Peripheral Blood T-lymphocyte Phenotypes in Mother-Child Pairs Stratified by the Maternal HPV Status: Persistent HPV16 vs. HPV-Negative: A Case-Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. Samples
2.3. Flow Cytometric Analysis
2.4. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rintala, M.A.M.; Grénman, S.E.; Puranen, M.H.; Isolauri, E.; Ekblad, U.; Kero, P.O.; Syrjänen, S.M. Transmission of High-Risk Human Papillomavirus (HPV) between Parents and Infant: A Prospective Study of HPV in Families in Finland. J. Clin. Microbiol. 2005, 43, 376–381. [Google Scholar] [CrossRef] [Green Version]
- Petca, A.; Borislavschi, A.; Zvanca, M.; Petca, R.-C.; Sandru, F.; Dumitrascu, M. Non-Sexual HPV Transmission and Role of Vaccination for a Better Future (Review). Exp. Ther. Med. 2020, 20, 186. [Google Scholar] [CrossRef]
- Hong, Y.; Li, S.Q.; Hu, Y.L.; Wang, Z.Q. Survey of Human Papillomavirus Types and Their Vertical Transmission in Pregnant Women. BMC Infect. Dis. 2013, 13, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahn, H.S.; Kee, M.K.; Kim, H.J.; Kim, M.Y.; Kang, Y.S.; Park, J.S.; Kim, T.J. Distribution of Maternal and Infant Human Papillomavirus: Risk Factors Associated with Vertical Transmission. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 169, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Merckx, M.; Liesbeth, W.V.W.; Arbyn, M.; Meys, J.; Weyers, S.; Temmerman, M.; vanden Broeck, D. Transmission of Carcinogenic Human Papillomavirus Types from Mother to Child: A Meta-Analysis of Published Studies. Eur. J. Cancer Prev. 2013, 22, 277–285. [Google Scholar] [CrossRef]
- Liu, Z.; Rashid, T.; Nyitray, A.G. Penises Not Required: A Systematic Review of the Potential for Human Papillomavirus Horizontal Transmission That Is Non-Sexual or Does Not Include Penile Penetration. Sex Health 2016, 13, 10. [Google Scholar] [CrossRef] [PubMed]
- Winer, R.L.; Kiviat, N.B.; Hughes, J.P.; Adam, D.E.; Lee, S.K.; Kuypers, J.M.; Koutsky, L.A. Development and Duration of Human Papillomavirus Lesions, after Initial Infection. J. Infect. Dis. 2005, 191, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Adcock, R.; Cuzick, J.; Hunt, W.C.; McDonald, R.M.; Wheeler, C.M. Role of HPV Genotype, Multiple Infections, and Viral Load on the Risk of High-Grade Cervical Neoplasia. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1816–1824. [Google Scholar] [CrossRef] [Green Version]
- Scheurer, M.E.; Tortolero-Luna, G.; Adler-Storthz, K. Human Papillomavirus Infection: Biology, Epidemiology, and Prevention. Int. J. Gynecol. Cancer 2005, 15, 727–746. [Google Scholar] [CrossRef] [PubMed]
- Roden, R.B.S.; Stern, P.L. Opportunities and Challenges for Human Papillomavirus Vaccination in Cancer. Nat. Rev. Cancer 2018, 18, 240–254. [Google Scholar] [CrossRef] [PubMed]
- de Jong, A.; van Poelgeest, M.I.E.; van der Hulst, J.M.; Drijfhout, J.W.; Fleuren, G.J.; Melief, C.J.M.; Renter, G.; Offringa, R.; van der Burg, S.H. Human Papillomavirus Type 16-Positive Cervical Cancer Is Associated with Impaired CD4+ T-Cell Immunity against Early Antigens E2 and E6. Cancer Res. 2004, 64, 5449–5455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jee, B.; Yadav, R.; Pankaj, S.; Shahi, S.K. Immunology of HPV-Mediated Cervical Cancer: Current Understanding. Int. Rev. Immunol. 2021, 40, 359–378. [Google Scholar] [CrossRef] [PubMed]
