# Will SARS-CoV-2 Become Just Another Seasonal Coronavirus?

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. Small SARS-CoV-2 Doses Are Associated with Mild COVID-19 Disease

#### 1.2. Children Develop Mild COVID-19 Infections

#### 1.3. Partial Immunity Results in Mild Disease

#### 1.4. Non-Pharmaceutical Interventions (NPI) Promote Mild Disease

#### 1.5. Vaccines

## 2. Methods

#### 2.1. Model with Two Infection Types

#### 2.2. Model with Age-Structure Only

#### 2.3. The Full Model

## 3. Results

## 4. Discussion

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Abbreviations

JASC | Just Another Seasonal Coronavirus |

## Appendix A

#### Appendix A.1. Full Steady State Solution for the Model with Two Infection Types

**Figure A1.**Accounting for infectiousness $\theta $ and susceptibility $\tilde{\nu}$ in the model with two infection phenotypes If high-shedding individuals are twice as infectious, the initial outbreak is larger, consists of fewer low-shedding cases, and the subsequent outbreak of low-shedding cases occurs later (dotted curve: $\theta =2$, solid curve: $\theta =1$, (

**top panel**)). If partially immune individuals are half as susceptible, it takes longer to reach the endemic steady state because subsequent outbreaks occur later (dotted curves: $\tilde{\nu}=1/2$, solid curves: $\tilde{\nu}=1$, (

**bottom panel**); all other parameters as in Figure 2).

**Figure A2.**The values of ${I}_{a}^{*}$ and ${I}_{k}^{*}$ from the age-structured model plotted against $\nu $, the relative susceptibility of children, who make up half the population. The curves are qualitatively similar to those in Figure 3 but the relationships are more pronounced since children make up a greater share of the population.

**Figure A3.**Supercritical Hopf Bifurcation in the Full Model. The red complex eigenpair is about to cross the imaginary axis as $\theta $ passes near $2.2$, resulting in a supercritical Hopf bifurcation (left). Two real eigenvalues near $-0.1$ are not shown. Near the bifurcation, transients decay slowly (right). These results were generated from the full model without calibrating to data, without vaccination, ${\nu}_{k}=1/2$, ${Q}_{ah}=0$, ${Q}_{al}={Q}_{kl}={Q}_{kh}=\tilde{{Q}_{ah}}=\tilde{{Q}_{al}}=\tilde{{Q}_{kl}}=\tilde{{Q}_{kh}}=1$, and contact rates ${\alpha}_{aa}={\alpha}_{ak}={\alpha}_{kk}=\alpha $ were chosen so ${R}_{0}=2.5$. For simplicity, we have set $\tau =\mu =0$. Hopf bifurcations are only present close the limiting case ${Q}_{ah}=0$, ${Q}_{al}={Q}_{kl}={Q}_{kh}=\tilde{{Q}_{ah}}=\tilde{{Q}_{al}}=\tilde{{Q}_{kl}}=\tilde{{Q}_{kh}}=1$.

**Figure A4.**Amplitude of solutions in the Full Model at 10,000 days. The supercritical Hopf bifurcation appears near $\theta =2.2$. For large enough $\theta $ the periodic solutions disappear through another supercritical Hopf bifurcation (eigenvalue analysis not shown). These results were obtained from the same parametrization as Figure A3.

