Novel Viruses That Lyse Plant and Human Strains of Kosakonia cowanii
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Virus Identification
3.2. Host Specificity
3.3. Growth Characteristics
3.4. Genome Characteristics of Kc261, Kc318 and Kc166A (Autographiviridae)
3.5. Genome Characteristics of Kc166B, Kc237 and Kc283 (Podoviridae)
3.6. Genome Characteristics of Kc304, Kc305 and Kc263 (Myoviridae)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brady, C.; Cleenwerck, I.; Venter, S.; Coutinho, T.; De Vos, P. Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): Proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. Syst. Appl. Microbiol. 2013, 36, 309–316. [Google Scholar] [CrossRef]
- Inoue, K.; Sugiyama, K.; Kosako, Y.; Sakazaki, R.; Yamai, S. Enterobacter cowanii sp. nov., a new species of the family Enterobacteriaceae. Curr. Microbiol. 2000, 41, 417–420. [Google Scholar] [CrossRef]
- Yang, X.J.; Wang, S.; Cao, J.M.; Hou, J.H. Complete genome sequence of human pathogen Kosakonia cowanii type strain 888-76T. Braz. J. Microbiol. 2018, 49, 16–17. [Google Scholar] [CrossRef]
- Mulinari, J.; de Andrade, C.J.; de Lima Brandao, H.; da Silva, A.; de Souza, S.A.A.G.; de Souza, A.U. Enhanced textile wastewater treatment by a novel biofilm carrier with adsorbed nutrients. Biocatal. Agric. Biotechnol. 2020, 24, 101527. [Google Scholar] [CrossRef]
- Noori, F.; Etesami, H.; Zarini, H.N.; Khoshkholgh-Sima, N.A.; Salekdeh, G.H.; Alishani, F. Mining alfalfa (Medicago sativa L.) nodules for salinity tolerant non-rhizobial bacteria to improve growth of alfalfa under salinity stress. Ecotox. Environ. Saf. 2018, 162, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Ashitha, A.; Midhun, S.J.; Sunil, M.A.; Nithin, T.U.; Radhakrishnan, E.K.; Mathew, J. Bacterial endophytes from Artemisia nilagirica (Clarke) Pamp., with antibacterial efficacy against human pathogens. Microb. Pathog. 2019, 135, 103624. [Google Scholar] [CrossRef] [PubMed]
- Dennison, N.J.; Jupatanakul, N.; Dimopoulos, G. The mosquito microbiota influences vector competence for human pathogens. Curr. Opin. Insect Sci. 2014, 3, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Lyapunov, Y.E.; Kuzyaev, R.Z.; Khismatullin, R.G.; Bezdogova, O.A. Intestinal enterobacteria of the hibernating Apis mellifera mellifera L. bees. Microbiology 2008, 77, 373–379. [Google Scholar] [CrossRef]
- Burtseva, O.; Kublanovskaya, A.; Baulina, O.; Fedorenko, T.; Lobakova, E.; Chekanov, K. The strains of bioluminiscent bacteria isolated from the White Sea finfishes: Genera Photobacterium, Aliivibrio, Vibrio, Shewanella, and first luminous Kosakonia. J. Photochem. Photobiol. B 2020, 208, 111895. [Google Scholar] [CrossRef] [PubMed]
- Berinson, B.; Bellon, E.; Christner, M.; Both, A.; Aepfelbacher, M.; Rohde, H. Identification of Kosakonia cowanii as a rare cause of acute cholecystitis: Case report and review of the literature. BMC Infect. Dis. 2020, 20, 366. [Google Scholar] [CrossRef]
- Mertschnigg, T.; Patz, S.; Becker, M.; Feierl, G.; Ruppel, S.; Bunk, B.; Spröer, C.; Overmann, J.; Zarfel, G. First report of Kosakonia radicincitans bacteraemia from Europe (Austria)—Identification and whole-genome sequencing of strain DSM107547. Sci. Rep. UK 2020, 10, 1948. [Google Scholar] [CrossRef] [PubMed]
