RNA Helicase A Regulates the Replication of RNA Viruses
Abstract
:1. Introduction
2. RHA in Replication of RNA Viruses
2.1. Arteriviridae Family: Porcine Reproductive and Respiratory Syndrome Virus (PRRSV)
2.2. Flaviviridae Family: Bovine Viral Diarrhea Virus (BVDV), Classical Swine Fever Virus (CSFV), Dengue Virus (DENV), and Hepatitis C Virus (HCV)
2.2.1. BVDV
2.2.2. CSFV
2.2.3. DENV
2.2.4. HCV
2.3. Hepeviridae Family: Hepatitis E Virus (HEV)
2.4. Orthomyxoviridae Family: Influenza A
2.5. Picornaviridae Family: Foot and Mouth Disease Viruses (FMDV)
2.6. Retroviridae Family: Human Immunodeficiency Virus Type 1 (HIV-1) and Other Retroviruses
2.7. Togaviridae Family: Chikungunya Virus (CHIKV)
3. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BVDV | bovine viral diarrhea virus |
CHIKV | Chikungunya virus |
CRISPR | clusters of regularly interspaced short palindromic repeats |
CSFV | classical swine fever virus |
DENV | Dengue virus |
dsRBD | double-stranded RNA-binding domain |
FMDV | foot and mouth disease viruses |
gRNA | genomic RNA |
HA2 | helicase-associated domain 2 |
HCC | hepatocellular carcinoma |
HCV | hepatitis C virus |
HEV | hepatitis E virus |
HIV-1 | human immunodeficiency virus type 1 |
HTLV-1 | human T-cell leukemia virus type 1 |
JEV | Japanese encephalitis virus |
mDCs | myeloid dendritic cells |
MTAD | minimal transactivation domain |
NF-κB | nuclear factor kappa B |
N protein | nucleocapsid protein |
NC | nucleocapsid |
NLS/NES | nuclear localization/export signal |
NDH II | Nuclear DNA Helicase II |
NS1 | non-structural protein 1 |
OB-fold | oligonucleotide/oligosaccharide-binding fold |
ORF | open reading frame |
PABP | poly(A) binding protein |
PRRSV | porcine reproductive and respiratory syndrome virus |
RHA | RNA helicase A |
RNAP II | RNA polymerase II |
RRE | Rev response RNA element |
RTC | replication and transcription complex |
siRNA | small interfering RNA |
SF2 | superfamily 2 |
sgmRNA | subgenomic mRNA |
-sscDNA | minus-strand strong-stop cDNA |
ssRNA | single-stranded RNA |
TAR | trans-activation response |
Tev | Tat–Env–Rev fusion protein |
UTR | untranslated region |
WNV | West Nile virus |
YFV | yellow fever virus |
ZIKV | Zika virus |
References
- Hong, H.; An, O.; Chan, T.H.M.; Ng, V.H.E.; Kwok, H.S.; Lin, J.S.; Qi, L.; Han, J.; Tay, D.J.T.; Tang, S.J.; et al. Bidirectional regulation of adenosine-to-inosine (A-to-I) RNA editing by DEAH box helicase 9 (DHX9) in cancer. Nucleic Acids Res. 2018, 46, 7953–7969. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Fritz, S.E.; Seufzer, B.; Boris-Lawrie, K. The mRNA encoding the JUND tumor suppressor detains nuclear RNA-binding proteins to assemble polysomes that are unaffected by mTOR. J. Biol. Chem. 2020, 295, 7763–7773. [Google Scholar] [CrossRef] [Green Version]
- Huan, W.; Zhang, J.; Li, Y.; Zhi, K. Involvement of DHX9/YB-1 complex induced alternative splicing of Krüppel-like factor 5 mRNA in phenotypic transformation of vascular smooth muscle cells. Am. J. Physiol. Cell Physiol. 2019, 317, C262–C269. [Google Scholar] [CrossRef]
