African Swine Fever Virus Circulation between Tanzania and Neighboring Countries: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction and Analysis
2.4. Phylogeographic Analysis
3. Results
3.1. Article Selection
3.2. ASF Disease Pattern
3.3. ASFV Genotypes
3.4. Phylogeography of ASFV
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Costard, S.; Zagmutt, F.J.; Porphyre, T.; Pfeiffer, D.U. Small-scale pig farmers’ behavior, silent release of African swine fever virus and consequences for disease spread. Sci. Rep. 2015, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, E.R. On a form of swine fever occurring in British East Africa (Kenya Colony). J. Comp. Pathol. Ther. 1921, 34, 159–191. [Google Scholar] [CrossRef] [Green Version]
- Fasina, F.O.; Kissinga, H.; Mlowe, F.; Mshang’a, S.; Matogo, B.; Mrema, A.; Mhagama, A.; Makungu, S.; Mtui-Malamsha, N.; Sallu, R.; et al. Drivers, risk factors and dynamics of African Swine fever outbreaks, Southern Highlands, Tanzania. Pathogens 2020, 9, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulumba-Mfumu, L.K.; Saegerman, C.; Dixon, L.K.; Madimba, K.C.; Kazadi, E.; Mukalakata, N.T.; Oura, C.A.L.; Chenais, E.; Masembe, C.; Ståhl, K.; et al. African swine fever: Update on Eastern, central and Southern Africa. Transbound Emerg. Dis. 2019, 66, 1462–1480. [Google Scholar] [CrossRef] [Green Version]
- Penrith, M.-L.; Bastos, A.D.; Etter, E.M.C.; Beltrán-Alcrudo, D. Epidemiology of African swine fever in Africa today: Sylvatic cycle versus socio-economic imperatives. Transbound Emerg. Dis. 2019, 66, 672–686. [Google Scholar] [CrossRef]
- Costard, S.; Wieland, B.; de Glanville, W.; Jori, F.; Rowlands, R.; Vosloo, W.; Roger, F.; Pfeiffer, D.U.; Dixon, L.K. African swine fever: How can global spread be prevented? Philos. Trans. R Soc. B Biol. Sci. 2009, 364, 2683–2696. [Google Scholar] [CrossRef] [Green Version]
- Loi, F.; Cappai, S.; Coccollone, A.; Rolesu, S. Standardized risk analysis approach aimed to evaluate the last African swine fever eradication program performance, in Sardinia. Front. Vet. Sci. 2019, 6, 299. [Google Scholar] [CrossRef]
- Penrith, M.-L. History of “swine fever” in southern Africa. J. S. Afr. Vet. Assoc. 2013, 84, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Tian, K. African swine fever in China. Vet. Rec. 2018, 183, 300–301. [Google Scholar] [CrossRef] [PubMed]
- OIE. World Animal Health Information System. 2020. Available online: http://www.oie.int/wahis_2/public/wahid.php/Countryinformation/Reporting (accessed on 28 April 2020).
- Kim, H.-J.; Cho, K.-H.; Ryu, J.-H.; Jang, M.-K.; Chae, H.-G.; Choi, J.-D.; Nah, J.-J.; Kim, Y.-J.; Kang, H.-E. Isolation and genetic characterization of African Swine fever virus from domestic pig farms in South Korea, 2019. Viruses 2020, 12, 1237. [Google Scholar] [CrossRef] [PubMed]
- Vergne, T.; Chen-Fu, C.; Li, S.; Cappelle, J.; Edwards, J.; Martin, V.; Pfeiffer, D.U.; Fusheng, G.; Roger, F.L. Pig empire under infectious threat: Risk of African swine fever introduction into the People’s Republic of China. Vet. Rec. 2017, 181, 117. [Google Scholar] [CrossRef] [PubMed]
- Rowlands, R.J.; Michaud, V.; Heath, L.; Hutchings, G.; Oura, C.; Vosloo, W.; Dwarka, R.; Onashvili, T.; Albina, E.; Linda, K.; et al. African swine fever Virus Isolate, Georgia, 2007. Emerg. Infect. Dis. 2008, 14, 1870–1874. [Google Scholar] [CrossRef]
- Alonso, C.; Borca, M.; Dixon, L.; Revilla, Y.; Rodriguez, F.; Escribano, J.M.; ICTV Report Consortium. ICTV virus taxonomy profile: Asfarviridae. J. Gen. Virol. 2018, 99, 613–614. [Google Scholar] [CrossRef] [PubMed]
