Simultaneous Production of a Virus-Like Particle Linked to dsRNA to Enhance dsRNA Delivery for Yellow Head Virus Inhibition
Abstract
1. Introduction
2. Materials and Methods
2.1. Recombinant Bacteria and Plasmid Extraction
2.2. Construction and Expression of a Recombinant Linked cpPstDNV-Dspro Plasmid
2.3. Purification of Recombinant Linked cpPstDNV-Dspro by Affinity Chromatography
2.4. Characterization of Recombinant Linked cpPstDNV-Dspro
2.5. Effect of Recombinant Linked PstDNV VLPs-Dspro in YHV Infected L. vannamei
2.6. Hemolymph Enzymatic Digestion
3. Results
3.1. Construction and Expression of Recombinant pET28a-Linked cpPstDNV-Dspro
3.2. Purification of Recombinant pET28a-Linked cpPstDNV-Dspro
3.3. Characterization of Recombinant Linked cpPstDNV-Dspro
3.4. Inhibition of YHV Infection of L. vannamei by Linked PstDNV VLPs-Dspro
3.5. Hemolymph Enzymatic Digestion Assay
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dhar, A.K.; Cruz-Flores, R.; Caro, L.F.A.; Siewiora, H.M.; Jory, D. Diversity of single-stranded DNA containing viruses in shrimp. Virus Dis. 2019, 30, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Tanticharoen, M.; Flegel, T.W.; Meerod, W.; Grudloyma, U.; Pisamai, N. Aquacultural biotechnology in Thailand: The case of the shrimp industry. Int. J. Biotechnol. 2008, 10, 588–603. [Google Scholar] [CrossRef]
- Rubel, H.; Woods, W.; Perez, D.; Unnikrishnan, S.; Felde, A.M.; Zielcke, S.; Lidy, C.; Lanfer, C. A Strategic Approach to Sustainable Shrimp Production in Thailand. Available online: https://media-publications.bcg.com/BCG-A-Strategic-Approach-to-Sustainable-Shrimp-Production-Thailand-July-2019.pdf (accessed on 28 October 2022).
- López-Téllez, N.A.; Corbalá-Bermejo, J.A.; Bustamante-Unzueta, M.L.; Silva-Ledesma, L.P.; Vidal-Martínez, V.M.; Rodriguez-Canul, R. History, impact, and status of infectious diseases of the pacific white shrimp Penaeus vannamei (Bonne, 1831) cultivated in Mexico. J. World Aquac. Soc. 2019, 51, 334–345. [Google Scholar] [CrossRef]
- Ganjoor, M. A Short review on infectious viruses in cultural shrimps (Penaeidae Family). Fish. Aquac. J. 2015, 6, 135–145. [Google Scholar] [CrossRef]
- Flegel, T.W. Historic emergence, impact and current status of shrimp pathogens in Asia. J. Invertebr. Pathol. 2012, 110, 166–173. [Google Scholar] [CrossRef]
- Jitrapakdee, S.; Unajak, S.; Sittidilokratna, N.; Hodgson, R.A.J.; Cowley, J.A.; Walker, P.J.; Panyim, S.; Boonsaeng, V. Identification and analysis of gp116 and gp64 structural glycoproteins of yellow head nidovirus of Penaeus monodon shrimp. J. Gen. Virol. 2003, 84, 863–873. [Google Scholar] [CrossRef]
- Sittidilokratna, N.; Dangtip, S.; Cowley, J.A.; Walker, P.J. RNA transcription analysis and completion of the genome sequence of yellow head nidovirus. Virus. Res. 2008, 136, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Cowley, J.A.; Walker, P.J.; Flegel, T.W.; Lightner, D.V.; Bonami, J.R.; Snijder, E.J.; De Groot, R.J. Roniviridae. In Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses; King, A.M.Q., Adams, M.J., Carstens, E.B., Lefkowitz, E.J., Eds.; Academic Press: San Diago, CA, USA, 2011; pp. 829–834. ISBN 978-0-12-384684-6. [Google Scholar]