- Chakraborty, P.; Huang, J.T.J.; Hiom, K. DHX9 helicase promotes R-loop formation in cells with impaired RNA splicing. Nat. Commun. 2018, 9, 1–14. [Google Scholar] [CrossRef]
- Hu, Z.; Dong, L.; Li, S.; Li, Z.; Qiao, Y.; Li, Y.; Ding, J.; Chen, Z.; Wu, Y.; Wang, Z.; et al. Splicing Regulator p54nrb/Non–POU Domain–Containing Octamer-Binding Protein Enhances Carcinogenesis Through Oncogenic Isoform Switch of MYC Box–Dependent Interacting Protein 1 in Hepatocellular Carcinoma. Hepatology 2020, 72, 548–568. [Google Scholar] [CrossRef] [PubMed]
- Aktaş, T.; Ilık İbrahim, A.; Maticzka, D.; Bhardwaj, V.; Rodrigues, C.P.; Mittler, G.; Manke, T.; Backofen, R.; Akhtar, A. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nat. Cell Biol. 2017, 544, 115–119. [Google Scholar] [CrossRef]
- Kim, J.-E.; Hong, Y.H.; Kim, J.Y.; Jeon, G.S.; Jung, J.H.; Yoon, B.-N.; Son, S.-Y.; Lee, K.-W.; Kim, J.-I.; Sung, J.-J. Altered nucleocytoplasmic proteome and transcriptome distributions in an in vitro model of amyotrophic lateral sclerosis. PLoS ONE 2017, 12, e0176462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawai, S.; Amano, A. BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex. J. Cell Biol. 2012, 197, 201–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.-Z.; Hu, M.-R.; Diao, H.-L.; Wang, Q.-W.; Huang, Q.; Ge, B.-J. Comprehensive analysis of differentially expressed circRNAs revealed a ceRNA network in pancreatic ductaladenocarcinoma. Arch. Med. Sci. 2019, 15, 979–991. [Google Scholar] [CrossRef]
- Sekiba, K.; Otsuka, M.; Ohno, M.; Kishikawa, T.; Yamagami, M.; Suzuki, T.; Ishibashi, R.; Seimiya, T.; Tanaka, E.; Koike, K. DHX9 regulates production of hepatitis B virus-derived circular RNA and viral protein levels. Oncotarget 2018, 9, 20953–20964. [Google Scholar] [CrossRef] [Green Version]
- Ottesen, E.W.; Luo, D.; Seo, J.; Singh, N.N.; Singh, R.N. HumanSurvival Motor Neurongenes generate a vast repertoire of circular RNAs. Nucleic Acids Res. 2019, 47, 2884–2905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, A.; Bacolla, A.; Del Mundo, I.M.; Zhao, J.; Wang, G.; Vasquez, K.M. DHX9 helicase is involved in preventing genomic instability induced by alternatively structured DNA in human cells. Nucleic Acids Res. 2013, 41, 10345–10357. [Google Scholar] [CrossRef] [Green Version]
- Scott, D.D.; Trahan, C.; Zindy, P.J.; Aguilar, L.C.; Delubac, M.Y.; Van Nostrand, E.L.; Adivarahan, S.; Wei, K.E.; Yeo, G.W.; Zenklusen, D.; et al. Nol12 is a multifunctional RNA binding protein at the nexus of RNA and DNA metabolism. Nucleic Acids Res. 2017, 45, 12509–12528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Maacke, H.; Grosse, F. Molecular Cloning of the Gene Encoding Nuclear DNA Helicase II. A bovine homologue of human rna helicase A and drosophila Mle protein. J. Biol. Chem. 1995, 270, 16422–16427. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; McDonald, D.; Middlesworth, T.; Hope, T.J.; Wong-Staal, F. The Carboxyl Terminus of RNA Helicase A Contains a Bidirectional Nuclear Transport Domain. Mol. Cell. Biol. 1999, 19, 3540–3550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.; Hurwitz, J. A new RNA helicase isolated from HeLa cells that catalytically translocates in the 3‘ to 5‘ direction. J. Biol. Chem. 1992, 267, 4398–4407. [Google Scholar] [CrossRef]