- de Villiers, E.P.; Gallardo, C.; Arias, M.; da Silva, M.; Upton, C.; Martin, R.; Bishop, R.P. Phylogenomic analysis of 11 complete African swine fever virus genome sequences. Virology 2010, 400, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Gallardo, C.; Okoth, E.; Pelayo, V.; Anchuelo, R.; Martin, E.; Simon, A.; Llorente, A.; Nieto, R.; Soler, A.; Martín, R.; et al. African swine fever viruses with two different genotypes, both of which occur in domestic pigs, are associated with ticks and adult warthogs, respectively, at a single geographical site. J. Gen. Virol. 2011, 92, 432–444. [Google Scholar] [PubMed]
- Simulundu, E.; Chambaro, H.M.; Sinkala, Y.; Kajihara, M.; Ogawa, H.; Mori, A.; Ndebe, J.; Dautu, G.; Mataa, L.; Lubaba, C.H.; et al. Co-circulation of multiple genotypes of African swine fever viruses among domestic pigs in Zambia (2013–2015). Transbound Emerg. Dis. 2017, 65, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Bastos, A.D.S.; Penrith, M.-L.; Crucière, C.; Edrich, J.L.; Hutchings, G.; Roger, F.; Couacy-Hymann, E.; Thomson, R.G. Genotyping field strains of African swine fever virus by partial p72 gene characterisation. Arch. Virol. 2003, 148, 693–706. [Google Scholar] [CrossRef] [PubMed]
- Achenbach, J.E.; Gallardo, C.; Nieto-Pelegrín, E.; Rivera-Arroyo, B.; Degefa-Negi, T.; Arias, M.; Jenberie, S.; Mulisa, D.D.; Gizaw, D.; Gelaye, E.; et al. Identification of a new genotype of African Swine fever virus in domestic pigs from ethiopia. Transbound Emerg. Dis. 2017, 64, 1393–1404. [Google Scholar] [CrossRef]
- Quembo, C.J.; Jori, F.; Vosloo, W.; Heath, L. Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype. Transbound Emerg. Dis. 2018, 65, 420–431. [Google Scholar]
- Gallardo, C.; Mwaengo, D.M.; Macharia, J.M.; Arias, M.; Taracha, E.A.; Soler, A.; Okoth, E.; Martín, E.; Kasiti, J.; Bishop, R.P. Enhanced discrimination of African swine fever virus isolates through nucleotide sequencing of the p54, p72, and pB602L (CVR) genes. Virus Genes 2009, 38, 85–95. [Google Scholar] [CrossRef]
- Lubisi, B.A.; Bastos, A.D.S.; Dwarka, R.M.; Vosloo, W. Molecular epidemiology of African swine fever in East Africa. Arch. Virol. 2005, 150, 2439–2452. [Google Scholar] [CrossRef] [PubMed]
- Nix, R.J.; Gallardo, C.; Hutchings, G.; Blanco, E.; Dixon, L.K. Molecular epidemiology of African swine fever virus studied by analysis of four variable genome regions. Arch. Virol. 2006, 151, 2475–2494. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, C.; Fernández-Pinero, J.; Pelayo, V.; Gazaev, I.; Markowska-Daniel, I.; Pridotkas, G.; Nieto, R.; Fernández-Pacheco, P.; Bokhan, S.; Nevolko, O.; et al. Genetic variation among African Swine fever genotype II viruses, eastern and central Europe. Emerg. Infect. Dis. 2014, 20, 1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, S.; Li, J.; Fan, X.; Liu, F.; Li, L.; Wang, Q.; Ren, W.; Bao, J.; Liu, C.; Wang, H.; et al. Molecular characterization of African swine fever virus, China, 2018. Emerg. Infect. Dis. 2018, 24, 2131–2133. [Google Scholar] [CrossRef] [Green Version]
- Sanna, G.; Dei Giudici, S.; Bacciu, D.; Angioi, P.P.; Giammarioli, M.; De Mia, G.M.; Oggiano, A. Improved strategy for molecular characterization of African Swine fever viruses from Sardinia, based on analysis of p30, CD2V and I73R/I329L variable regions. Transbound Emerg. Dis. 2017, 64, 1280–1286. [Google Scholar] [CrossRef]
- Chenais, E.; Ståhl, K.; Guberti, V.; Depner, K. Identification of Wild Boar–Habitat Epidemiologic Cycle in African Swine Fever Epizootic-Volume 24, Number 4—April 2018-Emerging Infectious Diseases Journal-CDC. 2018. Available online: https://wwwnc.cdc.gov/eid/article/24/4/17-2127_article (accessed on 11 November 2019).