- Litwin, T.R.; Irvin, S.R.; Chornock, R.L.; Sahasrabuddhe, V.V.; Stanley, M.; Wentzensen, N. Infiltrating T-Cell Markers in Cervical Carcinogenesis: A Systematic Review and Meta-Analysis. Br. J. Cancer 2021, 124, 831–841. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Sharma, M.; Tan, N.; Barnabas, R.V. HIV-Positive Women Have Higher Risk of Human Papilloma Virus Infection, Precancerous Lesions, and Cervical Cancer. AIDS 2018, 32, 795–808. [Google Scholar] [CrossRef] [PubMed]
- Tawfeik, A.M.; Mora, A.; Osman, A.; Moneer, M.M.; El-Sheikh, N.; Elrefaei, M. Frequency of CD4+ Regulatory T Cells, CD8+ T Cells, and Human Papilloma Virus Infection in Egyptian Women with Breast Cancer. Int. J. Immunopathol. Pharm. 2020, 34, 2058738420966822. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.C.; García-Piñeres, A.J.; Hildesheim, A.; Herrero, R.; Trivett, M.; Williams, M.; Atmella, I.; Ramírez, M.; Villegas, M.; Schiffman, M.; et al. Alterations of T-Cell Surface Markers in Older Women with Persistent Human Papillomavirus Infection. Int. J. Cancer 2011, 128, 597–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welters, M.J.P.; de Jong, A.; van den Eeden, S.J.F.; van der Hulst, J.M.; Kwappenberg, K.M.C.; Hassane, S.; Franken, K.L.M.C.; Drijfhout, J.W.; Fleuren, G.J.; Kenter, G.; et al. Frequent Display of Human Papillomavirus Type 16 E6-Specific Memory T-Helper Cells in the Healthy Population as Witness of Previous Viral Encounter. Cancer Res. 2003, 63, 636–641. [Google Scholar]
- Visser, J.; Nijman, H.W.; Hoogenboom, B.N.; Jager, P.; van Baarle, D.; Schuuring, E.; Abdulahad, W.; Miedema, F.; van der Zee, A.G.; Daemen, T. Frequencies and Role of Regulatory T Cells in Patients with (Pre)Malignant Cervical Neoplasia. Clin. Exp. Immunol. 2007, 150, 199–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koskimaa, H.M.; Paaso, A.E.; Welters, M.J.P.; Grénman, S.E.; Syrjänen, K.J.; van der Burg, S.H.; Syrjänen, S.M. Human Papillomavirus 16 E2-, E6- and E7-Specific T-Cell Responses in Children and Their Mothers Who Developed Incident Cervical Intraepithelial Neoplasia during a 14-Year Follow-up of the Finnish Family HPV Cohort. J. Transl. Med. 2014, 12, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syrjänen, S.; Rintala, M.; Sarkola, M.; Willberg, J.; Rautava, J.; Koskimaa, H.; Paaso, A.; Syrjänen, K.; Grénman, S.; Louvanto, K. Oral Human Papillomavirus Infection in Children during the First 6 Years of Life, Finland. Emerg. Infect. Dis. 2021, 27, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, M.; Kamphorst, A.O.; Im, S.J.; Kissick, H.T.; Pillai, R.N.; Ramalingam, S.S.; Araki, K.; Ahmed, R. CD8 T Cell Exhaustion in Chronic Infection and Cancer: Opportunities for Interventions. Annu. Rev. Med. 2018, 69, 301–318. [Google Scholar] [CrossRef]
- McLane, L.M.; Abdel-Hakeem, M.S.; Wherry, E.J. CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer. Annu. Rev. Immunol. 2019, 37, 457–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paaso, A.; Koskimaa, H.M.; Welters, M.J.P.; Kero, K.; Rautava, J.; Syrjänen, K.; van der Burg, S.H.; Syrjänen, S. Interferon-γ and IL-5 Associated Cell-Mediated Immune Responses to HPV16 E2 and E6 Distinguish between Persistent Oral HPV16 Infections and Noninfected Mucosa. Clin. Exp. Dent. Res. 2021, 7, 903–913. [Google Scholar] [CrossRef] [PubMed]