- Koh, H.R.; Xing, L.; Kleiman, L.; Myong, S. Repetitive RNA unwinding by RNA helicase A facilitates RNA annealing. Nucleic Acids Res. 2014, 42, 8556–8564. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Hurwitz, J. Human RNA helicase A is homologous to the maleless protein of Drosophila. J. Biol. Chem. 1993, 268, 16822–16830. [Google Scholar] [CrossRef]
- Zhang, S.; Grosse, F. Domain Structure of Human Nuclear DNA Helicase II (RNA Helicase A). J. Biol. Chem. 1997, 272, 11487–11494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, L.; Zhao, X.; Niu, M.; Kleiman, L. Helicase associated 2 domain is essential for helicase activity of RNA helicase A. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2014, 1844, 1757–1764. [Google Scholar] [CrossRef]
- Xing, L.; Niu, M.; Kleiman, L. Role of the OB-fold of RNA helicase A in the synthesis of HIV-1 RNA. Biochim. Biophys. Acta (BBA) Bioenerg. 2014, 1839, 1069–1078. [Google Scholar] [CrossRef] [PubMed]
- Aratani, S.; Oishi, T.; Fujita, H.; Nakazawa, M.; Fujii, R.; Imamoto, N.; Yoneda, Y.; Fukamizu, A.; Nakajima, T. The nuclear import of RNA helicase A is mediated by importin-α3. Biochem. Biophys. Res. Commun. 2006, 340, 125–133. [Google Scholar] [CrossRef]
- Cavanagh, D. Nidovirales: A new order comprising Coronaviridae and Arteriviridae. Arch. Virol. 1997, 142, 629–633. [Google Scholar]
- Knoops, K.; Bárcena, M.; Limpens, R.W.A.L.; Koster, A.J.; Mommaas, A.M.; Snijder, E.J. Ultrastructural Characterization of Arterivirus Replication Structures: Reshaping the Endoplasmic Reticulum To Accommodate Viral RNA Synthesis. J. Virol. 2011, 86, 2474–2487. [Google Scholar] [CrossRef] [Green Version]
- Yoo, D.; Wootton, S.K.; Li, G.; Song, C.; Rowland, R.R. Colocalization and Interaction of the Porcine Arterivirus Nucleocapsid Protein with the Small Nucleolar RNA-Associated Protein Fibrillarin. J. Virol. 2003, 77, 12173–12183. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Tian, J.; Nan, H.; Tian, M.; Li, Y.; Xu, X.; Huang, B.; Zhou, E.; Hiscox, J.A.; Baicheng, H. Porcine Reproductive and Respiratory Syndrome Virus Nucleocapsid Protein Interacts with Nsp9 and Cellular DHX9 To Regulate Viral RNA Synthesis. J. Virol. 2016, 90, 5384–5398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jourdan, S.S.; Osorio, F.; Hiscox, J.A. An interactome map of the nucleocapsid protein from a highly pathogenic North American porcine reproductive and respiratory syndrome virus strain generated using SILAC-based quantitative proteomics. Proteomics 2012, 12, 1015–1023. [Google Scholar] [CrossRef]
- Liu, L.; Lear, Z.; Hughes, D.J.; Wu, W.; Zhou, E.-M.; Whitehouse, A.; Chen, H.; Hiscox, J.A. Resolution of the cellular proteome of the nucleocapsid protein from a highly pathogenic isolate of porcine reproductive and respiratory syndrome virus identifies PARP-1 as a cellular target whose interaction is critical for virus biology. Veter Microbiol. 2015, 176, 109–119. [Google Scholar] [CrossRef]