#### Appendix A.2. Simplifying the Full Model

## References

- Paules, C.I.; Marston, H.D.; Fauci, A.S. Coronavirus infections—More than just the common cold. JAMA
**2020**, 323, 707–708. [Google Scholar] [CrossRef] [Green Version] - Raoult, D.; Zumla, A.; Locatelli, F.; Ippolito, G.; Kroemer, G. Coronavirus infections: Epidemiological, clinical and immunological features and hypotheses. Cell Stress
**2020**, 4, 66. [Google Scholar] [CrossRef] [PubMed] - Kissler, S.M.; Tedijanto, C.; Goldstein, E.; Grad, Y.H.; Lipsitch, M. Projecting the transmission dynamics of SARS-CoV-2 through the post-pandemic period. MedRxiv
**2020**. [Google Scholar] [CrossRef] - Vijgen, L.; Keyaerts, E.; Moës, E.; Thoelen, I.; Wollants, E.; Lemey, P.; Vandamme, A.M.; Van Ranst, M. Complete genomic sequence of human coronavirus OC43: Molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. J. Virol.
**2005**, 79, 1595–1604. [Google Scholar] [CrossRef] [Green Version] - Jia, H.P.; Look, D.C.; Shi, L.; Hickey, M.; Pewe, L.; Netland, J.; Farzan, M.; Wohlford-Lenane, C.; Perlman, S.; McCray, P.B. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J. Virol.
**2005**, 79, 14614–14621. [Google Scholar] [CrossRef] [Green Version] - Hofmann, H.; Pyrc, K.; van der Hoek, L.; Geier, M.; Berkhout, B.; Pöhlmann, S. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc. Natl. Acad. Sci. USA
**2005**, 102, 7988–7993. [Google Scholar] [CrossRef] [Green Version] - Holmes, M.; Reed, S.E.; Stott, E.; Tyrrell, D. Studies of experimental rhinovirus type 2 infections in polar isolation and in England. Epidemiol. Infect.
**1976**, 76, 379–393. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Byington, C.L.; Ampofo, K.; Stockmann, C.; Adler, F.R.; Herbener, A.; Miller, T.; Sheng, X.; Blaschke, A.J.; Crisp, R.; Pavia, A.T. Community surveillance of respiratory viruses among families in the Utah Better Identification of Germs-Longitudinal Viral Epidemiology (BIG-LoVE) study. Clin. Infect. Dis.
**2015**, 61, 1217–1224. [Google Scholar] [CrossRef] [PubMed] - Zinkernagel, R.M. On immunity against infections and vaccines: Credo 2004. Scand. J. Immunol.
**2004**, 60, 9–13. [Google Scholar] [CrossRef] - Van Damme, W.; Dahake, R.; van de Pas, R.; Vanham, G.; Assefa, Y. COVID-19: Does the infectious inoculum dose-response relationship contribute to understanding heterogeneity in disease severity and transmission dynamics? Med. Hypotheses
**2020**, 110431. [Google Scholar] [CrossRef] - Watanabe, T.; Bartrand, T.A.; Weir, M.H.; Omura, T.; Haas, C.N. Development of a dose-response model for SARS coronavirus. Risk Anal. Int. J.
**2010**, 30, 1129–1138. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Chan, J.F.W.; Yuan, S.; Zhang, A.J.; Poon, V.K.M.; Chan, C.C.S.; Lee, A.C.Y.; Fan, Z.; Li, C.; Liang, R.; Cao, J.; et al. Surgical mask partition reduces the risk of non-contact transmission in a golden Syrian hamster model for Coronavirus Disease 2019 (COVID-19). Clin. Infect. Dis.
**2020**. [Google Scholar] [CrossRef] - Guallar, M.P.; Meiriño, R.; Donat-Vargas, C.; Corral, O.; Jouvé, N.; Soriano, V. Inoculum at the time of SARS-CoV-2 exposure and risk of disease severity. Int. J. Infect. Dis.
**2020**. [Google Scholar] [CrossRef] [PubMed] - Chen, D.; Hu, C.; Su, F.; Song, Q.; Wang, Z. Exposure to SARS-CoV-2 in a high transmission setting increases the risk of severe COVID-19 compared to exposure to a low transmission setting? J. Travel Med.
**2020**. [Google Scholar] [CrossRef] [PubMed] - Pujadas, E.; Chaudhry, F.; McBride, R.; Richter, F.; Zhao, S.; Wajnberg, A.; Nadkarni, G.; Glicksberg, B.S.; Houldsworth, J.; Cordon-Cardo, C. SARS-CoV-2 Viral Load Predicts COVID-19 Mortality. MedRxiv
**2020**. [Google Scholar] [CrossRef] - Wang, Y.; Zhang, L.; Sang, L.; Ye, F.; Ruan, S.; Zhong, B.; Song, T.; Alshukairi, A.N.; Chen, R.; Zhang, Z.; et al. Kinetics of viral load and antibody response in relation to COVID-19 severity. J. Clin. Investig.
