Genetic Association of Hepatitis C-Related Mixed Cryoglobulinemia: A 10-Year Prospective Study of Asians Treated with Antivirals
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Study Design
2.3. Statistics
2.4. Informed Consent
3. Results
3.1. Baseline Characteristics
3.2. Post-Therapy Mixed Cryoglobulinemia in SVR Patients
3.3. Genetic Associations with Baseline HCV RNA
3.4. Genetic Associations with Baseline Mixed Cryoglobulinemia
3.5. Genetic Associations with Post-Therapy Mixed Cryoglobulinemia in SVR Patients
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borgia, S.M.; Hedskog, C.; Parhy, B.; Hyland, R.H.; Stamm, L.M.; Brainard, D.M.; Subramanian, M.G.; McHutchison, J.G.; Mo, H.; Svarovskaia, E.; et al. Identification of a Novel Hepatitis C Virus Genotype from Punjab, India: Expanding Classification of Hepatitis C Virus into 8 Genotypes. J. Infect. Dis. 2018, 218, 1722–1729. [Google Scholar] [CrossRef]
- Spearman, C.W.; Dusheiko, G.M.; Hellard, M.; Sonderup, M. Hepatitis C. Lancet 2019, 394, 1451–1466. [Google Scholar] [CrossRef]
- Cheng, Y.T.; Cheng, J.S.; Lin, C.H.; Chen, T.H.; Lee, K.C.; Chang, M.L. Rheumatoid factor and immunoglobulin M mark hepatitis C-associated mixed cryoglobulinaemia: An 8-year prospective study. Clin. Microbiol. Infect. 2020, 26, 366–372. [Google Scholar] [CrossRef]
- Chang, M.L. Metabolic alterations and hepatitis C: From bench to bedside. World J. Gastroenterol. 2016, 22, 1461–1476. [Google Scholar] [CrossRef]
- Gragnani, L.; Visentini, M.; Fognani, E.; Urraro, T.; De Santis, A.; Petraccia, L.; Perez, M.; Ceccotti, G.; Colantuono, S.; Mitrevski, M.; et al. Prospective study of guideline-tailored therapy with direct-acting antivirals for hepatitis C virus-associated mixed cryoglobulinemia. Hepatology 2016, 64, 1473–1482. [Google Scholar] [CrossRef]
- Zignego, A.L.; Gragnani, L.; Piluso, A.; Sebastiani, M.; Giuggioli, D.; Fallahi, P.; Antonelli, A.; Ferri, C. Virus-driven autoimmunity and lymphoproliferation: The example of HCV infection.Virus-driven autoimmunity and lymphoproliferation: The example of HCV infection. Expert Rev. Clin. Immunol. 2015, 11, 15–31. [Google Scholar] [CrossRef]
- Praprotnik, S.; Sodin-Semrl, S.; Tomsic, M.; Shoenfeld, Y. The curiously suspicious: Infectious disease may ameliorate an ongoing autoimmune destruction in systemic lupus erythematosus patients. J. Autoimmun. 2008, 30, 37–41. [Google Scholar] [CrossRef]
- Zignego, A.L.; Wojcik, G.L.; Cacoub, P.; Visentini, M.; Casato, M.; Mangia, A.; Latanich, R.; Charles, E.D.; Gragnani, L.; Terrier, B.; et al. Genome-wide association study of hepatitis C virus—and cryoglobulin-related vasculitis. Genes Immun. 2014, 15, 500–505. [Google Scholar] [CrossRef]