- Kappes, M.A.; Faaberg, K.S. PRRSV structure, replication and recombination: Origin of phenotype and genotype diversity. Virology 2015, 479, 475–486. [Google Scholar] [CrossRef] [Green Version]
- Tautz, N.; Tews, B.A.; Meyers, G. The Molecular Biology of Pestiviruses. Adv. Virus Res. 2015, 93, 47–160. [Google Scholar] [CrossRef] [PubMed]
- Isken, O.; Grassmann, C.W.; Sarisky, R.T.; Kann, M.; Zhang, S.; Grosse, F.; Kao, P.N.; Behrens, S. Members of the NF90/NFAR protein group are involved in the life cycle of a positive-strand RNA virus. EMBO J. 2003, 22, 5655–5665. [Google Scholar] [CrossRef] [Green Version]
- Moennig, V.; Floegel-Niesmann, G.; Greiser-Wilke, I. Clinical Signs and Epidemiology of Classical Swine Fever: A Review of New Knowledge. Vet. J. 2003, 165, 11–20. [Google Scholar] [CrossRef]
- Fletcher, S.P.; Jackson, R.J. Pestivirus Internal Ribosome Entry Site (IRES) Structure and Function: Elements in the 5′ Untranslated Region Important for IRES Function. J. Virol. 2002, 76, 5024–5033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheng, C.; Yao, Y.; Chen, B.; Wang, Y.; Chen, J.; Xiao, M. RNA helicase is involved in the expression and replication of classical swine fever virus and interacts with untranslated region. Virus Res. 2013, 171, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, V.D.; Tripathi, I.P.; Tripathi, R.C.; Bharadwaj, S.; Mishra, S.K. Genomics, proteomics and evolution of dengue virus. Briefings Funct. Genom. 2017, 16, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Messina, J.P.; Brady, O.J.; Scott, T.W.; Zou, C.; Pigott, D.M.; Duda, K.A.; Bhatt, S.; Katzelnick, L.; Howes, R.E.; Battle, K.E.; et al. Global spread of dengue virus types: Mapping the 70 year history. Trends Microbiol. 2014, 22, 138–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Oliveira, C.; Freire, J.M.; Conceição, T.M.; Higa, L.M.; Castanho, M.A.; Da Poian, A.T. Receptors and routes of dengue virus entry into the host cells. FEMS Microbiol. Rev. 2015, 39, 155–170. [Google Scholar] [CrossRef] [Green Version]
- Brand, C.; Bisaillon, M.; Geiss, B.J. Organization of the Flavivirus RNA replicase complex. Wiley Interdiscip. Rev. RNA 2017, 8, e1437. [Google Scholar] [CrossRef] [Green Version]
- Rodenhuis-Zybert, I.A.; Wilschut, J.; Smit, J.M. Dengue virus life cycle: Viral and host factors modulating infectivity. Cell. Mol. Life Sci. 2010, 67, 2773–2786. [Google Scholar] [CrossRef]
- Brinton, M.A.; Fernandez, A.V.; Dispoto, J.H. The 3′-nucleotides of flavivirus genomic RNA form a conserved secondary structure. Virology 1986, 153, 113–121. [Google Scholar] [CrossRef]
- Holden, K.L.; Harris, E. Enhancement of dengue virus translation: Role of the 3′ untranslated region and the terminal 3′ stem-loop domain. Virology 2004, 329, 119–133. [Google Scholar] [CrossRef] [Green Version]
- Campos, R.K.; Wong, B.; Xie, X.; Lu, Y.-F.; Shi, P.-Y.; Pompon, J.; Garcia-Blanco, M.A.; Bradrick, S.S. RPLP1 and RPLP2 Are Essential Flavivirus Host Factors That Promote Early Viral Protein Accumulation. J. Virol. 2017, 91, 91. [Google Scholar] [CrossRef] [Green Version]