- Wetzel, K.; Lee, J.; Lee, C.S.; Binkley, M. Comparison of microbial diversity of edible flowers and basil grown with organic versus conventional methods. Can. J. Microbiol. 2010, 56, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Brady, C.L.; Venter, S.N.; Cleenwerck, I.; Engelbeen, K.; de Vos, P.; Wingfield, M.J.; Telechea, N.; Coutinho, T.A. Isolation off Enterobacter cowanii from Eucalyptus showing symptoms of bacterial blight and dieback in Uruguay. Lett. Appl. Microbiol. 2009, 49, 461–465. [Google Scholar] [CrossRef]
- Furtado, G.Q.; Guimarães, L.M.; Lisboa, D.O.; Cavalcante, G.P.; Arriel, D.A.A.; Alfenas, A.C.; Oliveira, J.R. First report of Enterobacter cowanii causing bacterial spot on Mabea fistulifera, a native forest species in Brazil. Plant Dis. 2012, 96, 1576. [Google Scholar] [CrossRef] [PubMed]
- Tho, K.E.; Brisco-McCann, E.; Wiriyajitsomboon, P.; Sundin, G.; Hausbeck, M.K. Bacteria associated with onion foliage in Michigan and their copper sensitivity. Plant Health Prog. 2019, 20, 170–177. [Google Scholar] [CrossRef]
- Krawczyk, K.; Borodynko-Filas, N. Kosakonia cowanii as the new bacterial pathogen affecting soybean (Glycine max Willd.). Eur. J. Plant Pathol. 2020, 127, 173–183. [Google Scholar] [CrossRef]
- Washio, K.; Yamamoto, G.; Ikemachi, M.; Fujii, S.; Ohnuma, K.; Masaki, T. Rhabdomyolysis due to bacteremia from Enterobacter cowanii caused by a rose thorn prick. J. Dermatol. 2018, 45, e313–e314. [Google Scholar] [CrossRef] [Green Version]
- Petrzik, K.; Lukavský, J.; Koloniuk, I. Novel virus on filamentous Arthronema africanum cyanobacterium. Microb. Ecol. 2021, 81, 454–459. [Google Scholar] [CrossRef]
- Brettin, T.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Olsen, G.J.; Olson, R.; Overbeek, R.; Parrello, B.; Pusch, G.D.; et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. UK 2015, 5, 8365. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, L.; Stephens, A.; Nam, S.Z.; Rau, D.; Kübler, J.; Lozajic, M.; Gabler, F.; Söding, J.; Lupas, A.N.; Alva, V. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. Mol. Biol. Evol. 2018, S0022–S2836. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Krumsiek, J.; Arnold, R.; Rattei, T. Gepard: A rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 2007, 23, 1026–1028. [Google Scholar] [CrossRef] [Green Version]
- Voronina, M.V.; Bugaeva, E.N.; Vasiliev, D.M.; Kabanova, A.P.; Barannik, A.P.; Shneider, M.M.; Kulikov, E.E.; Korzhenkov, A.A.; Toschakov, S.V.; Ignatov, A.N.; et al. Characterization of Pectobacterium carotovorum subsp. carotovorum bacteriophage PP16 prospective for biocontrol of potato soft rot. Microbiology 2019, 88, 451–460. [Google Scholar] [CrossRef]
- Shi, H.; Guo, Z.; Liu, Y.; Hao, Y.; Li, J.; Sun, Y. Complete genome sequence of ZG49, a T7-like bacteriophage lytic to Escherichia coli isolates. Genome Announc. 2017, 6, e01304-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kajsík, M.; Bugala, J.; Kadličeková, V.; Szemes, T.; Turňa, J.; Drahovská, H. Characterization of Dev-CD-23823 and Dev-CT57, new Autographivirinae bacteriophages infecting Cronobacter spp. Arch. Virol. 2019, 164, 1383–1391. [Google Scholar] [CrossRef]
- Diaz, H.; Graham, K.; Moreland, R.; Liu, M.; Ramsey, J. Complete genome sequence of Escherichia coli phage pisces. Microbiol. Res. Announc. 2019, 8, e01054-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Tamayo, M.G.; Penner, T.V.; Cook, B.W.M.; Court, D.A.; Theriault, S.S. Characterization of the Enterobacter phage vB_EcIM_CIP9. Genome Announc. 2020, 9, e01600-19. [Google Scholar] [CrossRef] [Green Version]