- Cusato, J.; Boglione, L.; De Nicolò, A.; Cardellino, C.S.; Carcieri, C.; Cariti, G.; Di Perri, G.; D’Avolio, A. Pharmacogenetic analysis of hepatitis C virus related mixed cryoglobulinemia. Pharmacogenomics 2017, 18, 607–611. [Google Scholar] [CrossRef]
- Piluso, A.; Giannini, C.; Fognani, E.; Gragnani, L.; Caini, P.; Monti, M.; Petrarca, A.; Ranieri, J.; Urraro, T.; Triboli, E.; et al. Value of IL28B genotyping in patients with HCV-related mixed cryoglobulinemia: Results of a large, prospective study. J. Viral. Hepat. 2013, 20, e107–e114. [Google Scholar] [CrossRef]
- Boglione, L.; Cusato, J.; Allegra, S.; Cariti, G.; Di Perri, G.; D’avolio, A. Role of IL28B genotyping in patients with hepatitis C virus-associated mixed cryoglobulinemia and response to PEG-IFN and ribavirin treatment. Arch. Virol. 2015, 160, 2009–2017. [Google Scholar] [CrossRef]
- Taneda, S.; Hudkins, K.L.; Mühlfeld, A.S.; Kowalewska, J.; Pippin, J.W.; Shankland, S.J.; Alpers, C.E. Protease nexin-1, tPA, and PAI-1 are upregulated in cryoglobulinemic membranoproliferative glomerulonephritis. J. Am. Soc. Nephrol. 2008, 19, 243–251. [Google Scholar] [CrossRef]
- Yang, C.H.; Li, H.C.; Ku, T.S.; Wu, P.C.; Yeh, Y.J.; Cheng, J.C.; Lin, T.Y.; Lo, S.Y. Hepatitis C virus down-regulates SERPINE1/PAI-1 expression to facilitate its replication. J. Gen. Virol. 2017, 98, 2274–2286. [Google Scholar] [CrossRef]
- Huang, J.; Sabater-Lleal, M.; Asselbergs, F.W.; Tregouet, D.; Shin, S.Y.; Ding, J.; Baumert, J.; Oudot-Mellakh, T.; Folkersen, L.; Johnson, A.D.; et al. Genome-wide association study for circulating levels of PAI-1 provides novel insights into its regulation. Blood 2012, 120, 4873–4881. [Google Scholar] [CrossRef] [PubMed]
- Shimba, S.; Ishii, N.; Ohta, Y.; Ohno, T.; Watabe, Y.; Hayashi, M.; Wada, T.; Aoyagi, T.; Tezuka, M. Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc. Natl. Acad. Sci. USA 2005, 102, 12071–12076. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, K.M.; Yoshino, J.; Brace, C.S.; Abrassart, D.; Kobayashi, Y.; Marcheva, B.; Hong, H.K.; Chong, J.L.; Buhr, E.D.; Lee, C.; et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 2009, 324, 651–654. [Google Scholar] [CrossRef]
- Ooi, D.S.; Ong, S.G.; Heng, C.K.; Loke, K.Y.; Lee, Y.S. In-vitro function of upstream visfatin polymorphisms that are associated with adverse cardiometabolic parameters in obese children. BMC Genom. 2016, 17, 974. [Google Scholar] [CrossRef] [PubMed]