- Robalino, J.; Bartlett, T.; Shepard, E.; Prior, S.; Jaramillo, G.; Scura, E.; Chapman, R.W.; Gross, P.S.; Browdy, C.L.; Warr, G.W. Double-stranded RNA induces sequence-specific antiviral silencing in addition to nonspecific immunity in a marine shrimp: Convergence of RNA interference and innate immunity in the invertebrate antiviral response? J. Virol. 2005, 79, 13561–13571. [Google Scholar] [CrossRef]
- Robalino, J.; Bartlett, T.C.; Chapman, R.W.; Gross, P.S.; Browdy, C.L.; Warr, G.W. Double-stranded RNA and antiviral immunity in marine shrimp: Inducible host mechanisms and evidence for the evolution of viral counter-responses. Dev. Comp. Immunol. 2007, 31, 539–547. [Google Scholar] [CrossRef]
- Shan, G. RNA interference as a gene knockdown technique. Int. J. Biochem. Cell Biol. 2010, 42, 1243–1251. [Google Scholar] [CrossRef] [PubMed]
- Itsathitphaisarn, O.; Thitamadee, S.; Weerachatyanukul, W.; Sritunyalucksana, K. Potential of RNAi applications to control viral diseases of farmed shrimp. J. Invertebr. Pathol. 2017, 147, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Tirasophon, W.; Roshorm, Y.; Panyim, S. Silencing of yellow head virus replication in penaeid shrimp cells by dsRNA. Biochem. Biophys. Res. Commun. 2005, 334, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Yodmuang, S.; Tirasophon, W.; Roshorm, Y.; Chinnirunvong, W.; Panyim, S. YHV-protease dsRNA inhibits YHV replication in Penaeus monodon and prevents mortality. Biochem. Biophys. Res. Commun. 2006, 341, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Tirasophon, W.; Yodmuang, S.; Chinnirunvong, W.; Plongthongkum, N.; Panyim, S. Therapeutic inhibition of yellow head virus multiplication in infected shrimps by YHV-protease dsRNA. Antivir. Res. 2007, 74, 150–155. [Google Scholar] [CrossRef]
- Assavalapsakul, W.; Chinnirunvong, W.; Panyim, S. Application of YHV-protease dsRNA for protection and therapeutic treatment against yellow head virus infection in Litopenaeus vannamei. Dis. Aquat. Organ. 2009, 84, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Apiratikul, N.; Yingyongnarongkul, B.; Assavalapsakul, W. Highly efficient double-stranded RNA transfection of penaeid shrimp using cationic liposomes. Aquac. Res. 2013, 45, 106–112. [Google Scholar] [CrossRef]
- Sanitt, P.; Apiratikul, N.; Niyomtham, N.; Yingyongnarongkul, B.; Assavalapsakul, W.; Panyim, S.; Udomkit, A. Cholesterol-based cationic liposome increases dsRNA protection of yellow head virus infection in Penaeus vannamei. J. Biotechnol. 2016, 228, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Sanitt, P.; Attasart, P.; Panyim, S. Protection of yellow head virus infection in shrimp by feeding of bacteria expressing dsRNAs. J. Biotechnol. 2014, 179, 26–31. [Google Scholar] [CrossRef]
- Thammasorn, T.; Jitrakorn, S.; Charoonnart, P.; Sirimanakul, S.; Rattanarojpong, T.; Chaturongakul, S.; Saksmerprome, V. Probiotic bacteria (Lactobacillus plantarum) expressing specific double-stranded RNA and its potential for controlling shrimp viral and bacterial diseases. Aquac. Int. 2017, 25, 1679–1692. [Google Scholar] [CrossRef]