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, T.P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar]
- Harzing, A.-W. Publish or Perish. Harzing.com. 2007. Available online: https://harzing.com/resources/publish-or-perish (accessed on 9 December 2020).
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Gouy, M.; Guindon, S.; Gascuel, O. Sea view version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 2010, 27, 221–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefort, V.; Longueville, J.-E.; Gascuel, O. SMS: Smart model selection in PhyML. Mol. Biol. Evol. 2017, 34, 2422–2424. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A.; Lam, T.T.; Max Carvalho, L.; Pybus, O.G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol [Internet]. 2016. Available online: https://academic.oup.com/ve/article/2/1/vew007/1753488 (accessed on 8 October 2020).
- To, T.-H.; Jung, M.; Lycett, S.; Gascuel, O. Fast dating using least-squares criteria and algorithms. Syst. Biol. 2016, 65, 82–97. [Google Scholar] [CrossRef]
- Ishikawa, S.A.; Zhukova, A.; Iwasaki, W.; Gascuel, O. A fast likelihood method to reconstruct and visualize ancestral scenarios. Mol. Biol. Evol. 2019, 36, 2069–2085. [Google Scholar] [CrossRef] [Green Version]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019, 47, W256–W259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambaro, H.M.; Sasaki, M.; Sinkala, Y.; Gonzalez, G.; Squarre, D.; Fandamu, P.; Lubaba, C.; Mataa, L.; Shawa, M.; Mwape, K.E.; et al. Evidence for exposure of asymptomatic domestic pigs to African swine fever virus during an inter-epidemic period in Zambia. Transbound Emerg. Dis. 2020, 67, 2741–2752. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/tbed.13630 (accessed on 10 August 2020). [CrossRef] [PubMed]
- Ndlovu, S.; Williamson, A.-L.; Malesa, R.; Heerden J van Boshoff, C.I.; Bastos, A.D.S.; Heath, L.; Carulei, O. Genome sequences of three African Swine fever viruses of genotypes I, III, and XXII from South Africa and Zambia, isolated from Ornithodoros Soft Ticks. Microbiol. Resour. Announc. 2020, 9. Available online: https://mra.asm.org/content/9/10/e01376-19 (accessed on 18 June 2020). [CrossRef] [PubMed] [Green Version]
- Simulundu, E.; Sinkala, Y.; Chambaro, H.M.; Chinyemba, A.; Banda, F.; Mooya, L.E.; Ndebe, J.; Chitanga, S.; Makungu, C.; Munthali, G.; et al. Genetic characterisation of African swine fever virus from 2017 outbreaks in Zambia: Identification of p72 genotype II variants in domestic pigs. Onderstepoort J. Vet. Res. 2018, 85, 5. [Google Scholar] [CrossRef] [Green Version]
- Thoromo, J.; Simulundu, E.; Chambaro, H.M.; Mataa, L.; Lubaba, C.H.; Pandey, G.S.; Takada, A.; Misinzo, G.; Mweene, A.S. Diagnosis and genotyping of African swine fever viruses from 2015 outbreaks in Zambia. Onderstepoort J. Vet. Res. 2016, 83, a1095. Available online: http://www.ojvr.org/index.php/ojvr/article/view/1095 (accessed on 25 July 2018). [CrossRef]
- Filipe, A.D.S.; Vattipally, S.B.; Mair, D.; Ogweng, P.; Mayega, J.; Muwanika, V.; Palmarini, M.; Biek, R.; Masembe, C. Host genome depletion to determine the evolution, genetic diversity and transmission patterns of full genome sequences of African swine fever genotype IX from Uganda. Access Microbiol. Microbiol. Soc. 2019, 1, 95. [Google Scholar] [CrossRef]
- Atuhaire, D.K.; Afayoa, M.; Ochwo, S.; Mwesigwa, S.; Okuni, J.B.; Olaho-Mukani, W.; Ojok, L. Molecular characterization and phylogenetic study of African swine fever virus isolates from recent outbreaks in Uganda (2010–2013). Virol. J. 2013, 10, 247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atuhaire, D.K.; Ochwo, S.; Afayoa, M.; Mwesigwa, S.; Mwiine, F.N.; Okuni, J.B.; Olaho-Mukani, W.; Ojok, L. Molecular characterization of African swine fever virus in apparently healthy domestic pigs in Uganda. Afr. J. Biotechnol. 2014, 13, 2491–2499. Available online: https://www.ajol.info/index.php/ajb/article/view/120957 (accessed on 2 July 2020).
