Experimental Challenge of Sheep and Cattle with Dugbe Orthonairovirus, a Neglected African Arbovirus Distantly Related to CCHFV
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus and Cells
2.2. Quantification
2.3. Quantitative Reverse Transcriptase Polymerase Chain Reaction (RT-qPCR)
2.4. Recombinant Expression of DUGV N Protein
2.5. Serology
2.5.1. Development of an Indirect IgG-ELISA Based on Recombinant Antigen
2.5.2. Indirect Immunofluorescence Assay
2.5.3. Plaque Reduction Neutralization Test (PRNT)
2.5.4. Micro-Virus Neutralization Test (mVNT)
2.5.5. CCHFV Diagnostic Assays
2.6. Immunizations
2.7. Animal Trials
3. Results
3.1. DUGV Challenge Study: Clinical Signs, Gross Pathology and Viral Genome Detection
3.2. Establishment of Indirect DUGV-ELISAs
3.2.1. Cattle
3.2.2. Sheep
3.3. iIFA
Cattle
3.4. PRNT
3.5. mVNT
3.6. Reactivity of DUGV Antisera in CCHFV Diagnostic Assays
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abudurexiti, A.; Adkins, S.; Alioto, D.; Alkhovsky, S.V.; Avsic-Zupanc, T.; Ballinger, M.J.; Bente, D.A.; Beer, M.; Bergeron, E.; Blair, C.D.; et al. Taxonomy of the order Bunyavirales: Update 2019. Arch. Virol. 2019, 164, 1949–1965. [Google Scholar] [CrossRef] [Green Version]
- Clerx, J.P.; Casals, J.; Bishop, D.H. Structural characteristics of nairoviruses (genus Nairovirus, Bunyaviridae). J. Gen. Virol. 1981, 55, 165–178. [Google Scholar] [CrossRef]
- Frias-Staheli, N.; Medina, R.A.; Bridgen, A. Nairovirus Molecular Biology and Interaction with Host Cells. In Bunyaviridae. Molecular and Cellular Biology; Plyusnin, A., Elliott, R.M., Eds.; Caister Academic Press: Norfolk, UK, 2011; pp. 129–162. [Google Scholar]
- Davies, F.G.; Casals, J.; Jesset, D.M.; Ochieng, P. The serological relationships of Nairobi sheep disease virus. J. Comp. Pathol. 1978, 88, 519–523. [Google Scholar] [CrossRef]
- Casals, J.; Tignor, G.H. The Nairovirus genus: Serological relationships. Intervirology 1980, 14, 144–147. [Google Scholar] [CrossRef]
- Ward, V.K.; Marriott, A.C.; Polyzoni, T.; el-Ghorr, A.A.; Antoniadis, A.; Nuttall, P.A. Expression of the nucleocapsid protein of Dugbe virus and antigenic cross-reactions with other nairoviruses. Virus Res. 1992, 24, 223–229. [Google Scholar] [CrossRef]
- Causey, O.R.; Kemp, G.E.; Casals, J.; Williams, R.W.; Madbouly, M.H. Dugbe Virus, A New Arbovirus from Nigeria. Niger. J. Sci. 1971, 5, 41–43. [Google Scholar]
- David-West, T.S.; Cooke, A.R.; David-West, A.S. A serological survey of Dugbe virus antibodies in Nigerians. Trans. R. Soc. Trop. Med. Hyg. 1975, 69, 358. [Google Scholar] [CrossRef]
- Johnson, B.K.; Chanas, A.C.; Squires, E.J.; Shockley, P.; Simpson, D.I.; Parsons, J.; Smith, D.H.; Casals, J. Arbovirus isolations from ixodid ticks infesting livestock, Kano Plain, Kenya. Trans. R. Soc. Trop. Med. Hyg. 1980, 74, 732–737. [Google Scholar] [CrossRef]
- Guilherme, J.M.; Gonella-Legall, C.; Legall, F.; Nakoume, E.; Vincent, J. Seroprevalence of five arboviruses in Zebu cattle in the Central African Republic. Trans. R. Soc. Trop. Med. Hyg. 1996, 90, 31–33. [Google Scholar] [CrossRef]