**2020**, 130. [Google Scholar] [CrossRef] - Sayampanathan, A.A.; Heng, C.S.; Pin, P.H.; Pang, J.; Leong, T.Y.; Lee, V.J. Infectivity of asymptomatic versus symptomatic COVID-19. Lancet
**2021**, 397, 93–94. [Google Scholar] [CrossRef] - Granados, A.; Goodall, E.C.; Luinstra, K.; Smieja, M.; Mahony, J. Comparison of asymptomatic and symptomatic rhinovirus infections in university students: Incidence, species diversity, and viral load. Diagn. Microbiol. Infect. Dis.
**2015**, 82, 292–296. [Google Scholar] [CrossRef] [PubMed] - Paulo, A.C.; Correia-Neves, M.; Domingos, T.; Murta, A.G.; Pedrosa, J. Influenza infectious dose may explain the high mortality of the second and third wave of 1918–1919 influenza pandemic. PLoS ONE
**2010**, 5, e11655. [Google Scholar] [CrossRef] [Green Version] - Zimmermann, P.; Curtis, N. Coronavirus infections in children including COVID-19: An overview of the epidemiology, clinical features, diagnosis, treatment and prevention options in children. Pediatr. Infect. Dis. J.
**2020**, 39, 355. [Google Scholar] [CrossRef] [PubMed] - Kelvin, A.A.; Halperin, S. COVID-19 in children: The link in the transmission chain. Lancet Infect. Dis.
**2020**. [Google Scholar] [CrossRef] [Green Version] - Castagnoli, R.; Votto, M.; Licari, A.; Brambilla, I.; Bruno, R.; Perlini, S.; Rovida, F.; Baldanti, F.; Marseglia, G.L. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children and adolescents: A systematic review. JAMA Pediatr.
**2020**. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Van Bever, H.P.; Chng, S.Y.; Goh, D.Y. Childhood severe acute respiratory syndrome, coronavirus infections and asthma. Pediatr. Allergy Immunol.
**2004**, 15, 206–209. [Google Scholar] [CrossRef] [PubMed] - Kindler, E.; Thiel, V. To sense or not to sense viral RNA—Essentials of coronavirus innate immune evasion. Curr. Opin. Microbiol.
**2014**, 20, 69–75. [Google Scholar] [CrossRef] - Dandekar, A.A.; Perlman, S. Immunopathogenesis of coronavirus infections: Implications for SARS. Nat. Rev. Immunol.
**2005**, 5, 917–927. [Google Scholar] [CrossRef] [Green Version] - Zhao, X.; Guo, F.; Liu, F.; Cuconati, A.; Chang, J.; Block, T.M.; Guo, J.T. Interferon induction of IFITM proteins promotes infection by human coronavirus OC43. Proc. Natl. Acad. Sci. USA
**2014**, 111, 6756–6761. [Google Scholar] [CrossRef] [Green Version] - Lu, X.; Xiang, Y.; Du, H.; Wing-Kin Wong, G. SARS-CoV-2 infection in children—Understanding the immune responses and controlling the pandemic. Pediatr. Allergy Immunol.
**2020**. [Google Scholar] [CrossRef] - Hua, C.Z.; Miao, Z.P.; Zheng, J.S.; Huang, Q.; Sun, Q.F.; Lu, H.P.; Su, F.F.; Wang, W.H.; Huang, L.P.; Xu, Z.W.; et al. Epidemiological features and viral shedding in children with SARS-CoV-2 infection. J. Med. Virol.
**2020**. [Google Scholar] [CrossRef] [PubMed] - Isaacs, D.; Britton, P.; Howard-Jones, A.; Kesson, A.; Khatami, A.; Marais, B.; Nayda, C.; Outhred, A. To what extent do children transmit SARS-CoV-2 virus? J. Paediatr. Child Health
**2020**, 56, 978. [Google Scholar] [CrossRef] [PubMed] - Yonker, L.M.; Neilan, A.M.; Yannic, B.; Patel, A.B.; Regan, J.; Puneeta, A.; Gootkind, E.; Park, G.; Hardcastle, M.; St. John, A.; et al. Pediatric SARS-CoV-2: Clinical Presentation, Infectivity, and Immune Responses. J. Pediatr.
**2020**. [Google Scholar] [CrossRef] - Hruskova, J.; Heinz, F.; Svandova, E.; Pennigerova, S. Antibodies to human coronaviruses 229E and OC43 in the population of CR. Acta Virol.
**1990**, 34, 346–352. [Google Scholar] - Lehel, F.; Madar, Z.; Toth, I. Antibodies to Coronavirus OC 43 strain in the population of North-Eastern Hungary. Acta Microbiol. Hung.
**1983**, 30, 163. [Google Scholar] [PubMed] - Adler, F.R.; Stockmann, C.; Ampofo, K.; Pavia, A.T.; Byington, C.L. Transmission of rhinovirus in the Utah BIG-LoVE families: Consequences of age and household structure. PLoS ONE
**2018**, 13, e0199388. [Google Scholar] [CrossRef] - Tunbridge, A.; Breuer, J.; Jeffery, K. Chickenpox in adults-clinical management. J. Infect.
**2008**, 57, 95–102. [Google Scholar] [CrossRef] [PubMed] - Perry, R.T.; Halsey, N.A. The clinical significance of measles: A review. J. Infect. Dis.