- Paaso, A.E.; Louvanto, K.; Syrjänen, K.J.; Waterboer, T.; Grénman, S.E.; Pawlita, M.; Syrjänen, S.M. Lack of Type-Specific Concordance between Human Papillomavirus (HPV) Serology and HPV DNA Detection in the Uterine Cervix and Oral Mucosa. J. Gen. Virol. 2011, 92, 2034–2046. [Google Scholar] [CrossRef] [PubMed]
- Paaso, A.; Koskimaa, H.M.; Welters, M.J.P.; Grénman, S.; Syrjänen, K.; van der Burg, S.H.; Syrjänen, S. Cell Mediated Immunity against HPV16 E2, E6 and E7 Peptides in Women with Incident CIN and in Constantly HPV-Negative Women Followed-up for 10-Years. J. Transl. Med. 2015, 13, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koskimaa, H.M.; Paaso, A.; Welters, M.J.P.; Grénman, S.; Syrjänen, K.; Burg, S.H.; Syrjänen, S. Human Papillomavirus 16-Specific Cell-Mediated Immunity in Children Born to Mothers with Incident Cervical Intraepithelial Neoplasia (CIN) and to Those Constantly HPV Negative. J. Transl. Med. 2015, 13, 370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitt, M.; Bravo, I.G.; Snijders, P.J.F.; Gissmann, L.; Pawlita, M.; Waterboer, T. Bead-Based Multiplex Genotyping of Human Papillomaviruses. J. Clin. Microbiol. 2006, 44, 504–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koskimaa, H.M.; Waterboer, T.; Pawlita, M.; Grénman, S.; Syrjänen, K.; Syrjänen, S. Human Papillomavirus Genotypes Present in the Oral Mucosa of Newborns and Their Concordance with Maternal Cervical Human Papillomavirus Genotypes. J. Pediatr. 2012, 160, 837–843. [Google Scholar] [CrossRef]
- Syrjänen, S.; Waterboer, T.; Rintala, M.; Pawlita, M.; Syrjänen, K.; Louvanto, K.; Grenman, S. Maternal HPV-Antibodies and Seroconversion to HPV in Children during the First 3 Years of Life. Sci. Rep. 2022, 12, 2227. [Google Scholar] [CrossRef]
- Caruntu, A.; Moraru, L.; Surcel, M.; Munteanu, A.; Tanase, C.; Constantin, C.; Zurac, S.; Caruntu, C.; Neagu, M. Assessment of Immune Cell Populations in Tumor Tissue and Peripheral Blood Samples from Head and Neck Squamous Cell Carcinoma Patients. Anal. Cell Pathol. 2021, 2021, 2328218. [Google Scholar] [CrossRef]
- Grimm, M.; Feyen, O.; Hofmann, H.; Teriete, P.; Biegner, T.; Munz, A.; Reinert, S. Immunophenotyping of Patients with Oral Squamous Cell Carcinoma in Peripheral Blood and Associated Tumor Tissue. Tumor Biol. 2016, 37, 3807–3816. [Google Scholar] [CrossRef] [PubMed]
- Shipkova, M.; Wieland, E. Surface Markers of Lymphocyte Activation and Markers of Cell Proliferation. Clin. Chim. Acta 2012, 413, 1338–1349. [Google Scholar] [CrossRef]
- Hislop, A.D.; Annels, N.E.; Gudgeon, N.H.; Leese, A.M.; Rickinson, A.B. Epitope-Specific Evolution of Human CD8+ T Cell Responses from Primary to Persistent Phases of Epstein-Barr Virus Infection. J. Exp. Med. 2002, 195, 893–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sallusto, F.; Geginat, J.; Lanzavecchia, A. Central Memory and Effector Memory T Cell Subsets: Function, Generation, and Maintenance. Annu. Rev. Immunol. 2004, 22, 745–763. [Google Scholar] [CrossRef]
