; Smith, B.L.; King, M.D. Environmental Effects on Viable Virus Transport and Resuspension in Ventilation Airflow. Viruses 2022, 14, 616. https://doi.org/10.3390/v14030616
Baig TA, Zhang M, Smith BL, King MD. Environmental Effects on Viable Virus Transport and Resuspension in Ventilation Airflow. Viruses. 2022; 14(3):616. https://doi.org/10.3390/v14030616
Chicago/Turabian StyleBaig, Tatiana A., Meiyi Zhang, Brooke L. Smith, and Maria D. King. 2022. "Environmental Effects on Viable Virus Transport and Resuspension in Ventilation Airflow" Viruses 14, no. 3: 616. https://doi.org/10.3390/v14030616