**2004**, 189, S4–S16. [Google Scholar] [PubMed] [Green Version] - Rostgaard, K.; Balfour, H.H., Jr.; Jarrett, R.; Erikstrup, C.; Pedersen, O.; Ullum, H.; Nielsen, L.P.; Voldstedlund, M.; Hjalgrim, H. Primary Epstein-Barr virus infection with and without infectious mononucleosis. PLoS ONE
**2019**, 14, e0226436. [Google Scholar] [CrossRef] - Littman, A.J.; Rossing, M.A.; Madeleine, M.M.; Tang, M.T.C.; Yasui, Y. Association between late age at infectious mononucleosis, Epstein-Barr virus antibodies, and ovarian cancer risk. Scand. J. Infect. Dis.
**2003**, 35, 728–735. [Google Scholar] [CrossRef] - Hall, C.B.; Weinberg, G.A.; Iwane, M.K.; Blumkin, A.K.; Edwards, K.M.; Staat, M.A.; Auinger, P.; Griffin, M.R.; Poehling, K.A.; Erdman, D.; et al. The burden of respiratory syncytial virus infection in young children. N. Engl. J. Med.
**2009**, 360, 588–598. [Google Scholar] [CrossRef] [Green Version] - Shaman, J.; Galanti, M. Direct Measurement of Rates of Asymptomatic Infection and Clinical Care-Seeking for Seasonal Coronavirus. MedRxiv
**2020**. [Google Scholar] [CrossRef] - Oran, D.P.; Topol, E.J. Prevalence of asymptomatic SARS-CoV-2 infection: A narrative review. Ann. Intern. Med.
**2020**. [Google Scholar] [CrossRef] - Gorse, G.J.; Patel, G.B.; Vitale, J.N.; O’Connor, T.Z. Prevalence of antibodies to four human coronaviruses is lower in nasal secretions than in serum. Clin. Vaccine Immunol.
**2010**, 17, 1875–1880. [Google Scholar] [CrossRef] [Green Version] - Zielecki, F.; Weber, M.; Eickmann, M.; Spiegelberg, L.; Zaki, A.M.; Matrosovich, M.; Becker, S.; Weber, F. Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to those of severe acute respiratory syndrome coronavirus. J. Virol.
**2013**, 87, 5300–5304. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Netea, M.G.; Giamarellos-Bourboulis, E.J.; Domínguez-Andrés, J.; Curtis, N.; van Crevel, R.; van de Veerdonk, F.L.; Bonten, M. Trained Immunity: A Tool for Reducing Susceptibility to and the Severity of SARS-CoV-2 Infection. Cell
**2020**. [Google Scholar] [CrossRef] [PubMed] - Kucharski, A.J.; Russell, T.W.; Diamond, C.; Liu, Y.; Edmunds, J.; Funk, S.; Eggo, R.M.; Sun, F.; Jit, M.; Munday, J.D.; et al. Early dynamics of transmission and control of COVID-19: A mathematical modelling study. Lancet Infect. Dis.
**2020**. [Google Scholar] [CrossRef] [Green Version] - Eubank, S.; Eckstrand, I.; Lewis, B.; Venkatramanan, S.; Marathe, M.; Barrett, C. Commentary on Ferguson, et al., Impact of Non-pharmaceutical Interventions (NPIs) to Reduce COVID-19 Mortality and Healthcare Demand. Bull. Math. Biol.
**2020**, 82, 1–7. [Google Scholar] [CrossRef] [Green Version] - Ferguson, N.M.; Laydon, D.; Nedjati-Gilani, G.; Imai, N.; Ainslie, K.; Baguelin, M.; Bhatia, S.; Boonyasiri, A.; Cucunubá, Z.; Cuomo-Dannenburg, G.; et al. Impact of Non-Pharmaceutical Interventions (NPIs) to Reduce COVID-19 Mortality and Healthcare Demand; Imperial College COVID-19 Response Team: London, UK, 2020. [Google Scholar]
- Little, P.; Read, R.C.; Amlôt, R.; Chadborn, T.; Rice, C.; Bostock, J.; Yardley, L. Reducing risks from coronavirus transmission in the home—The role of viral load. BMJ
**2020**, 369. [Google Scholar] [CrossRef] [PubMed] - Zeng, N.; Li, Z.; Ng, S.; Chen, D.; Zhou, H. Epidemiology reveals mask wearing by the public is crucial for COVID-19 control. Med. Microecol.
**2020**, 100015. [Google Scholar] [CrossRef] - Bielecki, M.; Züst, R.; Siegrist, D.; Meyerhofer, D.; Crameri, G.A.G.; Stanga, Z.G.; Stettbacher, A.; Buehrer, T.W.; Deuel, J.W. Social distancing alters the clinical course of COVID-19 in young adults: A comparative cohort study. Clin. Infect. Dis.
**2020**. [Google Scholar] [CrossRef] - Cao, Q.; Chen, Y.C.; Chen, C.L.; Chiu, C.H. SARS-CoV-2 infection in children: Transmission dynamics and clinical characteristics. J. Formos. Med. Assoc.
**2020**, 119, 670. [Google Scholar] [CrossRef] - Ludvigsson, J.F. Children are unlikely to be the main drivers of the COVID-19 pandemic—A systematic review. Acta Paediatr.
**2020**. [Google Scholar] [CrossRef] - Carlsson, R.M.; Childs, L.M.; Feng, Z.; Glasser, J.W.; Heffernan, J.M.; Li, J.; Röst, G. Modeling the waning and boosting of immunity from infection or vaccination. J. Theor. Biol.