- Stastny, J.; Bienertova-Vasku, J.; Tomandl, J.; Tomandlova, M.; Zlamal, F.; Forejt, M.; Splichal, Z.; Vasku, A. Association of genetic variability in selected regions in visfatin (NAMPT) gene with anthropometric parameters and dietary composition in obese and non-obese Central-European population. Diabetes MetabSyndr. 2013, 7, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Jian, W.X.; Luo, T.H.; Gu, Y.Y.; Zhang, H.L.; Zheng, S.; Dai, M.; Han, J.F.; Zhao, Y.; Li, G.; Luo, M. The visfatin gene is associated with glucose and lipid metabolism in a Chinese population. Diabet. Med. 2006, 23, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, Y.; Tsuchiya, H.; Hama, S.; Kajimoto, K.; Kogure, K. Resistin regulates the expression of plasminogen activator inhibitor-1 in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 2014, 448, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.L.; Liang, K.H.; Ku, C.L.; Lo, C.C.; Cheng, Y.T.; Hsu, C.M.; Yeh, C.T.; Chiu, C.T. Resistin reinforces interferon λ-3 to eliminate hepatitis C virus with fine-tuning from RETN single-nucleotide polymorphisms. Sci. Rep. 2016, 6, 30799. [Google Scholar] [CrossRef]
- Hivert, M.F.; Manning, A.K.; McAteer, J.B.; Dupuis, J.; Fox, C.S.; Cupples, L.A.; Meigs, J.B.; Florez, J.C. Association of variants in RETN with plasma resistin levels and diabetes-related traits in the Framingham Offspring Study. Diabetes 2009, 58, 750–756. [Google Scholar] [CrossRef]
- Hu, J.H.; Chen, M.Y.; Yeh, C.T.; Lin, H.S.; Lin, M.S.; Huang, T.J.; Chang, M.L. Sexual Dimorphic Metabolic Alterations in Hepatitis C Virus-infected Patients: A Community-Based Study in a Hepatitis B/Hepatitis C Virus Hyperendemic Area. Med. Baltim. 2016, 95, e3546. [Google Scholar] [CrossRef]
- Lee, K.C.; Cheng, Y.T.; Lin, C.Y.; Kuo, C.J.; Chien, R.N.; Yeh, C.T.; Chang, M.L. Impact of mixed cryoglobulinemia on patients with spontaneous hepatitis C virus clearance: A 13-year prospective cohort study. Eur. J. Clin. Investig. 2020, 50, e13189. [Google Scholar] [CrossRef]
- Gragnani, L.; Fognani, E.; De Re, V.; Libra, M.; Garozzo, A.; Caini, P.; Cerretelli, G.; Giovannelli, A.; Lorini, S.; Monti, M.; et al. Notch4 and mhc class II polymorphisms are associated with hcv-related benign and malignant lymphoproliferative diseases. Oncotarget 2017, 8, 71528–71535. [Google Scholar] [CrossRef]
- Zhang, K.; Zhou, B.; Zhang, P.; Zhang, Z.; Chen, P.; Pu, Y.; Song, Y.; Zhang, L. Genetic variants in NAMPT predict bladder cancer risk and prognosis in individuals from southwest Chinese Han group. Tumour Biol. 2014, 35, 4031–4040. [Google Scholar] [CrossRef]
- Motyckova, G.; Murali, M. Laboratory testing for cryoglobulins. Am. J. Hematol. 2011, 86, 500–502. [Google Scholar] [CrossRef]
- Hsieh, A.R.; Chang, S.W.; Chen, P.L.; Chu, C.C.; Hsiao, C.L.; Yang, W.S.; Chang, C.C.; Wu, J.Y.; Chen, Y.T.; Chang, T.C.; et al. Predicting HLA genotypes using unphased and flanking single-nucleotide polymorphisms in Han Chinese population. BMC Genom. 2014, 15, 81. [Google Scholar] [CrossRef][Green Version]