- Shahid, M.; Ameen, F.; Maheshwari, H.S.; Ahmed, B.; AlNadhari, S.; Khan, M.S. Colonization of Vigna radiata by a halotolerant bacterium Kosakonia sacchari improves the ionic balance, stressor metabolites, antioxidant status and yield under NaCl stress. Appl. Soil Ecol. 2021, 103809. [Google Scholar] [CrossRef]
- De Souza, E.M.; Lamb, T.I.; Lamb, T.A.; Silva, A.S.; de Carvalho, S.F.; Nyland, V.; Barbosa Lopes, M.C.; Grohs, M.; Marconatto, L.; dos Anjos Borges, G.; et al. Rhizospheric soil from rice paddy presents isolable bacteria able to induce cold tolerance in rice plants. J. Soil Sci. Plant Nutr. 2021. In Press. [Google Scholar] [CrossRef]
- Labanca, E.R.G.; Andrade, S.A.L.; Kuramae, E.E.; Silveira, A.P.D. The modulation of sugarcane growth amd nutritional profile under aluminium stress is dependent on beneficial endophytic bacteria and plantlet origin. Appl. Soil Ecol. 2020, 156, 103715. [Google Scholar] [CrossRef]
- Narayanan, M.; Ranganathan, M.; Kandasamy, G.; Kumarasamy, S. Evaluation of interaction among indigenous rhizobacteria and Vigna unguiculata on remediation of metal-containing abandoned magnesite mine tailing. Arch. Microbiol. 2021, 203, 1399–1410. [Google Scholar] [CrossRef]
- Munakata, Y.; Gavira, C.; Genestier, J.; Bourgaud, F.; Hehn, A.; Slezack-Deschaumes, S. Composition and functional comparison of vetiver root endophytic microbiota originating from different geographic locations that show antagonistic activity towards Fusarium graminearum. Microbiol. Res. 2021, 243, 126650. [Google Scholar] [CrossRef]
- Özdemir, Z. Identification of Enterobacteriaceae members and fluorescent pseudomonads associated with bacterial rind necrosis and rot of melon in Turkey. Eur. J. Plant Pathol. 2021. In Press. [Google Scholar] [CrossRef]
- Ramli, A.N.M.; Johari, N.D.; Azhar, M.A.; Man, R.C.; Hamid, H.A. A new L-glutaminase from Kosakonia sp.: Extracellular production, gene identification and structural analysis. J. Food Meas. Charact. 2021, 15, 862–875. [Google Scholar] [CrossRef]
- Nagy, J.K.; Schwarczinger, I.; Künstler, A.; Pogány, M.; Király, L. Penetration and translocation of Erwinia amylovora-specific bacteriophages in apple—A possibility of enhanced control of fire blight. Eur. J. Plant Pathol. 2015, 142, 815–827. [Google Scholar] [CrossRef]
- McCallin, S.; Oechslin, F. Bacterial resistance to phage and its impact on clinical therapy. In Phage Therapy: A Practical Approach; Górski, A., Międzybrodski, R., Borysowski, J., Eds.; Springer: Cham, Switzerland, 2019; pp. 59–88. [Google Scholar] [CrossRef]
- Iriarte, F.B.; Balogh, B.; Momol, M.T.; Smith, L.M.; Wilson, M.; Jones, J.B. Factors affecting survival of bacteriophage on tomato leaf surfaces. Appl. Environ. Microb. 2007, 73, 1704–1711. [Google Scholar] [CrossRef] [Green Version]
- McKenna, F.; El-Tarabily, K.A.; Hardy, K.A.; Hardy, G.E.S.J.; Dell, B. Novel in vivo use of a polyvalent Streptomyces phage to disinfest Streptomyces scabies-infected seed potatoes. Plant Pathol. 2001, 50, 666–675. [Google Scholar] [CrossRef]
- Nagy, J.K.; Király, L.; Schwarczinger, I. Phage therapy for plant diseases control with a focus on fire blight. Cent. Eur. J. Biol. 2012, 7, 1–12. [Google Scholar] [CrossRef]
- Fujiwara, A.; Fujisawa, M.; Hamasaki, R.; Kawasaki, T.; Fujie, M.; Yamada, T. Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Appl. Environ. Microb. 2011, 77, 4155–4162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duployez, C.; Edun-Renard, M.E.; Kipnis, E.; Dessein, R.; Guern, R.L. Bacteremia due to Kosakonia cowanii in a preterm neonate. J. Pediatr. Infect. Dis. 2021, 16, 183–186. [Google Scholar] [CrossRef]