**2020**, 110265. [Google Scholar] [CrossRef] - Schuette, M.C.; Hethcote, H.W. Modeling the effects of varicella vaccination programs on the incidence of chickenpox and shingles. Bull. Math. Biol.
**1999**, 61, 1031–1064. [Google Scholar] [CrossRef] - Anderson, R.M.; May, R.M. Infectious Diseases of Humans: Dynamics and Control; Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- United States Census Bureau. 2019 Population Estimates by Age, Sex, Race and Hispanic Origin. 2020; Data Retrieved from United States Census Bureau. Available online: https://www.census.gov/newsroom/press-kits/2020/population-estimates-detailed.html (accessed on 18 March 2021).
- Centers for Disease Control and Prevention, COVID-19 Response. COVID-19 Case Surveillance Public Data Access, Summary, and Limitations, (Version Date: 31 March 2021). Available online: https://catalog.data.gov/dataset/united-states-covid-19-cases-and-deaths-by-state-over-time (accessed on 18 March 2021).
- Xia, W.; Shao, J.; Guo, Y.; Peng, X.; Li, Z.; Hu, D. Clinical and CT features in pediatric patients with COVID-19 infection: Different points from adults. Pediatr. Pulmonol.
**2020**, 11, 1–14. [Google Scholar] [CrossRef] [Green Version] - Edridge, A.W.; Kaczorowska, J.; Hoste, A.C.; Bakker, M.; Klein, M.; Loens, K.; Jebbink, M.F.; Matser, A.; Kinsella, C.M.; Rueda, P.; et al. Seasonal coronavirus protective immunity is short-lasting. Nat. Med.
**2020**, 26, 1691–1693. [Google Scholar] [CrossRef] - Chia, W.N.; Zhu, F.; Ong, S.W.X.; Young, B.E.; Fong, S.W.; Le Bert, N.; Tan, C.W.; Tiu, C.; Zhang, J.; Tan, S.Y.; et al. Dynamics of SARS-CoV-2 neutralising antibody responses and duration of immunity: A longitudinal study. Lancet Microbe
**2021**. [Google Scholar] [CrossRef] - Mo, H.; Zeng, G.; Ren, X.; Li, H.; Ke, C.; Tan, Y.; Cai, C.; Lai, K.; Chen, R.; Chan-Yeung, M.; et al. Longitudinal profile of antibodies against SARS-coronavirus in SARS patients and their clinical significance. Respirology
**2006**, 11, 49–53. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Papachristodoulou, E.; Kakoullis, L.; Parperis, K.; Panos, G. Long-term and herd immunity against SARS-CoV-2: Implications from current and past knowledge. Pathog. Dis.
**2020**, 78, ftaa025. [Google Scholar] [CrossRef] - Sanche, S.; Lin, Y.T.; Xu, C.; Romero-Severson, E.; Hengartner, N.; Ke, R. High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2. Emerg. Infect. Dis.
**2020**, 26, 1470–1477. [Google Scholar] [CrossRef] - Walsh, K.A.; Spillane, S.; Comber, L.; Cardwell, K.; Harrington, P.; Connell, J.; Teljeur, C.; Broderick, N.; de Gascun, C.F.; Smith, S.M.; et al. The duration of infectiousness of individuals infected with SARS-CoV-2. J. Infect.
**2020**. [Google Scholar] [CrossRef] [PubMed] - Cevik, M.; Tate, M.; Lloyd, O.; Maraolo, A.E.; Schafers, J.; Ho, A. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: A systematic review and meta-analysis. Lancet Microbe
**2020**. [Google Scholar] [CrossRef] - Lavine, J.S.; Bjornstad, O.N.; Antia, R. Immunological characteristics govern the changing severity of COVID-19 during the transition to endemicity. MedRxiv
**2020**. [Google Scholar] [CrossRef] - Hufsky, F.; Lamkiewicz, K.; Almeida, A.; Aouacheria, A.; Arighi, C.; Bateman, A.; Baumbach, J.; Beerenwinkel, N.; Brandt, C.; Cacciabue, M.; et al. Computational strategies to combat COVID-19: Useful tools to accelerate SARS-CoV-2 and coronavirus research. Briefings Bioinform.
**2021**, 22, 642–663. [Google Scholar] [CrossRef] [PubMed] - Ewald, J.; Sieber, P.; Garde, R.; Lang, S.N.; Schuster, S.; Ibrahim, B. Trends in mathematical modeling of host–pathogen interactions. Cell. Mol. Life Sci.
**2020**, 77, 467–480. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Mackinnon, M.J.; Read, A.F. Immunity promotes virulence evolution in a malaria model. PLoS Biol.
**2004**, 2, e230. [Google Scholar] [CrossRef] [Green Version] - Kerr, P.J.; Cattadori, I.M.; Liu, J.; Sim, D.G.; Dodds, J.W.; Brooks, J.W.; Kennett, M.J.; Holmes, E.C.; Read, A.F. Next step in the ongoing arms race between myxoma virus and wild rabbits in Australia is a novel disease phenotype. Proc. Natl. Acad. Sci. USA
**2017**, 114, 9397–9402. [Google Scholar] [CrossRef] [PubMed] [Green Version]