- Lin, D.L.; Cherepanova, N.A.; Bozzacco, L.; Macdonald, M.R.; Gilmore, R.; Tai, A.W. Dengue Virus Hijacks a Noncanonical Oxidoreductase Function of a Cellular Oligosaccharyltransferase Complex. mBio 2017, 8, e00939-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neufeldt, C.J.; Cortese, M.; Acosta, E.G.; Bartenschlager, R. Rewiring cellular networks by members of the Flaviviridae family. Nat. Rev. Genet. 2018, 16, 125–142. [Google Scholar] [CrossRef]
- Gomila, R.C.; Martin, G.W.; Gehrke, L. NF90 Binds the Dengue Virus RNA 3′ Terminus and Is a Positive Regulator of Dengue Virus Replication. PLoS ONE 2011, 6, e16687. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Chen, X.; Xie, J.; Zhou, S.; Huang, Y.; Li, Y.-P.; Li, X.; Liu, C.; He, J.; Zhang, P. RNA Helicase A Is an Important Host Factor Involved in Dengue Virus Replication. J. Virol. 2018, 93, 93. [Google Scholar] [CrossRef] [Green Version]
- Rusyn, I.; Lemon, S.M. Mechanisms of HCV-induced liver cancer: What did we learn from in vitro and animal studies? Cancer Lett. 2014, 345, 210–215. [Google Scholar] [CrossRef] [Green Version]
- Kato, N. Genome of Human Hepatitis C Virus (HCV): Gene Organization, Sequence Diversity, and Variation. Microb. Comp. Genom. 2000, 5, 129–151. [Google Scholar] [CrossRef]
- Williams, B.; Masaki, T.; Shimakami, T.; Lemon, S.M. hnRNP L and NF90 Interact with Hepatitis C Virus 5’-Terminal Untranslated RNA and Promote Efficient Replication. J. Virol. 2014, 88, 7199–7209. [Google Scholar] [CrossRef] [Green Version]
- He, Q.S.; Tang, H.; Zhang, J.; Truong, K.; Wong-Staal, F.; Zhou, D. Comparisons of RNAi approaches for validation of human RNA helicase A as an essential factor in hepatitis C virus replication. J. Virol. Methods 2008, 154, 216–219. [Google Scholar] [CrossRef]
- Khuroo, M.S. Discovery of hepatitis E: The epidemic non-A, non-B hepatitis 30 years down the memory lane. Virus Res. 2011, 161, 3–14. [Google Scholar] [CrossRef]
- Haqshenas, G.; Meng, X.J. Determination of the nucleotide sequences at the extreme 5′ and 3′ ends of swine hepatitis E virus genome. Arch. Virol. 2001, 146, 2461–2467. [Google Scholar] [CrossRef]
- Graff, J.; Nguyen, H.; Kasorndorkbua, C.; Halbur, P.G.; Claire, M.S.; Purcell, R.H.; Emerson, S.U. In Vitro and In Vivo Mutational Analysis of the 3′-Terminal Regions of Hepatitis E Virus Genomes and Replicons. J. Virol. 2005, 79, 1017–1026. [Google Scholar] [CrossRef] [Green Version]
- Paingankar, M.S.; Arankalle, V.A. Identification and characterization of cellular proteins interacting with Hepatitis E virus untranslated regions. Virus Res. 2015, 208, 98–109. [Google Scholar] [CrossRef]
- Neumann, G.; Kawaoka, Y. Transmission of influenza A viruses. Virology 2015, 234–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samji, T. Influenza A: Understanding the Viral Life Cycle. Yale J. Biol. Med. 2009, 82, 153–159. [Google Scholar]