- Gallardo, C.; Ademun, A.R.; Nieto, R.; Nantima, N.; Arias, M.; Martín, E.; Pelayo, V.; Bishop, R.P. Genotyping of African swine fever virus (ASFV) isolates associated with disease outbreaks in Uganda in 2007. Afr. J. Biotechnol. 2011, 10, 3488–3497. [Google Scholar]
- Masembe, C.; Sreenu, V.B.; Filipe, A.D.S.; Wilkie, G.S.; Ogweng, P.; Mayega, F.J.; Muwanika, V.B.; Biek, R.; Palmarini, M.; Davison, A.J. Genome sequences of five African Swine fever virus genotype IX isolates from domestic pigs in Uganda. Microbiol. Resour. Announc. 2018, 7, e01018-18. [Google Scholar] [CrossRef] [Green Version]
- Mwiine, F.N.; Nkamwesiga, J.; Ndekezi, C.; Ochwo, S. Molecular characterization of African Swine fever viruses from outbreaks in Peri-Urban Kampala, Uganda. Adv. Virol. 2019. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6463604/ (accessed on 20 July 2019). [CrossRef]
- Onzere, C.K.; Bastos, A.D.; Okoth, E.A.; Lichoti, J.K.; Bochere, E.N.; Owido, M.G.; Ndambuki, G.; Bronsvoort, M.; Bishop, R.P. Multi-locus sequence typing of African swine fever viruses from endemic regions of Kenya and Eastern Uganda (2011–2013) reveals rapid B602L central variable region evolution. Virus Genes. 2018, 54, 111–123. [Google Scholar] [CrossRef] [Green Version]
- Bastos, A.D.S.; Penrith, M.-L.; Macome, F.; Pinto, F.; Thomson, G.R. Co-circulation of two genetically distinct viruses in an outbreak of African swine fever in Mozambique: No evidence for individual co-infection. Vet. Microbiol. 2004, 103, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Bisimwa, P.N.; Machuka, E.M.; Githae, D.; Banswe, G.; Amimo, J.O.; Ongus, J.R.; Masembe, C.; Bishop, R.P.; Steinaa, L.; Djikeng, A.; et al. Evidence for the presence of African swine fever virus in apparently healthy pigs in South-Kivu Province of the Democratic Republic of Congo. Vet. Microbiol. 2020, 240, 108521. [Google Scholar]
- Bisimwa, P.N.; Ongus, J.R.; Tiambo, C.K.; Machuka, E.M.; Bisimwa, E.B.; Steinaa, L.; Pelle, R. First detection of African swine fever (ASF) virus genotype X and serogroup 7 in symptomatic pigs in the Democratic Republic of Congo. Virol. J. 2020, 17, 135. [Google Scholar] [CrossRef] [PubMed]
- Ndlovu, S.; Williamson, A.; Heath, L.; Carulei, O. Genome sequences of three African Swine fever viruses of genotypes IV and XX from Zaire and South Africa, isolated from a domestic Pig (Sus scrofa domesticus), a Warthog (Phacochoerus africanus), and a European Wild Boar (Sus scrofa). Microbiol. Resour. Announc. 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Mulumba–Mfumu, L.K.; Achenbach, J.E.; Mauldin, M.R.; Dixon, L.K.; Tshilenge, C.G.; Thiry, E.; Moreno, N.; Blanco, E.; Saegerman, C.; Lamien, C.E.; et al. Genetic assessment of African Swine fever isolates involved in outbreaks in the democratic Republic of Congo between 2005 and 2012 reveals Co-circulation of p72 genotypes I, IX and XIV, including 19 variants. Viruses 2017, 9, 31. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5332950/ (accessed on 14 July 2018).