- Williams, O.M.; Hart, K.W.; Wang, E.C.Y.; Gelder, C.M. Analysis of CD4 + T-Cell Responses to Human Papillomavirus (HPV) Type 11 L1 in Healthy Adults Reveals a High Degree of Responsiveness and Cross-Reactivity with Other HPV Types. J. Virol. 2002, 76, 7418–7429. [Google Scholar] [CrossRef] [Green Version]
- Welters, M.J.P.; Kenter, G.G.; Piersma, S.J.; Vloon, A.P.G.; Löwik, M.J.G.; Berends-van Der Meer, D.M.A.; Drijfhout, J.W.; Valentijn, A.R.P.M.; Wafelman, A.R.; Oostendorp, J.; et al. Induction of Tumor-Specific CD4+ and CD8+ T-Cell Immunity in Cervical Cancer Patients by a Human Papillomavirus Type 16 E6 and E7 Long Peptides Vaccine. Clin. Cancer Res. 2008, 14, 178–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, A.T.G.; Carvalho, M.O.O.; Avvad-Portari, E.; Rocha, N.P.; Russomano, F.; Roma, E.H.; da Gloria Bonecini-Almeida, M. A Prognostic Value of CD45RA+, CD45RO+, CCL20+ and CCR6+ Expressing Cells as ‘Immunoscore’ to Predict Cervical Cancer Induced by HPV. Sci. Rep. 2021, 11, 8782. [Google Scholar] [CrossRef] [PubMed]
- Game, D.S.; Rogers, N.J.; Lechler, R.I. Acquisition of HLA-DR and Costimulatory Molecules by T Cells from Allogeneic Antigen Presenting Cells. Am. J. Transplant. 2005, 5, 1614–1625. [Google Scholar] [CrossRef] [PubMed]
- Papasavvas, E.; Surrey, L.F.; Glencross, D.K.; Azzoni, L.; Joseph, J.; Omar, T.; Feldman, M.D.; Williamson, A.L.; Siminya, M.; Swarts, A.; et al. High-Risk Oncogenic HPV Genotype Infection Associates with Increased Immune Activation and T Cell Exhaustion in ART-Suppressed HIV-1-Infected Women. Oncoimmunology 2016, 5, e1128612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revenfeld, A.L.S.; Bæk, R.; Jørgensen, M.M.; Varming, K.; Stensballe, A. Induction of a Regulatory Phenotype in CD3+ CD4+ HLA-DR+ T Cells after Allogeneic Mixed Lymphocyte Culture; Indications of Both Contact-Dependent and -Independent Activation. Int. J. Mol. Sci. 2017, 18, 1603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baecher-Allan, C.; Wolf, E.; Hafler, D.A. MHC Class II Expression Identifies Functionally Distinct Human Regulatory T Cells. J. Immunol. 2006, 176, 4622–4631. [Google Scholar] [CrossRef] [PubMed]
- Holling, T.M.; Schooten, E.; van den Elsen, P.J. Function and Regulation of MHC Class II Molecules in T-Lymphocytes: Of Mice and Men. Hum. Immunol. 2004, 65, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Pichler, W.J.; Wyss-Coray, T. T Cells as Antigen-Presenting Cells. Immunol. Today 1994, 15, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Oppenheim, J.J. The Phenotypic and Functional Consequences of Tumour Necrosis Factor Receptor Type 2 Expression on CD4+FoxP3+ Regulatory T Cells. Immunology 2011, 133, 426–433. [Google Scholar] [CrossRef]
- Rosenblum, M.D.; Way, S.S.; Abbas, A.K. Regulatory T Cell Memory. Nat. Rev. Immunol. 2016, 16, 90–110. [Google Scholar] [CrossRef]
- Tsang, J.Y.S.; Chai, J.G.; Lechler, R. Antigen Presentation by Mouse CD4+ T Cells Involving Acquired MHC Class II:Peptide Complexes: Another Mechanism to Limit Clonal Expansion? Blood 2003, 101, 2704–2710. [Google Scholar] [CrossRef]
- Pilch, H.; Hoehn, H.; Schmidt, M.; Steiner, E.; Tanner, B.; Seufert, R.; Maeurer, M. CD8+CD45RA+CD27-CD28-T-Cell Subset in PBL of Cervical Cancer Patients Representing CD8+T-Cells Being Able to Recognize Cervical Cancer Associated Antigens Provided by HPV 16 E7. Zent. Gynakol. 2002, 124, 406–412. [Google Scholar] [CrossRef]