- Hale, B.G.; Randall, R.E.; Ortín, J.; Jackson, D. The multifunctional NS1 protein of influenza A viruses. J. Gen. Virol. 2008, 89, 2359–2376. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Li, Y.; Pyo, H.-M.; Lu, X.; Raman, S.N.T.; Liu, Q.; Brown, E.G.; Zhou, Y. Identification of RNA Helicase A as a Cellular Factor That Interacts with Influenza A Virus NS1 Protein and Its Role in the Virus Life Cycle. J. Virol. 2011, 86, 1942–1954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sáiz, M.; Núñez, J.I.; Jimenez-Clavero, M.A.; Baranowski, E.; Sobrino, F. Foot-and-mouth disease virus: Biology and prospects for disease control. Microbes Infect. 2002, 4, 1183–1192. [Google Scholar] [CrossRef]
- Grubman, M.J.; Baxt, B. Foot-and-Mouth Disease. Clin. Microbiol. Rev. 2004, 17, 465–493. [Google Scholar] [CrossRef] [Green Version]
- Wimmer, E.; Kuhn, R.J.; Pincus, S.; Yang, C.-F.; Toyoda, H.; Nicklin, M.J.H.; Takeda, N. Molecular Events Leading to Picornavirus Genome Replication. J. Cell Sci. 1987, 1987, 251–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrence, P.; Rieder, E. Identification of RNA Helicase A as a New Host Factor in the Replication Cycle of Foot-and-Mouth Disease Virus. J. Virol. 2009, 83, 11356–11366. [Google Scholar] [CrossRef] [Green Version]
- Sepkowitz, K.A. AIDS—The First 20 Years. N. Engl. J. Med. 2001, 344, 1764–1772. [Google Scholar] [CrossRef]
- Kleiman, L.; Halwani, R.; Javanbakht, H. The selective packaging and annealing of primer tRNALys3 in HIV-1. Curr. HIV Res. 2004, 2, 163–175. [Google Scholar] [CrossRef]
- Cen, S.; Huang, Y.; Khorchid, A.; Darlix, J.-L.; Wainberg, M.A.; Kleiman, L. The Role of Pr55gag in the Annealing of tRNA3Lys to Human Immunodeficiency Virus Type 1 Genomic RNA. J. Virol. 1999, 73, 4485–4488. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.; Saadatmand, J.; Niu, M.; Kleiman, L. Roles of Gag and NCp7 in facilitating Trna (Lys)(3) annealing to viral RNA in human immunodeficiency virus Type 1. J. Virol. 2009, 83, 8099–8107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, L.; Liang, C.; Kleiman, L. Coordinate Roles of Gag and RNA Helicase A in Promoting the Annealing of Formula to HIV-1 RNA. J. Virol. 2010, 85, 1847–1860. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Kadakkuzha, B.M.; Zhao, L.; Fan, M.; Qi, X.; Xia, T. Dynamic Ensemble View of the Conformational Landscape of HIV-1 TAR RNA and Allosteric Recognition. Biochemistry 2011, 50, 5042–5057. [Google Scholar] [CrossRef]
- Kulinski, T.; Olejniczak, M.; Huthoff, H.; Bielecki, L.; Pachulska-Wieczorek, K.; Das, A.T.; Berkhout, B.; Adamiak, R.W. The Apical Loop of the HIV-1 TAR RNA Hairpin Is Stabilized by a Cross-loop Base Pair. J. Biol. Chem. 2003, 278, 38892–38901. [Google Scholar] [CrossRef] [Green Version]
- Fujii, R.; Okamoto, M.; Aratani, S.; Oishi, T.; Ohshima, T.; Taira, K.; Baba, M.; Fukamizu, A.; Nakajima, T. A Role of RNA Helicase A in cis-Acting Transactivation Response Element-mediated Transcriptional Regulation of Human Immunodeficiency Virus Type 1. J. Biol. Chem. 2001, 276, 5445–5451. [Google Scholar] [CrossRef] [Green Version]
- Xing, L.; Niu, M.; Zhao, X.; Kleiman, L. Roles of the Linker Region of RNA Helicase A in HIV-1 RNA Metabolism. PLoS ONE 2013, 8, e78596. [Google Scholar] [CrossRef] [Green Version]