- Yang, H.C.; Lin, C.H.; Hsu, C.L.; Hung, S.I.; Wu, J.Y.; Pan, W.H.; Chen, Y.T.; Fann, C.S. A comparison of major histocompatibility complex SNPs in Han Chinese residing in Taiwan and Caucasians. J. Biomed. Sci. 2006, 13, 489–498. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Fairweather, D.; Rose, N.R. Women and autoimmune diseases. Emerg. Infect. Dis. 2004, 10, 2005–2011. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.L. Sex influences immune responses to viruses, and efficacy of prophylaxis and treatments for viral diseases. Bioessays 2012, 34, 1050–1059. [Google Scholar] [CrossRef]
- Grebely, J.; Page, K.; Sacks-Davis, R.; van der Loeff, M.S.; Rice, T.M.; Bruneau, J.; Morris, M.D.; Hajarizadeh, B.; Amin, J.; Cox, A.L.; et al. The effects of female sex, viral genotype, and IL28B genotype on spontaneous clearance of acute hepatitis C virus infection. Hepatology 2014, 59, 109–120. [Google Scholar] [CrossRef]
- Ge, D.; Fellay, J.; Thompson, A.J.; Simon, J.S.; Shianna, K.V.; Urban, T.J.; Heinzen, E.L.; Qiu, P.; Bertelsen, A.H.; Muir, A.J.; et al. Genetic variationin IL28B predicts hepatitis Ctreatment-induced viral clearance. Nature 2009, 461, 399–401. [Google Scholar] [CrossRef]
- Thio, C.L.; Thomas, D.L.; Goedert, J.J.; Vlahov, D.; Nelson, K.E.; Hilgartner, M.W.; O’Brien, S.J.; Karacki, P.; Marti, D.; Astemborski, J.; et al. Racial differences in HLA class II associations with hepatitis C virus outcomes. J. Infect. Dis. 2001, 184, 16–21. [Google Scholar] [CrossRef]
- Honegger, J.R.; Tedesco, D.; Kohout, J.A.; Prasad, M.R.; Price, A.A.; Lindquist, T.; Ohmer, S.; Moore-Clingenpeel, M.; Grakoui, A.; Walker, C.M. Influence of IFNL3 and HLA-DPB1 genotype on postpartum control of hepatitis C virus replication and T-cell recovery. Proc. Natl. Acad. Sci. USA 2016, 113, 10684–10689. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.A.; Sugimoto, K.; Kaplan, D.E.; Ikeda, F.; Kamoun, M.; Chang, K.M. Human leukocyte antigen class II associations with hepatitis C virus clearance and virus-specific CD4 T cell response among Caucasians and African Americans. Hepatology 2008, 48, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Li, X. Resistin Promotes Thrombosis in Rats with Deep Vein Thrombosis via Up-Regulating MMP-2, MMP-9, and PAI-1. Clin. Lab. 2019, 65. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.L.; Lin, Y.S.; Pao, L.H.; Huang, H.C.; Chiu, C.T. Link between plasminogen activator inhibitor-1 and cardiovascular risk in chronic hepatitis C after viral clearance. Sci. Rep. 2017, 7, 42503. [Google Scholar] [CrossRef]