- Lee, S.; Lee, D.K. What Is the Proper Way to Apply the Multiple Comparison Test? Korean J. Anesth. 2018, 71, 353–360. [Google Scholar] [CrossRef] [Green Version]
- de Gruijl, T.D.; Bontkes, H.J.; Walboomers, J.M.M.; Stukart, M.J.; Doekhie, F.S.; Remmink, A.J.; Helmerhorst, T.J.M.; Verheijen, R.H.M.; Duggan-Keen, M.F.; Stern, P.L.; et al. Differential T Helper Cell Responses to Human Papillomavirus Type 16 E7 Related to Viral Clearance or Persistence in Patients with Cervical Neoplasia: A Longitudinal Study. Cancer Res. 1998, 58, 1700–1706. [Google Scholar]
- de Gruijl, T.D.; Bontkes, H.J.; Walboomers, J.M.M.; Coursaget, P.; Stukart, M.J.; Dupuy, C.; Kueter, E.; Verheijen, R.H.M.; Helmerhorst, T.J.M.; Duggan-Keen, M.F.; et al. Immune Responses against Human Papillomavirus (HPV) Type 16 Virus-like Particles in a Cohort Study of Women with Cervical Intraepithelial Neoplasia. I. Differential T-Helper and IgG Responses in Relation to HPV Infection and Disease Outcome. J. Gen. Virol. 1999, 80, 399–408. [Google Scholar] [CrossRef]
Cell Marker | Dilution | Fluorochrome | Antibody Clone | Source |
---|---|---|---|---|
CD3 | 1/15 | APC-Cy7 | SK7 | Biolegend |
CD4 | 1/15 | PerCP-Cy5.5 | OKT4 | Biolegend |
CD8 | 1/15 | FITC | SK1 | Biolegend |
CD25 | 1/15 | Alexa 700 | M-A251 | BD Bioscience |
CD27 | 1/15 | APC | L128 | BD Bioscience |
CD45RA | 1/15 | BV50/BV510 | HI100 | BD Bioscience |
CD45RO | 1/15 | PE | UCHL1 | Biolegend |
CD57 | 1/33 | PE Dazzle | HNK-1 | Biolegend |
CD38 | 1/15 | BV605 | HB7 | BD Bioscience |
CD69 | 1/15 | BV421 | FN50 | BD Bioscience |
Genital HPV16 Infection | Oral HPV16 Infection | ||||
---|---|---|---|---|---|
Incident ≥ CIN+ with Persistent * Infection | Always Negative | Persistent * Infection | Always Negative | ||
Mothers | N | 10 | 20 | 7 | 5 |
Children | N | 10 | 8 | 7 | 3 |
Mean age | Mothers | 37.0 | 40.0 | 38.7 | 38.7 |
Children | 12.2 | 12.3 | 14.7 | 14.7 | |
Gender of the children | Girls | 3 | 4 | 4 | 2 |
Boys | 7 | 4 | 3 | 1 | |
Oral HPV status of the children | Always negative | 5 | 3 | 3 | 0 |
Incident | 1 | 3 | 4 | 2 | |
Persistent | 2 | 0 | 0 | 1 | |
Fluctuation | 1 | 2 | 0 | 0 | |
Clearance | 1 | 0 | 0 | 0 | |
Incident | |||||
Persistent |
HPV16 Infection Status of the Mother | |||||||
---|---|---|---|---|---|---|---|
Genital HPV16 Infection | Oral HPV16 Infection | Combined HPV16 Infection | |||||
Persistent * Infection | Always HPV Negative | Persistent * Infection | Always HPV Negative | Persistent * Infection | Always HPV Negative | ||
Marker | Median (%) | Median (%) | Median (%) | ||||
CD3+ lymphocytes | Mothers | 73.00 a | 54.65 a | 47.10 | 60.10 | 58.30 | 54.70 |
Children | 72.65 | 67.40 | 54.50 | 67.80 | 67.10 | 67.80 | |
CD3+CD4+ | Mothers | 47.50 | 51.45 | 36.60 | 46.90 | 44.20 | 51.10 |
Children | 40.15 | 36.90 | 38.20 | 41.30 | 39.50 | 37.10 | |
CD69+CD4+ | Mothers | 1.89 | 1.54 | 1.54 | 0.58 | 1.72 | 1.39 |
Children | 0.39 | 0.41 | 0.40 | 0.50 | 0.40 | 0.49 | |
CD25+CD4+ | Mothers | 0.13 | 0.15 | 0.10 | 0.10 | 0.11 | 0.14 |
Children | 0.25 | 0.25 | 0.27 | 0.25 | 0.25 | 0.25 | |
CD27+CD4+ | Mothers | 88.90 | 90.25 | 82.30 | 86.00 | 88.15 | 89.90 |