- Purcell, D.F.; Martin, M.A. Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication, and infectivity. J. Virol. 1993, 67, 6365–6378. [Google Scholar] [CrossRef] [Green Version]
- Benko, D.M.; Schwartz, S.; Pavlakis, G.N.; Felber, B.K. A novel human immunodeficiency virus type 1 protein, tev, shares sequences with tat, env, and rev proteins. J. Virol. 1990, 64, 2505–2518. [Google Scholar] [CrossRef] [Green Version]
- Salfeld, J.; Göttlinger, H.; Sia, R.; Park, R.; Sodroski, J.; Haseltine, W. A tripartite HIV-1 tat-env-rev fusion protein. EMBO J. 1990, 9, 965–970. [Google Scholar] [CrossRef]
- Li, J.; Tang, H.; Mullen, T.-M.; Westberg, C.; Reddy, T.R.; Rose, D.W.; Wong-Staal, F. A role for RNA helicase A in post-transcriptional regulation of HIV type 1. Proc. Natl. Acad. Sci. USA 1999, 96, 709–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, U.; Huber, J.; Boelens, W.C.; Mattajt, L.W.; Lührmann, R. The HIV-1 Rev Activation Domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 1995, 82, 475–483. [Google Scholar] [CrossRef] [Green Version]
- Bolinger, C.; Sharma, A.; Singh, D.; Yu, L.; Boris-Lawrie, K. RNA helicase A modulates translation of HIV-1 and infectivity of progeny virions. Nucleic Acids Res. 2010, 38, 1686–1696. [Google Scholar] [CrossRef] [Green Version]
- Butsch, M.; Hull, S.; Wang, Y.; Roberts, T.M.; Boris-Lawrie, K. The 5′ RNA Terminus of Spleen Necrosis Virus Contains a Novel Posttranscriptional Control Element That Facilitates Human Immunodeficiency Virus Rev/RRE-Independent Gag Production. J. Virol. 1999, 73, 4847–4855. [Google Scholar] [CrossRef] [Green Version]
- Roberts, T.M.; Boris-Lawrie, K. The 5′ RNA Terminus of Spleen Necrosis Virus Stimulates Translation of Nonviral mRNA. J. Virol. 2000, 74, 10229–10235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolinger, C.; Yilmaz, A.; Hartman, T.R.; Kovacic, M.B.; Fernandez, S.; Ye, J.; Forget, M.; Green, P.L.; Boris-Lawrie, K. RNA helicase A interacts with divergent lymphotropic retroviruses and promotes translation of human T-cell leukemia virus type 1. Nucleic Acids Res. 2007, 35, 2629–2642. [Google Scholar] [CrossRef]
- Hull, S.; Boris-Lawrie, K. RU5 of Mason-Pfizer Monkey Virus 5′ Long Terminal Repeat Enhances Cytoplasmic Expression of Human Immunodeficiency Virus Type 1 gag-pol and Nonviral Reporter RNA. J. Virol. 2002, 76, 10211–10218. [Google Scholar] [CrossRef] [Green Version]
- Hartman, T.R.; Qian, S.; Bolinger, C.; Fernandez, S.; Schoenberg, D.R.; Boris-Lawrie, K. RNA helicase A is necessary for translation of selected messenger RNAs. Nat. Struct. Mol. Biol. 2006, 13, 509–516. [Google Scholar] [CrossRef]
- Xing, L.; Niu, M.; Kleiman, L. In Vitro and In Vivo Analysis of the Interaction between RNA Helicase A and HIV-1 RNA. J. Virol. 2012, 86, 13272–13280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, L.; Niu, M.; Zhao, X.; Kleiman, L. Different activities of the conserved lysine residues in the double-stranded RNA binding domains of RNA helicase A in vitro and in the cell. Biochim. Biophys. Acta (BBA) Gen. Subj. 2014, 1840, 2234–2243. [Google Scholar] [CrossRef] [PubMed]