GENE | Gentype | Total (n = 1043) | CHC (n = 934) | Spontaneous HCV Clearance (n = 109) | p Values (CHC vs. SHC) | |
---|---|---|---|---|---|---|
Female, n (%) | 520 (49.9) | 449 (48.1) | 71 (65.1) | 0.001 | ||
Age (years old) | 57.0 ± 12.95 | 57.1 ± 12.8 | 54.3 ± 13.9 | 0.031 | ||
Mixed cryoglobulinemia, n (%) | 589 (56.5) | 550 (58.9) | 39 (35.8) | <0.001 | ||
Log HCV RNA (logIU/mL) | 6.04 ± 1.01 | 6.04 ± 1.00 | NA | |||
HCV genotype | ||||||
Genotype 1, n (%) | 550 (52.7) | 500 (53.5) | NA | |||
Genotype 2, n (%) | 300 (28.8) | 300 (32.1) | NA | |||
Others, n (%) | 134 (12.8) | 134 (14.3) | NA | |||
ALT(U/L) | 88.3 ± 99.42 | 93.6 ± 102.0 | 42.2 ± 54.3 | <0.001 | ||
rs12979860, n (%) | IFNL3 | CC | 891 (85.4) | 791 (84.7) | 100 (91.7) | 0.01 |
rs6486122, n (%) | ARNTL | TT | 224 (21.4) | 207 (22.2) | 17 (15.6) | 0.09 |
rs1045642, n (%) | ABCB1 | GG | 422 (40.5) | 377 (40.4) | 45 (41.3) | 0.399 |
rs9461776, n (%) | HLA-II | AA | 871 (83.3) | 791 (84.7) | 80 (73.4) | 0.003 |
rs2071286, n (%) | NOTCH4 | CC | 774 (74.2) | 701 (75.1) | 73 (67) | 0.083 |
rs6976053, n (%) | SERPINE1 | CC | 292 (27.9) | 289 (30.9) | 3 (2.8) | <0.001 |
rs11128603, n (%) | PPARG | TT | 943 (90.2) | 850 (91.0) | 93 (85.3) | 0.44 |
rs61330082, n (%) | NAMPT | TT | 178 (17) | 166 (17.8) | 12 (11) | 0.46 |
rs10953502, n (%) | NAMPT | TT | 599 (57.3) | 554 (59.3) | 45 (41.3) | 0.132 |
rs2302559, n (%) | NAMPT | CC | 624 (59.7) | 576 (61.7) | 48 (44) | 0.14 |
rs2058539, n (%) | NAMPT | AA | 608 (58.2) | 562 (60.2) | 46 (42) | 0.297 |
rs1423096, n (%) | RETN | CC | 670 (64.2) | 595 (63.7) | 75 (69.2) | 0.92 |
rs1477341, n (%) | RETN | AA | 343 (32.9) | 308 (33.0) | 35 (32.1) | 0.332 |
Genotype | Mixed Cryoglobulinemia (+) (n = 589) | MixecdCryoglobulinemia (−) (n = 454) | p Values | |
---|---|---|---|---|
Female, n (%) | 326 (55.3) | 194 (42.7) | <0.01 | |
Age (years old) | 58.04 ± 12.62 | 55.21 ± 13.21 | <0.01 | |
HCV RNA positivity | 550 (93.4) | 384 (84.6) | <0.001 | |
Log HCV RNA (logIU/mL) | 5.91 ± 1.04 | 6.23 ± 0.92 | <0.001 | |
ALT(U/L) | 93.87 ± 98.71 | 81.08 ± 99.98 | 0.04 | |
rs12979860, n (%) | CC | 515 (87.4) | 378 (82.8) | 0.026 |
rs6486122, n (%) | TT | 138 (23.4) | 86 (18.9) | 0.033 |
rs1045642, n (%) | GG | 239 (40.6) | 183 (40.3) | 0.745 |
rs9461776, n (%) | AA | 488 (82.9) | 383 (84.4) | 0.449 |
rs2071286, n (%) | CC | 440 (74.7) | 334 (73.6) | 0.552 |
rs6976053, n (%) | CC | 175 (29.7) | 117 (25.7) | 0.384 |
rs11128603, n (%) | TT | 532 (90.3) | 411 (90.5) | 0.692 |
rs61330082, n (%) | TT | 96 (16.3) | 82 (18.1) | 0.867 |
rs10953502, n (%) | TT | 334 (56.7) | 265 (58.4) | 0.108 |
rs2302559, n (%) | CC | 358 (60.8) | 266 (58.6) | 0.745 |
rs2058539, n (%) | AA | 342 (58.1) | 266 (58.6) | 0.205 |