- Somchai, P.; Jitrakorn, S.; Thitamadee, S.; Meetam, M.; Saksmerprome, V. Use of microalgae Chlamydomonas reinhardtii for production of double-stranded RNA against shrimp virus. Aquacult. Rep. 2016, 3, 178–183. [Google Scholar] [CrossRef]
- Charoonnart, P.; Worakajit, N.; Zedler, J.A.Z.; Meetam, M.; Robinson, C.; Saksmerprome, V. Generation of microalga Chlamydomonas reinhardtii expressing shrimp antiviral dsRNA without supplementation of antibiotics. Sci. Rep. 2019, 9, 3164. [Google Scholar] [CrossRef]
- Crisci, E.; Barcena, J.; Montoya, M. Virus-like particle-based vaccines for animal viral infections. Inmunologia. 2013, 32, 102–116. [Google Scholar] [CrossRef]
- Fuenmayor, J.; Godia, F.; Cervera, L. Production of virus-like particles for vaccines. N. Biotechnol. 2017, 39, 174–180. [Google Scholar] [CrossRef]
- Hou, L.; Wu, H.; Xu, L.; Yang, F. Expression and self-assembly of virus-like particles of infectious hypodermal and hematopoietic necrosis virus in Escherichia coli. Arch. Virol. 2009, 154, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Kiatmetha, P.; Chotwiwatthanakun, C.; Jariyapong, P.; Santimanawong, W.; Ounjai, P.; Weerachatyanukul, W. Nanocontainer designed from an infectious hypodermal and hematopoietic necrosis virus (IHHNV) has excellent physical stability and ability to deliver shrimp tissues. PeerJ 2018, 6, e6079. [Google Scholar] [CrossRef]
- Jariyapong, P.; Chotwiwatthanakun, C.; Somrit, M.; Jitrapakdee, S.; Xing, L.; Cheng, H.R.; Weerachatyanukul, W. Encapsulation and delivery of plasmid DNA by virus-like nanoparticles engineered from Macrobrachium rosenbergii nodavirus. Virus Res. 2014, 179, 140–146. [Google Scholar] [CrossRef]
- Jariyapong, P.; Chotwiwatthanakun, C.; Direkbusarakom, S.; Hirono, I.; Wuthisuthimethavee, S.; Weerachatyanukul, W. Delivery of double stranded RNA by Macrobrachium rosenbergii nodavirus-like particles to protect shrimp from white spot syndrome virus. Aquaculture. 2015, 435, 86–91. [Google Scholar] [CrossRef]
- Jariyapong, P.; Weerachatyanukul, W.; Direkbusarakom, S.; Hirono, I.; Wuthisuthimethavee, S.; Chotwiwatthanakun, C. Enhancement of shrimp immunity against white spot syndrome virus by Macrobrachium rosenbergii nodavirus-like particle encapsulated VP28 double-stranded RNA. Aquaculture. 2015, 446, 325–332. [Google Scholar] [CrossRef]
- Wuthisathid, K.; Chaijarasphong, T.; Chotwiwatthanakun, C.; Somrit, M.; Sritunyalucksana, K.; Itsathitphaisarn, O. Co-expression of double-stranded RNA and viral capsid protein in the novel engineered Escherichia coli DualX-B15(DE3) strain. BMC Microbiol. 2021, 21, 88. [Google Scholar] [CrossRef]
- Sinnuengnong, R.; Attasart, P.; Smith, D.R.; Panyim, S.; Assavalapsakul, W. Administration of co-expressed Penaeus stylirostris densovirus-like particles and dsRNA-YHV-Pro provide protection against yellow head virus in shrimp. J. Biotechnol. 2018, 267, 63–70. [Google Scholar] [CrossRef]
- Chaimongkon, D.; Assavalapsakul, W.; Panyim, S.; Attasart, P. A multi-target dsRNA for simultaneous inhibition of yellow head virus and white spot syndrome virus in shrimp. J. Biotechnol. 2020, 321, 48–56. [Google Scholar] [CrossRef]