- Wood, O.L.; Lee, V.H.; Ash, J.S.; Casals, J. Crimean-congo hemorrhagic fever, Thogoto, dugbe, and Jos viruses isolated from ixodid ticks in Ethiopia. Am. J. Trop. Med. Hyg. 1978, 27, 600–604. [Google Scholar] [CrossRef] [PubMed]
- Tukei, P.M.; Williams, M.C.; Mukwaya, L.G.; Henderson, B.E.; Kafuko, G.W.; McCrae, A.W. Virus isolations from Ixodid ticks in Uganda. I. Isolation and characterisation of ten strains of a virus not previously described from Eastern Africa. E. Afr. Med. J. 1970, 47, 265–272. [Google Scholar]
- Converse, J.D.; Hoogstraal, H.; Moussa, M.I.; Bafort, J.M. Letter: Isolation of Dugbe virus from Amblyoma variegatum ticks in Cameroun. Trans. R. Soc. Trop. Med. Hyg. 1974, 68, 411–412. [Google Scholar] [CrossRef]
- Kobayashi, D.; Ohashi, M.; Osei, J.H.N.; Agbosu, E.; Opoku, M.; Agbekudzi, A.; Joannides, J.; Fujita, R.; Sasaki, T.; Bonney, J.H.K.; et al. Detection of a novel putative phlebovirus and first isolation of Dugbe virus from ticks in Accra, Ghana. Ticks Tick Borne Dis. 2017, 8, 640–645. [Google Scholar] [CrossRef]
- Rodrigues, R.; Telles, J.N.; Essere, K.; Ducournau, C.; Roqueplo, C.; Levieuge, A.; Davoust, B.; Parola, P.; Paranhos-Baccala, G.; Peyrefitte, C.N. Development of a one step real time RT-PCR assay to detect and quantify Dugbe virus. J. Virol. Methods 2011, 176, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Butenko, A.M. Arbovirus circulation in the Republic of Guinea. Med. Parazitol. (Mosk) 1996, 40–45. [Google Scholar]
- Hoogstraal, H. Epidemiology of Tick-Borne Crimean-Congo Hemorrhagic-Fever in Asia, Europe, and Africa. J. Med. Entomol. 1979, 15, 307–417. [Google Scholar] [CrossRef]
- Burt, F.J.; Spencer, D.C.; Leman, P.A.; Patterson, B.; Swanepoel, R. Investigation of tick-borne viruses as pathogens of humans in South Africa and evidence of Dugbe virus infection in a patient with prolonged thrombocytopenia. Epidemiol. Infect. 1996, 116, 353–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darwish, M.A.; Imam, I.Z.; Amer, T.; Hoogstraal, H. Antibodies to Dugbe virus in mammalian sera from Egypt. J. Egypt Public Health Assoc. 1976, 51, 331–337. [Google Scholar] [PubMed]
- Kemp, G.E.; Causey, O.R.; Setzer, H.W.; Moore, D.L. Isolation of viruses from wild mammals in West Africa, 1966–1970. J. Wildl. Dis. 1974, 10, 279–293. [Google Scholar] [CrossRef] [Green Version]
- Addy, P.A.K.; Lule, M.; Sekylo, E. Apparent refractility of Aedes aegypti (Diptera, Culicidae) to experimental Dugbe (Strain AMP 5689) virus infection. Ghana Med. J. 1978, 177–178. [Google Scholar]