rs1423096, n (%) | CC | 386 (65.5) | 283 (62.3) | 0.381 |
rs1477341, n (%) | AA | 185 (31.4) | 163 (35.9) | 0.465 |
Reference Allele/Risk Allele | Univariate Analyses | Multivariate Analysis | |||||
---|---|---|---|---|---|---|---|
OR | 95% CI OR | p Values | OR | 95% CI OR | p Values | ||
Baseline MC (0,1) | 2.618 | 1.726–3.969 | <0.001 | 2.617 | 1.679–4.079 | <0.001 | |
rs12979860- | C/T | 3.72 | 1.397–9.905 | 0.009 | 3.755 | 1.378–10.235 | 0.01 |
rs1045642- | G/A | 1.164 | 0.856–1.582 | 0.332 | |||
rs9461776 | G/A | 1.751 | 1.125–2.276 | 0.013 | 1.783 | 1.106–2.876 | 0.018 |
rs2071286 | C/T | 0.656 | 0.441–0.974 | 0.037 | 0.711 | 0.468–1.08 | 0.11 |
rs6976053 | T/C | 2.871 | 2.045–4.131 | <0.001 | 2.737 | 1.93–3.881 | <0.001 |
rs6486122 | C/T | 0.942 | 0.725–1.224 | 0.657 | |||
rs11128603- | G/A | 0.744 | 0.29–1.911 | 0.539 | |||
rs61330082- | C/T | 0.9 | 0.603–1.343 | 0.605 | |||
rs2302559- | C/T | 1.867 | 0.859–4.056 | 0.115 | |||
rs10953502- | C/T | 1.243 | 0.591–2.616 | 0.567 | |||
rs2058539- | C/T | 0.519 | 0.232–1.162 | 0.111 | |||
rs1423096- | C/T | 1.182 | 0.48–2.906 | 0.716 | |||
rs1477341- | A/T | 0.728 | 0.191–2.772 | 0.642 |
Reference Allele/Risk Allele | Univariate Analyses | Multivariate Analysis | |||||
---|---|---|---|---|---|---|---|
OR | 95% CI OR | p Values | OR | 95% CI OR | p Values | ||
HCV RNA positivity | 2.618 | 1.726–3.969 | <0.001 | 2.556 | 1.673–3.915 | <0.001 | |
rs12979860 | T/C | 1.142 | 1.01–1.974 | 0.044 | 1.531 | 1.087–2.056 | 0.015 |
rs1045642 | G/A | 1.016 | 0.835–1.236 | 0.877 | |||
rs9461776 | G/A | 0.917 | 0.648–1.298 | 0.624 | |||
rs2071286 | C/T | 0.894 | 0.672–1.188 | 0.44 | |||
rs6976053 | T/C | 0.907 | 0.776–1.062 | 0.226 | |||
rs6486122 | C/T | 1.19 | 1.002–1.414 | 0.048 | 1.191 | 1.000–1.419 | 0.049 |
rs11128603 | G/A | 0.943 | 0.547–1.624 | 0.832 | |||
rs61330082 | C/T | 0.937 | 0.751–1.168 | 0.56 | |||
rs2302559 | C/T | 0.901 | 0.653–1.244 | 0.527 | |||
rs10953502 | C/T | 1.293 | 0.89–1.877 | 0.177 | |||
rs2058539 | C/T | 0.796 | 0.56–1.113 | 0.205 | |||
rs1423096 | C/T | 0.854 | 0.656–1.112 | 0.241 | |||
rs1477341 | A/T | 0.961 | 0.73–1.264 | 0.774 |
Reference Allele/Risk Allele | Univariate Analyses | Multivariate Analysis | |||||
---|---|---|---|---|---|---|---|
OR | 95% CI OR | p Values | OR | 95% CI OR | p Values | ||
Pre-therapy mixed cryoglobulinemia | 3.143 | 2.16–4.575 | <0.001 | 3.113 | 1.895–5.116 | <0.001 | |
rs12979860 | T/C | 1.283 | 0.763–2.159 | 0.348 | |||
rs1045642 | G/A | 1.031 | 0.774–1.372 | 0.835 | |||
rs9461776 | G/A | 1.068 | 0.649–1.757 | 0.797 | |||
rs2071286 | C/T | 1.035 | 0.678–1.58 | 0.874 | |||
rs6976053 | C/T | 0.933 | 0.746–1.166 | 0.541 | |||