Children | 92.30 | 89.00 | 92.30 | 95.10 | 92.30 | 93.40 | |
HLADR+CD3+CD4+ | Mothers | 4.92 | 4.69 | 4.27 b | 6.28 b | 4.45 | 4.73 |
Children | 3.06 | 3.53 | 3.92 | 1.81 | 3.60 | 2.92 | |
CD38+CD3+CD4+ | Mothers | 53.00 | 49.65 | 49.30 | 34.50 | 51.25 | 48.70 |
Children | 65.70 | 67.10 | 63.00 | 68.80 | 65.30 | 67.20 | |
CD38+HLADR+CD3+CD4+ | Mothers | 2.59 | 2.74 | 2.71 | 3.63 | 2.70 | 2.90 |
Children | 2.12 | 2.71 | 2.70 c | 1.06 c | 2.37 | 1.80 | |
CD38−HLADR+CD3+CD4+ | Mothers | 2.33 | 2.42 | 1.91 | 4.29 | 2.07 | 2.45 |
Children | 1.54 | 1.26 | 1.46 | 0.72 | 1.47 | 1.11 | |
CD45RA+CD4+ | Mothers | 65.20 | 58.95 | 59.90 | 46.00 | 63.30 | 58.00 |
Children | 71.60 | 72.25 | 68.10 | 70.50 | 69.20 | 70.50 | |
CD45RA+CD27+CD4+ | Mothers | 93.60 | 92.50 | 88.30 | 95.60 | 92.30 | 92.70 |
Children | 96.50 | 94.55 | 97.20 | 99.10 | 96.90 | 97.60 | |
CD45RA+CD27−CD4+ | Mothers | 6.37 | 7.35 | 11.30 | 4.37 | 7.66 | 7.05 |
Children | 3.47 | 5.42 | 2.73 | 0.88 | 3.04 | 2.30 | |
CD45RA+CD57+CD4+ | Mothers | 9.18 | 5.35 | 5.28 | 2.37 | 8.01 | 5.00 |
Children | 1.97 | 4.76 | 0.96 | 0.73 | 1.79 | 1.69 | |
CD45RA+CD57−CD4+ | Mothers | 90.80 | 94.60 | 94.70 | 97.60 | 92.00 | 94.90 |
Children | 98.00 | 95.25 | 99.00 | 99.30 | 98.20 | 98.30 | |
CD45RA+CD57+CD27+CD4+3 | Mothers | 2.51 | 0.79 | 1.35 | 0.72 | 1.68 | 0.78 |
Children | 0.80 | 0.86 | 1.02 | 0.82 | 0.91 | 0.82 | |
CD45RA+CD57−CD27+CD4+3 | Mothers | 86.50 | 91.25 | 87.90 | 94.10 | 87.00 | 91.30 |
Children | 95.85 | 93.35 | 96.00 | 98.30 | 96.00 | 96.70 | |
CD45RO+CD4+ memory | Mothers | 41.80 | 52.15 | 51.10 | 63.80 | 45.25 | 54.40 |
Children | 40.10 | 37.35 | 36.50 | 36.80 | 38.50 | 37.30 | |
CD45RO+CD27+CD4+ | Mothers | 80.40 | 83.60 | 76.30 | 79.50 | 77.80 | 82.50 |
Children | 79.25 | 74.75 | 80.10 | 89.40 | 79.50 | 83.00 | |
CD45RO+CD27− | Mothers | 19.60 | 16.40 | 23.70 | 20.50 | 22.20 | 17.50 |
Children | 20.75 | 25.25 | 19.90 | 10.60 | 20.50 | 17.00 | |
CD45RO+CD57+CD4+ | Mothers | 13.70 | 6.71 | 11.20 | 4.59 | 12.45 | 6.56 |
Children | 6.46 | 12.42 | 5.70 | 4.06 | 6.16 | 5.32 | |
CD45RO+CD57−CD4+ | Mothers | 86.30 | 93.30 | 88.80 | 95.40 | 87.55 | 93.40 |
Children | 93.55 | 87.60 | 94.30 | 95.90 | 93.80 | 94.70 | |
CD45RO+CD57+CD27+CD4+ | Mothers | 3.01 | 2.30 | 2.23 | 2.39 | 2.72 | 2.37 |
Children | 3.75 | 2.92 | 4.29 | 3.21 | 3.96 | 3.21 | |
CD45RO+CD57−CD27+CD4+ | Mothers | 77.20 | 79.55 | 75.00 | 78.10 | 76.00 | 78.10 |
Children | 77.10 | 69.50 | 77.20 | 87.90 | 77.20 | 79.80 |
HPV16 Infection Status of the Mother | |||||||
---|---|---|---|---|---|---|---|
Genital HPV16 Infection | Oral HPV16 Infection | Combined HPV16 Infection | |||||
Persistent Infection * | Always Negative | Persistent infection * | Always Negative | Persistent Infection * | Always Negative | ||
Marker | Median (%) | Median (%) | Median (%) | ||||
CD3+ lymphocytes | Mothers | 73.00 a | 54.65 a | 47.10 | 60.10 | 58.30 | 54.70 |
Children | 72.65 | 67.40 | 54.50 | 67.80 | 67.10 | 67.80 | |
CD3+CD8+ | Mothers | 22.10 | 18.35 | 24.40 | 25.70 | 22.10 | 19.80 |
Children | 25.15 | 25.30 | 20.50 | 20.50 | 22.20 | 20.50 | |
CD69+CD8+ | Mothers | 1.62 | 1.83 | 1.02 | 3.22 | 1.46 | 1.87 |
Children | 0.76 | 0.77 | 0.92 | 0.93 | 0.83 | 0.93 | |