- Tomori, O.; Monath, T.P.; O’Connor, E.H.; Lee, V.H.; Cropp, C.B. Arbovirus infections among laboratory personnel in Ibadan, Nigeria. Am. J. Trop. Med. Hyg. 1981, 30, 855–861. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.L.; Causey, O.R.; Carey, D.E.; Reddy, S.; Cooke, A.R.; Akinkugbe, F.M.; David-West, T.S.; Kemp, G.E. Arthropod-borne viral infections of man in Nigeria, 1964–1970. Ann. Trop. Med. Parasitol. 1975, 69, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Marczinke, B.I.; Nichol, S.T. Nairobi sheep disease virus, an important tick-borne pathogen of sheep and goats in Africa, is also present in Asia. Virology 2002, 303, 146–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honig, J.E.; Osborne, J.C.; Nichol, S.T. The high genetic variation of viruses of the genus Nairovirus reflects the diversity of their predominant tick hosts. Virology 2004, 318, 10–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spengler, J.R.; Bergeron, E.; Rollin, P.E. Seroepidemiological Studies of Crimean-Congo Hemorrhagic Fever Virus in Domestic and Wild Animals. PLoS Negl. Trop. Dis. 2016, 10, e0004210. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, R.; Paranhos-Baccala, G.; Vernet, G.; Peyrefitte, C.N. Crimean-Congo hemorrhagic fever virus-infected hepatocytes induce ER-stress and apoptosis crosstalk. PLoS ONE 2012, 7, e29712. [Google Scholar] [CrossRef]
- Peyrefitte, C.N.; Perret, M.; Garcia, S.; Rodrigues, R.; Bagnaud, A.; Lacote, S.; Crance, J.M.; Vernet, G.; Garin, D.; Bouloy, M.; et al. Differential activation profiles of Crimean-Congo hemorrhagic fever virus- and Dugbe virus-infected antigen-presenting cells. J. Gen. Virol. 2010, 91, 189–198. [Google Scholar] [CrossRef]
- Hartlaub, J.; von Arnim, F.; Fast, C.; Somova, M.; Mirazimi, A.; Groschup, M.H.; Keller, M. Sheep and Cattle Are Not Susceptible to Experimental Inoculation with Hazara Orthonairovirus, a Tick-Borne Arbovirus Closely Related to CCHFV. Microorganisms 2020, 8, 1927. [Google Scholar] [CrossRef]
- Gutjahr, B.; Keller, M.; Rissmann, M.; von Arnim, F.; Jackel, S.; Reiche, S.; Ulrich, R.; Groschup, M.H.; Eiden, M. Two monoclonal antibodies against glycoprotein Gn protect mice from Rift Valley Fever challenge by cooperative effects. PLoS Negl. Trop. Dis. 2020, 14, e0008143. [Google Scholar] [CrossRef]
- Mertens, M.; Vatansever, Z.; Mrenoshki, S.; Krstevski, K.; Stefanovska, J.; Djadjovski, I.; Cvetkovikj, I.; Farkas, R.; Schuster, I.; Donnet, F.; et al. Circulation of Crimean-Congo Hemorrhagic Fever Virus in the former Yugoslav Republic of Macedonia revealed by screening of cattle sera using a novel enzyme-linked immunosorbent assay. PLoS Negl. Trop. Dis. 2015, 9, e0003519. [Google Scholar] [CrossRef] [Green Version]
- Subcommittee on Information Exchange No. 226 Dugbe (DUG) strain. AR 1792. Am. J. Trop. Med. Hyg. 1970, 19, 1123–1124. [CrossRef]
- Kemp, G.E.; Causey, O.R.; Causey, C.E. Virus isolations from trade cattle, sheep, goats and swine at Ibadan, Nigeria, 1964–1968. Bull. Epizoot. Dis. Afr. 1971, 19, 131–135. [Google Scholar] [PubMed]
- Causey, O.R. Experimental Inoculation with Virus Ar 1792. Rep. VIrus Res. Lab. Ib. 1965, 23–24. [Google Scholar]
- Zarubinsky, V.Y.; Kondratenko, V.F.; Blagoveshchenskaya, N.M.; Zarubina, L.V.; Kuchin, V.V. Susceptibility of calves and lambs to Crimean hemorrhagic fever virus (In English: NAMRU3-T1178). Tezisy Dokl 9 Vses Konf Prir Ochag Bolez Chelov Zhivot; 1976; p. 130.