- Lee, D.; Yu, Y.B.; Choi, J.H.; Jo, A.H.; Hong, S.M.; Kang, J.C.; Kim, J.H. Viral shrimp diseases listed by the OIE: A review. Viruses. 2022, 14, 585. [Google Scholar] [CrossRef]
- Shinn, A.P.; Pratoomyot, J.; Griffiths, D.; Trong, T.Q.; Vu, N.T.; Jiravanichpaisal, P.; Briggs, M. Asian shrimp production and the economic costs of disease. Asian Fish. Sci. 2018, 31S, 29–58. [Google Scholar] [CrossRef]
- Charoonnart, P.; Purton, S.; Saksmerprome, V. Applications of microalgal biotechnology for disease control in aquaculture. Biology. 2018, 7, 24. [Google Scholar] [CrossRef] [PubMed]
- Ongvarrasopone, C.; Chanasakulniyom, M.; Sritunyalucksana, K.; Panyim, S. Suppression of PmRab7 by dsRNA inhibits WSSV or YHV infection in shrimp. Mar. Biotechnol. 2008, 10, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.; Panyim, S.; Udomkit, A. Suppression of argonautes compromises viral infection in Penaeus monodon. Dev. Comp. Immunol. 2019, 90, 130–137. [Google Scholar] [CrossRef]
- Kim, C.S.; Kosuke, Z.; Nam, Y.K.; Kim, S.K.; Kim, H.K. Protection of shrimp (Penaeus chinensis) against white spot syndrome virus (WSSV) challenge by double-stranded RNA. Fish Shellfish Immunol. 2007, 23, 242–246. [Google Scholar] [CrossRef]
- Velappan, N.; Sblattero, D.; Chasteen, L.; Pavlik, P.; Bradbury, A.R.M. Plasmid incompatibility: More compatible than previously thought? Protein Eng. Des. Sel. 2007, 20, 309–313. [Google Scholar] [CrossRef]
- Lightner, D.V.; Redman, R.M.; Pantoja, C.R.; Tang, K.F.; Noble, B.L.; Schofield, P.; Mohney, L.L.; Nunan, L.M.; Navarro, S.A. Historic emergence, impact and current status of shrimp pathogens in the Americas. J. Invertebr. Pathol. 2012, 110, 174–183. [Google Scholar] [CrossRef]
- Zhu, Y.P.; Li, C.; Wan, X.Y.; Yang, Q.; Xie, G.S.; Huang, J. Delivery of plasmid DNA to shrimp hemocytes by Infectious hypodermal and hematopoietic necrosis virus (IHHNV) nanoparticles expressed from a baculovirus insect cell system. J. Invertebr. Pathol. 2019, 166, 107231. [Google Scholar] [CrossRef]
- Kaufmann, B.; Bowman, V.D.; Li, Y.; Szelei, J.; Waddell, P.J.; Tijssen, P.; Rossmann, M.G. Structure of Penaeus stylirostris densovirus, a shrimp pathogen. J. Virol. 2010, 84, 11289–11296. [Google Scholar] [CrossRef] [PubMed]
- Goh, Z.H.; Tan, S.G.; Bhassu, S.; Tan, W.S. Virus-like particles of Macrobrachium rosenbergii nodavirus produced in bacteria. J. Virol. Methods. 2011, 175, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Jariyapong, P.; Chotwiwatthanakun, C.; Pooljun, C.; Weerachatyanukul, W. Infectious hypodermal and hematopoietic necrosis virus-like particles encapsulating VP28 double-stranded RNA protect shrimp from white spot syndrome virus. Aquaculture. 2019, 504, 260–266. [Google Scholar] [CrossRef]
- Weerachatyanukul, W.; Chotwiwatthanakun, C.; Jariyapong, P. Dual VP28 and VP37 dsRNA encapsulation in IHHNV virus-like particles enhances shrimp protection against white spot syndrome virus. Fish Shellfish Immunol. 2021, 113, 89–95. [Google Scholar] [CrossRef]
- Mohsen, M.O.; Zha, L.; Cabral-Miranda, G.; Bachmann, M.F. Major findings and recent advances in virus–like particle (VLP)-based vaccines. Semin. Immunol. 2017, 34, 123–132. [Google Scholar] [CrossRef]