CD25+CD8+ | Mothers | 0.06 | 0.15 | 0.085 | 0.33 | 0.08 | 0.19 |
Children | 0.08 | 0.22 | 0.12 | 0.13 | 0.09 | 0.17 | |
CD27+CD8+ | Mothers | 73.30 | 70.15 | 49.50 | 68.60 | 64.85 | 70.00 |
Children | 84.65 | 74.05 | 86.90 | 93.90 | 86.50 | 85.30 | |
HLADR+CD3+CD8+ | Mothers | 5.65 | 8.35 | 6.41 | 7.74 | 6.03 | 8.10 |
Children | 6.01 | 7.44 | 10.30 b | 3.80 b | 8.41 | 5.36 | |
CD38+CD3+CD8+ | Mothers | 37.80 | 40.65 | 36.30 | 37.50 | 36.80 | 37.50 |
Children | 42.65 | 52.45 | 50.50 | 57.90 | 49.90 | 53.50 | |
CD38+HLADR+CD3+CD8+ | Mothers | 2.99 | 4.42 | 3.94 | 5.59 | 3.27 | 5.03 |
Children | 2.92 | 4.09 | 5.63 c | 2.91 c | 5.07 | 3.46 | |
CD38-HLADR+CD3+CD8+ | Mothers | 3.40 | 3.53 | 3.37 | 2.80 | 3.39 | 3.35 |
Children | 4.05 | 3.56 | 4.38 d | 1.20 d | 4.38 | 2.32 | |
CD45RA+CD8+ | Mothers | 79.20 | 77.55 | 80.40 | 73.20 | 79.80 | 77.50 |
Children | 85.35 | 90.95 | 87.80 | 91.30 | 86.80 | 91.30 | |
CD45RA+CCR7−CD8+ | Mothers | 93.80 | 92.70 | 95.90 | 93.90 | 93.80 | 93.40 |
Children | 94.75 | 96.70 | 92.90 | 92.90 | 94.20 | 96.60 | |
CD45RA+CD27+CD8+ | Mothers | 67.70 | 68.55 | 42.30 | 64.20 | 58.60 | 68.20 |
Children | 82.90 | 73.50 | 86.90 | 94.00 | 86.30 | 84.00 | |
CD45RA+CD27−CD8+ | Mothers | 31.30 | 30.50 | 57.30 | 34.90 | 41.10 | 30.50 |
Children | 17.10 | 26.40 | 13.00 | 5.89 | 13.50 | 16.00 | |
CD45RA+CD57+CD8+ | Mothers | 43.60 | 36.30 | 53.20 | 37.20 | 46.35 | 36.90 |
Children | 20.90 | 30.45 | 25.90 | 11.40 | 25.10 | 23.10 | |
CD45RA+CD57+CD27+CD8+ | Mothers | 14.20 | 10.01 | 6.30 | 7.60 | 11.75 | 9.72 |
Children | 9.38 | 8.53 | 8.03 | 7.18 | 8.03 | 7.18 | |
CD45RA+CD57−CD8+ | Mothers | 56.30 | 63.50 | 46.70 | 62.70 | 53.55 | 62.70 |
Children | 72.20 | 69.50 | 74.10 | 88.60 | 74.10 | 76.90 | |
CD45RA+CD57−CD27+CD8+ | Mothers | 46.50 | 56.55 | 36.60 | 55.30 | 44.95 | 56.40 |
Children | 69.15 | 65.35 | 71.90 | 86.50 | 71.70 | 71.70 | |
CD45RO+CD8+ | Mothers | 50.20 | 54.50 | 46.20 | 49.60 | 48.15 | 49.60 |
Children | 43.30 | 38.45 | 33.20 e | 23.00 e | 35.10 | 32.00 | |
CD45RO+CCR7+CD8+ | Mothers | 8.69 | 12.65 | 9.90 | 12.00 | 9.30 | 12.00 |
Children | 6.05 | 7.17 | 8.72 | 6.28 | 7.29 | 6.54 | |
CD45RO+CCR7−CD8+ | Mothers | 91.30 | 87.35 | 90.10 | 88.00 | 90.70 | 88.00 |
Children | 93.95 | 92.85 | 91.30 | 93.70 | 92.70 | 93.50 | |
CD45RO+CD27+CD8+ | Mothers | 63.80 | 61.75 | 48.80 | 65.90 | 60.30 | 63.00 |
Children | 71.80 | 60.45 | 77.00 | 80.40 | 73.50 | 71.10 | |
CD45RO+CD27−CD8+ | Mothers | 36.20 | 38.25 | 51.20 | 34.10 | 39.70 | 37.00 |
Children | 28.20 | 39.55 | 23.00 | 19.60 | 26.50 | 28.90 | |
CD45RO+CD57+CD8+ | Mothers | 50.40 | 42.20 | 50.60 | 35.00 | 50.50 | 41.70 |
Children | 43.25 | 60.20 | 45.80 | 35.70 | 44.50 | 48.30 | |
CD45RO+CD57−CD8+ | Mothers | 49.60 | 56.00 | 49.40 | 65.00 | 49.50 | 57.30 |
Children | 56.75 | 39.80 | 54.20 | 64.30 | 55.50 | 51.70 | |
CD45RO+CD57+CD27+CD8+ | Mothers | 8.21 | 4.40 | 4.09 | 2.32 | 7.11 | 4.18 |
Children | 3.34 | 2.65 | 3.13 | 3.87 | 3.21 | 2.96 | |
CDRO+CD57−CD27−CD8+ | Mothers | 4.97 | 6.12 | 9.64 | 13.20 | 8.93 | 7.72 |
Children | 2.23 | 3.80 | 2.60 | 2.85 | 2.51 | 3.25 |
Genital HPV16 Infection | Oral HPV16 Infection | Combined HPV16 Infection | ||||
---|---|---|---|---|---|---|