- Fagbami, A.H.; Adejoro, O. Experimental Transmission of Dugbe (a Nairobi Disease Group) Virus to West African Dwarf Sheep. N. J. Microbiol. 1982, 2, 147–149. [Google Scholar]
- Nuttall, P.A. Tick saliva and its role in pathogen transmission. Wien Klin Wochenschr 2019. [Google Scholar] [CrossRef] [Green Version]
- Jones, L.D.; Davies, C.R.; Steele, G.M.; Nuttall, P.A. A novel mode of arbovirus transmission involving a nonviremic host. Science 1987, 237, 775–777. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S.W.; Linthicum, K.J.; Moulton, J.R. Transmission of Crimean-Congo hemorrhagic fever virus in two species of Hyalomma ticks from infected adults to cofeeding immature forms. Am. J. Trop. Med. Hyg. 1993, 48, 576–580. [Google Scholar] [CrossRef]
- Schmaljohn, C.S.; Nichol, S.T. Bunyaviridae. In Fields Virology; Knipe, D.M., Howley, P.M., Eds.; Williams&Wilkins: Philadelphia, PA, USA, 2007; pp. 1741–1789. [Google Scholar]
- Poskin, A.; Van Campe, W.; Mostin, L.; Cay, B.; De Regge, N. Experimental Schmallenberg virus infection of pigs. Vet. Microbiol. 2014, 170, 398–402. [Google Scholar] [CrossRef]
- Buckley, A.; Higgs, S.; Gould, E.A. Dugbe virus susceptibility to neutralization by monoclonal antibodies as a marker of virulence in mice. Arch. Virol. 1990, 1, 197–205. [Google Scholar] [CrossRef]
Primer/Probe DUGV S Segment | Sequence 5′→3′ | Localization According to Reference Sequence (GenBank Accession Number: AF434164) |
DUGS581F | GGAATGTCCTGCTGAACGGAGACGG | 581–605 |
DUGS776R | AGCTCAGCAACCTTCACCATGGCA | 776–753 |
DUGV642P | FAM-GCATGTCTCTTGGGGCCGTGAGTTGG-TAMRA | 642–667 |
Primer/Probe Internal Extraction Control | Sequence 5′→3′ | Localization According to Reference Sequence (GenBank Accession Number: MK213795) |
MS2F | CTCTGAGAGCGGCTCTATTGGT | 2233–2254 |
MS2R | GTTCCCTACAACG AGCCTAAATTC | 2333–2310 |
MS2probe | HEX-TCAGACACGCGGTCCGCTATAACGA-BHQ1 | 2278–2302 |
Challenge Animals | DUGV Diagnostic Assay | |||
---|---|---|---|---|
ELISA (>Cut-Off) | iIFA (≥1/50) | mVNT (≥1/7) | ||
Calves | J5 | 15 dpi | 15 dpi | 11 dpi |
J6 | 19 dpi | 23 dpi | 23 dpi | |
K5 | 13 dpi | 9 dpi | 13 dpi | |
K6 | 13 dpi | 13 dpi | 21 dpi | |
L2 | Negative | Negative | Negative | |
Sheep | G5 | Negative | ND | 7 dpi |
G6 | Negative | ND | 11 dpi | |
H5 | Negative | ND | 9 dpi | |
H6 | Negative | ND | 9 dpi | |
I2 | Negative | Negative | Negative |
Animal | PRNT80 Titer 28 dpi | |
---|---|---|
Inoculated | J5 | 1/256 |
Calves | J6 | 1/32 |
K5 | 1/256 | |
K6 | 1/32 | |
Mock Control | L2 | <1/8 |
Inoculated | G5 | 1/32 |
Sheep | G6 | 1/16 |
H5 | 1/16 | |
H6 | 1/64 | |
Mock Control | I2 | <1/8 |
DUGV-IMMU-sheep-1 | 1/512 * | |
DUGV-IMMU-calf-1 | 1/256 * |
Diagnostic Assay Incl. Antigen | ELISA | iIFA | Western Blot | |||
---|---|---|---|---|---|---|
Vector-Best | IDVet Double Antigen | In-House | Euroimmun | In-House | ||
Inactivated whole virus, clade IV | Recombinant N protein, clade III | Recombinant N protein, clade V | Transfected cells with GPC and N protein, clade III | Recombinant N protein, clade V | ||
Serum | Immunized calf | Negative | Negative | Positive | Positive | Negative |
Immunized sheep | * | Negative | * | Positive | Positive | |
Infected calves | Negative | Negative | Negative | J5 + K5 positive | ND | |
Infected sheep | * | Negative | * | Negative | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hartlaub, J.; von Arnim, F.; Fast, C.; Mirazimi, A.; Keller, M.; Groschup, M.H. Experimental Challenge of Sheep and Cattle with Dugbe Orthonairovirus, a Neglected African Arbovirus Distantly Related to CCHFV. Viruses 2021, 13, 372. https://doi.org/10.3390/v13030372
Hartlaub J, von Arnim F, Fast C, Mirazimi A, Keller M, Groschup MH. Experimental Challenge of Sheep and Cattle with Dugbe Orthonairovirus, a Neglected African Arbovirus Distantly Related to CCHFV. Viruses. 2021; 13(3):372. https://doi.org/10.3390/v13030372
Chicago/Turabian StyleHartlaub, Julia, Felicitas von Arnim, Christine Fast, Ali Mirazimi, Markus Keller, and Martin H. Groschup. 2021. "Experimental Challenge of Sheep and Cattle with Dugbe Orthonairovirus, a Neglected African Arbovirus Distantly Related to CCHFV" Viruses 13, no. 3: 372. https://doi.org/10.3390/v13030372