- Melo, L.D.R.; Oliveira, H.; Pires, D.P.; Dabrowska, K.; Azeredo, J. Phage therapy efficacy: A review of the last 10 years of preclinical studies. Crit. Rev. Microbiol. 2020, 46, 78–99. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, H.; Yonesaki, T.; Minagawa, T. Sequence of the T4 recombination gene, uvsX, and its comparison with that of the recA gene of Escherichia coli. Nucleic Acids Res. 1985, 13, 7473–7481. [Google Scholar] [CrossRef] [PubMed]
Virus | K. cowanii Strains | Classification | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
039 | 042 | 045 | 048 | 051 | 056 | 059 | 062 | 063 | 18146 | Hamburg | |||
plant strains | human strains | ||||||||||||
Kc166A | - | + | + | - | + | + | + | + | + | - | - | Kayfunavirus | Autographiviridae |
Kc261 | - | + | - | - | - | - | - | - | - | - | - | Bonnellvirus | Autographiviridae |
Kc318 | + | - | + | - | + | + | + | + | + | + | - | Cronosvirus | Autographiviridae |
Kc166B | - | + | + | - | - | - | - | - | - | - | - | novel genus | Podoviridae |
Kc237 | - | + | + | - | - | - | - | - | - | - | - | Sortsnevirus | Podoviridae |
Kc283 | - | + | - | + | - | - | + | - | - | - | + | novel genus | Podoviridae |
Kc263 | + | + | + | + | + | + | + | + | + | + | + | novel genus | Myoviridae |
Kc304 | + | - | + | - | - | - | - | - | + | + | + | Winklervirus | Myoviridae |
Kc305 | - | - | - | - | - | - | - | - | - | - | + | Myovirus | Myoviridae |
Smaasur MN850625 | Ent.J8-65 NC_025445 | Altidsur MN850568 | Aldrigsur MN850592 | Mellemsur MN850570 | Megetsur MN850608 | Glasur MN850583 | Forsur MN850617 | Usur MN850624 | Kc261 MW250275 | Lidtsur NC_048177 | |
---|---|---|---|---|---|---|---|---|---|---|---|
smaasur | 93.8 | 74.2 | 73.7 | 75.2 | 75.2 | 73.0 | 73.7 | 74.4 | 73.6 | 72.7 | |
Ent. J8-65 | 99.4 | 74.2 | 73.9 | 75.1 | 75.1 | 72.9 | 73.5 | 74.2 | 73.4 | 71.9 | |
altidsur | 93.3 | 93.3 | 97.1 | 88.2 | 88.8 | 80.4 | 80.3 | 80.3 | 82.5 | 70.5 | |
aldrigsur | 93.3 | 93.3 | 99.7 | 87.9 | 88.6 | 80.6 | 80.4 | 80.5 | 82.6 | 70.1 | |
mellemsur | 92.4 | 92.4 | 99.1 | 98.8 | 95.9 | 79.9 | 81.3 | 81.0 | 82.2 | 70.4 | |
megetsur | 93.3 | 93.3 | 100.0 | 99.7 | 99.1 | 80.5 | 80.9 | 81.0 | 82.7 | 70.8 | |
glasur | 94.2 | 94.2 | 95.2 | 95.2 | 94.2 | 95.2 | 94.6 | 90.8 | 86.3 | 70.3 | |
forsur | 94.2 | 94.2 | 95.2 | 95.2 | 94.2 | 95.2 | 100.0 | 92.7 | 86.6 | 70.1 | |
usur | 93.9 | 93.9 | 94.8 | 94.8 | 93.9 | 94.8 | 99.4 | 99.4 | 87.2 | 69.6 | |
Kc261 | 93.6 | 93.6 | 97.6 | 97.6 | 96.7 | 97.6 | 97.0 | 97.0 | 97.3 | 71.0 | |
lidtsur | 94.5 | 95.2 | 94.5 | 94.5 | 93.6 | 94.5 | 96.4 | 96.4 | 96.1 | 95.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrzik, K.; Brázdová, S.; Krawczyk, K. Novel Viruses That Lyse Plant and Human Strains of Kosakonia cowanii. Viruses 2021, 13, 1418. https://doi.org/10.3390/v13081418
Petrzik K, Brázdová S, Krawczyk K. Novel Viruses That Lyse Plant and Human Strains of Kosakonia cowanii. Viruses. 2021; 13(8):1418. https://doi.org/10.3390/v13081418
Chicago/Turabian StylePetrzik, Karel, Sára Brázdová, and Krzysztof Krawczyk. 2021. "Novel Viruses That Lyse Plant and Human Strains of Kosakonia cowanii" Viruses 13, no. 8: 1418. https://doi.org/10.3390/v13081418
APA StylePetrzik, K., Brázdová, S., & Krawczyk, K. (2021). Novel Viruses That Lyse Plant and Human Strains of Kosakonia cowanii. Viruses, 13(8), 1418. https://doi.org/10.3390/v13081418