- Schwarz, B.; Uchida, M.; Douglas, T. Biomedical and catalytic opportunities of virus-like particles in nanotechnology. Adv. Virus Res. 2017, 97, 1–60. [Google Scholar] [CrossRef]
- Peternel, S.; Komel, R. Active protein aggregates produced in Escherichia coli. Int. J. Mol. Sci. 2011, 12, 8275–8287. [Google Scholar] [CrossRef] [PubMed]
- Mamipour, M.; Yousefi, M.; Hasanzadeh, M. An overview on molecular chaperones enhancing solubility of expressed recombinant proteins with correct folding. Int. J. Biol. Macromol. 2017, 102, 367–375. [Google Scholar] [CrossRef]
- Papaneophytou, C.; Kontopidis, G. A comparison of statistical approaches used for the optimization of soluble protein expression in Escherichia coli. Protein Expr. Purif. 2016, 120, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, H.P.; Mortensen, K.K. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb. Cell Fact. 2005, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Marco, A. Protocol for preparing proteins with improved solubility by co-expressing with molecular chaperones in Escherichia coli. Nat. Protoc. 2007, 2, 2632–2639. [Google Scholar] [CrossRef] [PubMed]
- Young, C.L.; Britton, Z.T.; Robinson, A.S. Recombinant protein expression and purification: A comprehensive review of affinity tags and microbial applications. Biotechnol. J. 2012, 7, 620–634. [Google Scholar] [CrossRef]
Primers | Sequences (5′–3′) | Purposes |
T7 | TAATACGACTCACTATAGGG | pET28a-Linked cpPstDNV-dspro sequencing |
T7 terminator | GCTAGTTATTGCTCAGCGG | |
Internal cpPstDNV F1 | GATGTGTCGCAAGTTTGGTG | |
Internal cpPstDNV F2 | CAACTAAGGAAGCCGACGTAACATTGG | |
Internal cpPstDNV R | CATCCCCAAACTTGCGACACATC | |
YHV-Helicase-F | CAAGGACCACCTGGTACCGGTAAGAC | semi-quantitative RT-PCR for YHV-Helicase |
YHV-Helicase-R | GCGGAAACGACTGACGGCTACATTCAC | |
Actin-F | ATGGCATCTCGCAAGAAGATT | Internal control for semi-quantitative RT-PCR |
Actin-R | TTAGCAAGAGCATGCATCCTG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Worawittayatada, J.; Angsujinda, K.; Sinnuengnong, R.; Attasart, P.; Smith, D.R.; Assavalapsakul, W. Simultaneous Production of a Virus-Like Particle Linked to dsRNA to Enhance dsRNA Delivery for Yellow Head Virus Inhibition. Viruses 2022, 14, 2594. https://doi.org/10.3390/v14122594
Worawittayatada J, Angsujinda K, Sinnuengnong R, Attasart P, Smith DR, Assavalapsakul W. Simultaneous Production of a Virus-Like Particle Linked to dsRNA to Enhance dsRNA Delivery for Yellow Head Virus Inhibition. Viruses. 2022; 14(12):2594. https://doi.org/10.3390/v14122594
Chicago/Turabian StyleWorawittayatada, Jaruwan, Kitipong Angsujinda, Rapee Sinnuengnong, Pongsopee Attasart, Duncan R. Smith, and Wanchai Assavalapsakul. 2022. "Simultaneous Production of a Virus-Like Particle Linked to dsRNA to Enhance dsRNA Delivery for Yellow Head Virus Inhibition" Viruses 14, no. 12: 2594. https://doi.org/10.3390/v14122594
APA StyleWorawittayatada, J., Angsujinda, K., Sinnuengnong, R., Attasart, P., Smith, D. R., & Assavalapsakul, W. (2022). Simultaneous Production of a Virus-Like Particle Linked to dsRNA to Enhance dsRNA Delivery for Yellow Head Virus Inhibition. Viruses, 14(12), 2594. https://doi.org/10.3390/v14122594