rs6486122 | C/T | 1.024 | 0.802–1.308 | 0.85 | |||
rs11128603 | G/A | 1.414 | 0.585–3.42 | 0.442 | |||
rs61330082 | C/T | 0.857 | 0.64–1.147 | 0.299 | |||
rs2302559 | C/T | 1.142 | 0.734–1.776 | 0.557 | |||
rs10953502 | C/T | 1.013 | 0.588–1.743 | 0.964 | |||
rs2058539 | C/T | 0.989 | 0.601–1.627 | 0.965 | |||
rs1423096 | C/T | 0.652 | 0.45–0.944 | 0.023 | 0.677 | 0.46–0.995 | 0.047 |
rs1477341 | A/T | 0.794 | 0.589–1.072 | 0.132 |
Reference Allele/Risk Allele | Univariate Analyses | Multivariate Analysis | |||||
---|---|---|---|---|---|---|---|
HR | 95% CI HR | p Values | HR | 95% CI HR | p Values | ||
24-week post-therapy mixed cryoglobulinemia (0,1) | 3.145 | 1.997–4.952 | <0.001 | 2.829 | 1.779–4.497 | <0.001 | |
rs12979860 | T/C | 1.76 | 0.911–3.403 | 0.093 | 1.888 | 0.867–4.114 | 0.11 |
rs1045642 | G/A | 0.906 | 0.669–1.229 | 0.526 | |||
rs9461776 | G/A | 2.121 | 0.985–4.566 | 0.055 | 1.982 | 0.927–4.235 | 0.078 |
rs2071286 | C/T | 0.971 | 0.605–1.558 | 0.903 | |||
rs6976053 | C/T | 1.313 | 1.023–1.694 | 0.032 | 1.351 | 1.046–1.746 | 0.021 |
rs6486122 | C/T | 0.861 | 0.661–1.122 | 0.268 | |||
rs11128603 | G/A | 0.719 | 0.332–1.56 | 0.404 | |||
rs61330082 | C/T | 1.144 | 0.839–1.56 | 0.396 | |||
rs2302559 | C/T | 0.927 | 0.559–1.538 | 0.769 | |||
rs10953502 | C/T | 0.825 | 0.412–1.653 | 0.588 | |||
rs2058539 | C/T | 1.194 | 0.61–2.34 | 0.605 | |||
rs1423096 | C/T | 0.798 | 0.538–1.183 | 0.261 | |||
rs1477341 | A/T | 1.141 | 0.787–1.654 | 0.487 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, M.-L.; Chang, S.-W.; Chen, S.-C.; Chien, R.-N.; Hsu, C.-L.; Chang, M.-Y.; Fann, C.S.J. Genetic Association of Hepatitis C-Related Mixed Cryoglobulinemia: A 10-Year Prospective Study of Asians Treated with Antivirals. Viruses 2021, 13, 464. https://doi.org/10.3390/v13030464
Chang M-L, Chang S-W, Chen S-C, Chien R-N, Hsu C-L, Chang M-Y, Fann CSJ. Genetic Association of Hepatitis C-Related Mixed Cryoglobulinemia: A 10-Year Prospective Study of Asians Treated with Antivirals. Viruses. 2021; 13(3):464. https://doi.org/10.3390/v13030464
Chicago/Turabian StyleChang, Ming-Ling, Su-Wei Chang, Shiang-Chi Chen, Rong-Nan Chien, Chia-Lin Hsu, Ming-Yu Chang, and Cathy S. J. Fann. 2021. "Genetic Association of Hepatitis C-Related Mixed Cryoglobulinemia: A 10-Year Prospective Study of Asians Treated with Antivirals" Viruses 13, no. 3: 464. https://doi.org/10.3390/v13030464
APA StyleChang, M.-L., Chang, S.-W., Chen, S.-C., Chien, R.-N., Hsu, C.-L., Chang, M.-Y., & Fann, C. S. J. (2021). Genetic Association of Hepatitis C-Related Mixed Cryoglobulinemia: A 10-Year Prospective Study of Asians Treated with Antivirals. Viruses, 13(3), 464. https://doi.org/10.3390/v13030464