**Figure 1.**Contour plots of ${H}^{*}$ in the model with two infection types for various ${Q}_{l}$ and ${\tilde{Q}}_{l}$ along the axes. The white line corresponds to ${H}^{*}=5000$. As ${Q}_{l}$ and ${\tilde{Q}}_{l}$ approach 1, ${H}^{*}$ decreases to 0 (top right corner of plots). If sterilizing immunity is long compared to partial immunity, ${H}^{*}$ is more sensitive to increases in ${Q}_{l}$, especially near 0. If partial immunity is long compared to sterilizing immunity, ${H}^{*}$ is more sensitive to ${\tilde{Q}}_{l}$, especially near 0. Increasing the duration of sterilizing immunity decreases ${H}^{*}$. All plots generated with ${R}_{0}=2.5$, $N={10}^{8}$, ${Q}_{h}=0,{\tilde{Q}}_{l}=0.8$, and $\gamma =1/10$ per day.

**Figure 2.**Partial immunity and a dose response can promote avirulence.The initial outbreak consists mainly of high-shedding cases, but these are replaced by low-shedding cases in subsequent outbreaks. The dashed curve corresponds to the approximate dynamics described in the text. Solid curves are model solutions under the parametrization $\u03f5=0.01$, where ${Q}_{ah}=\u03f5$ and ${Q}_{al}={Q}_{kl}={Q}_{kh}=\tilde{{Q}_{a}h}=\tilde{{Q}_{a}l}=\tilde{{Q}_{k}h}=\tilde{{Q}_{k}l}=1-\u03f5$.

**Figure 3.**The values of ${I}_{a}^{*}$ and ${I}_{k}^{*}$ from the age-structured model plotted against $\nu $, the relative susceptibility of children. Total infections are maximized when children are equally susceptible to adults ($\nu =1$). Infections are most concentrated in adults if children are less susceptible ($\nu <1$). Children reduce infections in adults if they are more susceptible ($\nu >1$). These relationships are more pronounced if children make up a greater share of the population (Figure A2). The population of the United States is ${N}_{a}+{N}_{k}$ = 328,239,523, and children are considered under 14 years of age (${N}_{k}$ = 56,406,387) [55].