- Busch, M.; Erickson, G. An overview of Chikungunya virus. J. Am. Acad. Physician Assist. 2015, 28, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Kendall, C.; Khalid, H.; Müller, M.; Banda, D.H.; Kohl, A.; Merits, A.; Stonehouse, N.J.; Tuplin, A. Structural and phenotypic analysis of Chikungunya virus RNA replication elements. Nucleic Acids Res. 2019, 47, 9296–9312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rupp, J.C.; Sokoloski, K.J.; Gebhart, N.N.; Hardy, R.W. Alphavirus RNA synthesis and non-structural protein functions. J. Gen. Virol. 2015, 96, 2483–2500. [Google Scholar] [CrossRef]
- Matkovic, R.; Bernard, E.; Fontanel, S.; Eldin, P.; Chazal, N.; Hersi, D.H.; Merits, A.; Péloponèse, J.-M.; Briant, L. The Host DHX9 DExH-Box Helicase Is Recruited to Chikungunya Virus Replication Complexes for Optimal Genomic RNA Translation. J. Virol. 2018, 93. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Yuan, B.; Lu, N.; Facchinetti, V.; Liu, Y.-J. DHX9 Pairs with IPS-1 To Sense Double-Stranded RNA in Myeloid Dendritic Cells. J. Immunol. 2011, 187, 4501–4508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, B.B.; Hu, J.; Guo, X.; Russell, R.S.; Guo, F.; Kleiman, L.; Liang, C. Association of RNA Helicase A with Human Immunodeficiency Virus Type 1 Particles. J. Biol. Chem. 2006, 281, 12625–12635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Virus | Family | Biological Processes Affected | Helicase Activity Required (+) or not (˗) | Viral Nucleic Acids Involved | Viral Protein Involved |
---|---|---|---|---|---|
PRRSV | Arteriviridae | Genomic replication [26] | ? | ? | N |
BVDV | Flaviviridae | Genomic replication [31] | ? | 3’-UTR, 5’-UTR | ? |
CSFV | Flaviviridae | Translation and genomic replication [34] | ? | 3’-UTR, 5’-UTR | ? |
DENV | Flaviviridae | Genomic replication [46] | ˗ | 3’-UTR | NS1, NS2B3, NS4B |
HCV | Flaviviridae | Translation and genomic replication [49,50] | ? | 5’-UTR | ? |
HEV | Hepeviridae | Unknown [54] | ? | 3’-UTR | ? |
Influenza A | Orthomyxoviridae | Transcription and genomic replication [58] | + | ? | NS1 |
FMDV | Picornaviridae | Translation and genomic replication [62] | ? | 5’-UTR | 2C and 3A |
HIV-1 | Retroviridae | Transcription [70] Translation [77] Reverse transcription [90] Splicing [21] RNA export [75] | + + + + + | 5’-UTR, RRE | Gag |
CHIKV | Togaviridae | Translation and genomic replication [88] | ? | ? | Nsp3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, R.-Z.; Pan, Y.-Q.; Xing, L. RNA Helicase A Regulates the Replication of RNA Viruses. Viruses 2021, 13, 361. https://doi.org/10.3390/v13030361
Shi R-Z, Pan Y-Q, Xing L. RNA Helicase A Regulates the Replication of RNA Viruses. Viruses. 2021; 13(3):361. https://doi.org/10.3390/v13030361
Chicago/Turabian StyleShi, Rui-Zhu, Yuan-Qing Pan, and Li Xing. 2021. "RNA Helicase A Regulates the Replication of RNA Viruses" Viruses 13, no. 3: 361. https://doi.org/10.3390/v13030361
APA StyleShi, R. -Z., Pan, Y. -Q., & Xing, L. (2021). RNA Helicase A Regulates the Replication of RNA Viruses. Viruses, 13(3), 361. https://doi.org/10.3390/v13030361