Persistent Infection (n = 10) | Always Negative (n = 20) | Persistent Infection (n = 7) | Always Negative (n = 5) | Persistent Infection (n = 17) | Always Negative (n = 25) | |
Mean (±SD) | Mean (±SD) | Mean (±SD) | ||||
Lymphocytes (CD3+) | 69.03 (14.17) | 56.76 (11.40) | 48.17 (7.35) | 60.26 (14.26) | 59.91 (15.59) | 57.46 (11.78) |
CD4+ cell population | ||||||
HLADR+CD3+ ** | 5.67 (3.33) | 5.17 (2.47) | 4.07 a (1.53) | 6.60 a (2.15) | 4.97 (2.74) | 5.46 (2.44) |
CD8+ cell population | ||||||
CD45RO+CCR7− | 90.19 b (4.97) | 80.56 b (13.40) | 88.47 (7.48) | 88.12 (2.62) | 89.44 c (6.03) | 82.07 c (12.36) |
CD38+HLADR+CD3 *** | 3.92 (2.44) | 5.40 (4.38) | 3.67 d (2.18) | 7.70 d (3.61) | 3.81 (2.26) | 5.86 (4.27) |
CD45RA+CCR7− | 92.96 (3.18) | 90.21 (5.63) | 95.37 (2.15) | 94.14 (0.55) | 94.01 e (2.97) | 91.00 e (5.26) |
Mother’s HPV16 Status | ||||||
---|---|---|---|---|---|---|
Genital HPV16 Infection | Oral HPV16 Infection | Combined HPV16 Infection | ||||
Persistent * Infection (n = 10) | Always HPV-Negative (n = 8) | Persistent * Infection (n = 7) | Always HPV-Negative (n = 3) | Persistent * Infection (n = 17) | Always HPV-Negative (n = 11) | |
Mean (±SD) | Mean (±SD) | Mean (±SD) | ||||
Lymphocyte Subsets In Children | ||||||
Lymphocytes (CD3+) | 67.82 (13.99) | 72.49 (13.67) | 57.99 (12.77) | 65.30 (10.67) | 63.77 (14.01) | 70.53(12.84) |
CD4+ cell population | ||||||
CD38+HLADR+CD3+ ** | 4.86 (8.11) | 2.65 (1.08) | 3.22 a (1.32) | 1.24 a (0.36) | 4.18 (6.19) | 2.26 (1.13) |
CD8+ cell population | ||||||
HLADR+CD3+ | 9.45 (9.60) | 7.99 (5.12) | 9.79 b (2.42) | 4.17 b (1.05) | 9.59 (7.35) | 6.95 (4.67) |
CD38+HLADR+CD3+ *** | 6.40 (9.03) | 4.46 (2.76) | 6.44 c (1.62) | 3.06 c (0.35) | 6.41 (6.85) | 4.08 (2.41) |
CD38−HLADR+CD3+CD4+ | 11.92 (25.21) | 4.19 (3.00) | 4.25 d (1.49) | 1.52 d (0.70) | 8.76 (19.33) | 3.46 (2.82) |
CD45RO+ | 40.81 (17.42) | 38.59 (8.58) | 34.30 e (6.90) | 23.40 e (2.82) | 38.13 (14.12) | 34.45(10.17) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suominen, H.; Paaso, A.; Koskimaa, H.-M.; Grénman, S.; Syrjänen, K.; Syrjänen, S.; Louvanto, K. Peripheral Blood T-lymphocyte Phenotypes in Mother-Child Pairs Stratified by the Maternal HPV Status: Persistent HPV16 vs. HPV-Negative: A Case-Control Study. Viruses 2022, 14, 2633. https://doi.org/10.3390/v14122633
Suominen H, Paaso A, Koskimaa H-M, Grénman S, Syrjänen K, Syrjänen S, Louvanto K. Peripheral Blood T-lymphocyte Phenotypes in Mother-Child Pairs Stratified by the Maternal HPV Status: Persistent HPV16 vs. HPV-Negative: A Case-Control Study. Viruses. 2022; 14(12):2633. https://doi.org/10.3390/v14122633
Chicago/Turabian StyleSuominen, Helmi, Anna Paaso, Hanna-Mari Koskimaa, Seija Grénman, Kari Syrjänen, Stina Syrjänen, and Karolina Louvanto. 2022. "Peripheral Blood T-lymphocyte Phenotypes in Mother-Child Pairs Stratified by the Maternal HPV Status: Persistent HPV16 vs. HPV-Negative: A Case-Control Study" Viruses 14, no. 12: 2633. https://doi.org/10.3390/v14122633
APA StyleSuominen, H., Paaso, A., Koskimaa, H.-M., Grénman, S., Syrjänen, K., Syrjänen, S., & Louvanto, K. (2022). Peripheral Blood T-lymphocyte Phenotypes in Mother-Child Pairs Stratified by the Maternal HPV Status: Persistent HPV16 vs. HPV-Negative: A Case-Control Study. Viruses, 14(12), 2633. https://doi.org/10.3390/v14122633