**Figure 4.**Dose response, partial immunity, and protective effects of youth combine to limit the cumulative number of high-shedding infections which occur within the first 30 years (

**top panel**). “Dose” in isolation is identical to “None” for $\theta >1$. Each combination of the three mechanisms produces different dynamics, as shown for $\theta =2$ (

**bottom panel**, which corresponds to dotted black line in the

**top panel**). High-shedding cases are driven close to extinction only if all three mechanisms are in place (“All mechanisms” in (

**bottom panel**)). Cases are shown within adults only. Across all simulations, ${\nu}_{k}=1/2$, $\mathsf{\Omega}=3\times {10}^{6}$/day. In the “All” curves, ${Q}_{ab}=0$, and the other ${Q}_{xy},\tilde{{Q}_{xy}}=1$. In the “None” curves, ${Q}_{xy}=\tilde{{Q}_{xy}}=0$. Curves with the “Age” mechanism have ${Q}_{ky}=\tilde{{Q}_{ky}}=1$. Curves with the “Dose” mechanism have ${Q}_{xl}=\tilde{{Q}_{xl}}=1$, and “Dose only” additionally has ${Q}_{xh}=\tilde{{Q}_{xh}}=0$ (partial immunity and Age override this latter constraint). Curves with the “PI” mechanism have $\tilde{{Q}_{xy}}=1$.

**Figure 5.**With all three mechanisms in place and children less susceptible to infection (${\nu}_{k}=1/2$), a Hopf bifurcation occurs as $\theta $ passes through ∼2.3. For $\theta $ near 2.5, high-shedding cases return in greater numbers on a biennial cycle and eventually exceed their initial outbreak levels. The magnitude of outbreaks diminishes as $\theta $ increases past 2.5 but high-shedding infections make up a greater share of total infections in adults. Periodic solutions do not exist if children are more susceptible than adults (${\nu}_{k}>1$). Vertical axes are the number of active infections in adults. Except for $\theta $, all parameters as in Figure 4.

**Figure 6.**The Sweet Spot for JASC: the three mechanisms in combination limit the long-term average number of high-shedding cases if they generate low-shedding cases with probability close to 100% and provided that high-shedding cases are not too infectious ($\u03f5\approx 0,\theta \approx 1$, (

**left panel**)). Children help mitigate disease severity if they develop low-shedding infections and are more susceptible than adults (${\nu}_{k}>1$, (

**right panel**)). High-shedding infections can make up half of the total infection prevalence in adults if children do not acquire infection (${\nu}_{k}<1$, right panel, and also refer to the $\theta =5$ case in Figure 5). High-shedding infections in adults are rare and periodic outbreaks will not occur if children are equally susceptible (${\nu}_{k}=1$). Low-shedding infections in adults further decline if children are more susceptible (${\nu}_{k}\to \infty $). Parametrization in the left panel corresponds to ${\nu}_{k}=1/2$ and the parametrization in the right panel corresponds to $\u03f5=0$. See text for description of the other parameters.

**Figure 7.**Social distancing which disproportionately reduces contact between children and adults from day 20 to 460 could increase the number of high-shedding cases in adults if children always develop low-shedding infections. The effect is enhanced for a larger vaccination rate. The vaccination period begins on day 360 and ends on 460 (rate of 3 million doses per day). For the “Distancing” curve, ${\alpha}_{ak}=0$ from days 20–460. For the “No distancing” curve, ${\alpha}_{ak}$, ${\alpha}_{aa}$ and ${\alpha}_{kk}$ are set equal and are calibrated to the incidence data up to day 418, are set to values consistent with ${R}_{0}=1.3$ from days 418-460, and ${R}_{0}=2.5$ thereafter. Other parameters: ${Q}_{ab}=0$, ${Q}_{am}={Q}_{kb}={Q}_{km}=\tilde{{Q}_{ab}}=\tilde{{Q}_{am}}=\tilde{{Q}_{kb}}=\tilde{{Q}_{km}}=1$, and ${\nu}_{k}=1/2$.

**Figure 8.**As long as high-shedding cases are not too infectious ($\theta =2$) prolonged vaccination over the next thirty years is not necessary for SARS-CoV-2 to become JASC. If high-shedding cases are sufficiently infectious to cause periodic outbreaks ($\theta =3$) then regular vaccination is necessary to limit high-shedding cases. Vaccination rate $\mathsf{\Omega}$ is the number of doses (in the millions) administered to susceptible individuals per day during the intense vaccination program which begins on day 360 and lasts until day 460. After day 460, 60% of the population continues to get vaccinated at the corresponding Frequency (in years) along the vertical axis. Contact levels consistent with ${R}_{0}=1.3$ maintained from day 418 (16 March 2021) up to day 460, after which contact returns to levels consistent with ${R}_{0}=2.5$. In both panels ${Q}_{ab}=0$, ${Q}_{am}={Q}_{kb}={Q}_{km}=\tilde{{Q}_{ab}}=\tilde{{Q}_{am}}=\tilde{{Q}_{kb}}=\tilde{{Q}_{km}}=1$, and ${\nu}_{k}=1/2$.

Variable | Description | Initial Condition |
---|---|---|

${S}_{x}$ | Susceptible adults and children | 271,833,136 and 56,406,387 [55] |

${P}_{x}$ | Partially resistant adults, children | 0 |

${L}_{x}$ | Low-shedding infected adults, children | 0 |

${H}_{x}$ | High-shedding infected adults, children | 1, 0 |

${R}_{xy}$ | Resistant adults/children | 0 |

after low-shedding/high-shedding infection |

Parameter | Description | Value |
---|---|---|

$\tilde{\rho}$ | Loss rate of partial immunity | $\frac{1}{2}$ per year [58,59,60,61] |

$\rho $ | Loss rate of sterilizing immunity | $\frac{1}{2}$ per year [58,59,60,61] |

${\alpha}_{ak}$ | Contact rate between adults and children | Calibrated to |

daily incidence data | ||

or ${R}_{0}=1.3,2.5$ [56,62] | ||

${\alpha}_{aa}$ | Contact rate between adults | Calibrated to |

daily incidence data | ||

or ${R}_{0}=1.3,2.5$ [56,62] | ||

${\alpha}_{kk}$ | Contact rate between children | Calibrated to |

daily incidence data | ||

or ${R}_{0}=1.3,2.5$ [56,62] | ||

$\theta $ | Infectiousness of high-shedding cases | |

relative to low-shedding cases | [1, 5] | |

$\tau $ | Maturation rate | $\frac{1}{14}$ per year [55] |

$\mu $ | Death rate | $\frac{1}{80}$ per year [55] |

$\gamma $ | Recovery rate from infection | $\frac{1}{10}$ per day [63,64] |

${\nu}_{k}$ | Susceptibility, S child | [0, 5] |

$\tilde{{\nu}_{a}}$ | Susceptibility, P adult | $\frac{1}{2}$ |

$\tilde{{\nu}_{k}}$ | Susceptibility, P child | $\frac{1}{2}$${\nu}_{k}$ |

${Q}_{xy}$ | Probability an individual in ${S}_{x}$ develops | [0, 1] |

low-shedding infection ${L}_{x}$ upon contact with | ||

an infection of type y | ||

$\tilde{{Q}_{xy}}$ | Probability an individual in ${P}_{x}$ develops | [${Q}_{xy}$,1] |

low-shedding infection ${L}_{x}$ upon contact with | ||

an infection of type y | ||

$\mathsf{\Omega}$ | Daily vaccination rate | [${10}^{6}$, $3\times {10}^{6}$] |

from days 360–460 |

**Parameter values used in the full model.**Rates of immune loss are chosen so the duration of immunity to SARS-CoV-2 lies between the duration reported for SARS and the seasonal coronaviruses [58,59,60,61]. The average infectious period is chosen to coincide with estimated durations of infectiousness [63,64]. Contact rates are either (i) calibrated to match daily incidence, or (ii) held at fixed values to coincide with a given ${R}_{0}$ value, as explained at the end of the Methods section. Susceptibility parameters were chosen so partial immunity reduces the probability of infection by 50% in all of the figures to follow, but main results are not sensitive to the particular value (Figure A1). Other parameters which are not fixed across simulations are unknown and are varied over the ranges indicated by the intervals across simulations. Relationships between these parameters and model outputs are presented within the figures in Results.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Beams, A.B.; Bateman, R.; Adler, F.R.
Will SARS-CoV-2 Become Just Another Seasonal Coronavirus? *Viruses* **2021**, *13*, 854.
https://doi.org/10.3390/v13050854

**AMA Style**

Beams AB, Bateman R, Adler FR.
Will SARS-CoV-2 Become Just Another Seasonal Coronavirus? *Viruses*. 2021; 13(5):854.
https://doi.org/10.3390/v13050854

**Chicago/Turabian Style**

Beams, Alexander B., Rebecca Bateman, and Frederick R. Adler.
2021. "Will SARS-CoV-2 Become Just Another Seasonal Coronavirus?" *Viruses* 13, no. 5: 854.
https://doi.org/10.3390/v13050854