- Bishop, R.P.; Fleischauer, C.; de Villiers, E.P.; Okoth, E.A.; Arias, M.; Gallardo, C.; Upton, C. Comparative analysis of the complete genome sequences of Kenyan African swine fever virus isolates within p72 genotypes IX and X. Virus Genes 2015, 50, 303–309. [Google Scholar] [CrossRef]
- Thomas, L.F.; Bishop, R.P.; Onzere, C.; Mcintosh, M.T.; Lemire, K.A.; de Glanville, W.A.; Cook, E.A.J.; Fèvre, E.M. Evidence for the presence of African swine fever virus in an endemic region of Western Kenya in the absence of any reported outbreak. BMC Vet. Res. 2016, 12, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Chang’a, J.S.; Mayenga, C.; Settypalli, T.B.K.; Achenbach, J.E.; Mwanandota, J.J.; Magidanga, B.; Cattoli, G.; Jeremiah, M.; Kamigwe, A.; Guo, S.; et al. Symptomatic and asymptomatic cases of African swine fever in Tanzania. Transbound Emerg. Dis. 2019, 66, 2402–2410. [Google Scholar] [CrossRef]
- Peter, E.; Machuka, E.; Githae, D.; Okoth, E.; Cleaveland, S.; Shirima, G.; Kusiluka, L.; Pelle, R. Detection of African swine fever virus genotype XV in a sylvatic cycle in Saadani National Park, Tanzania. Transbound Emerg. Dis. 2020. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/tbed.13747 (accessed on 25 July 2020). [CrossRef]
- Misinzo, G.; Magambo, J.; Masambu, J.; Yongolo, M.G.; Van Doorsselaere, J.; Nauwynck, H.J. Genetic characterization of African swine fever viruses from a 2008 outbreak in Tanzania. Transbound Emerg. Dis. 2011, 58, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Misinzo, G.; Kasanga, C.J.; Mpelumbe–Ngeleja, C.; Masambu, J.; Kitambi, A.; Van Doorsselaere, J. African Swine fever virus, Tanzania, 2010–2012. Emerg. Infect. Dis. 2012, 18, 2081–2083. [Google Scholar] [CrossRef]
- Misinzo, G.; Kwavi, D.E.; Sikombe, C.D.; Makange, M.; Peter, E.; Muhairwa, A.P.; Madege, M.J. Molecular characterization of African swine fever virus from domestic pigs in northern Tanzania during an outbreak in 2013. Trop. Anim. Health Prod. 2014, 46, 1199–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misinzo, G.; Jumapili, F.; Ludosha, M.; Mafie, E.; Silialis, J.; Mushi, R.; Viaene, W.; Doorsselaere, J.V. Genotyping of African swine fever virus from a 2009 outbreak in Tanzania. Res. Opin. Anim. Vet. Sci. 2012, 2, 334–338. [Google Scholar]
- Yona, C.M.; Vanhee, M.; Simulundu, E.; Makange, M.; Nauwynck, H.J.; Misinzo, G. Persistent domestic circulation of African swine fever virus in Tanzania, 2015–2017. BMC Vet. Res. 2020, 16, 369. [Google Scholar] [CrossRef] [PubMed]
- Hakizimana, J.N.; Kamwendo, G.; Chulu, J.L.C.; Kamana, O.; Nauwynck, H.J.; Misinzo, G. Genetic profile of African swine fever virus responsible for the 2019 outbreak in northern Malawi. BMC Vet. Res. 2020, 16, 316. [Google Scholar] [CrossRef]
- Hakizimana, J.N.; Nyabongo, L.; Ntirandekura, J.B.; Yona, C.; Ntakirutimana, D.; Kamana, O.; Nauwynck, H.; Misinzo, G. Genetic analysis of African Swine fever virus from the 2018 outbreak in South-Eastern Burundi. Front. Vet. Sci. 2020, 7, 578474. Available online: https://www.frontiersin.org/articles/10.3389/fvets.2020.578474/full (accessed on 9 November 2020). [CrossRef] [PubMed]
- Abworo, E.O.; Onzere, C.; Oluoch Amimo, J.; Riitho, V.; Mwangi, W.; Davies, J.; Blome, S.; Bishop, R.P. Detection of African swine fever virus in the tissues of asymptomatic pigs in smallholder farming systems along the Kenya-Uganda border: Implications for transmission in endemic areas and ASF surveillance in East Africa. J. Gen. Virol. 2017, 98, 1806–1814. [Google Scholar] [CrossRef]
- Gonzague, M.; Roger, F.; Bastos, A.; Burger, C.; Randriamparany, T.; Smondack, S.; Cruciere, C. Isolation of a non-haemadsorbing, non-cytopathic strain of African swine fever virus in Madagascar. Epidemiol. Infect. 2001, 126, 453–459. [Google Scholar]
- Lubisi, B.A.; Dwarka, R.M.; Meenowa, D.; Jaumally, R. An investigation into the first outbreak of African swine fever in the Republic of Mauritius. Transbound Emerg. Dis. 2009, 56, 178–188. [Google Scholar] [CrossRef] [PubMed]
- van Heerden, J.; Malan, K.; Gadaga, B.M.; Spargo, R.M. Reemergence of African Swine Fever in Zimbabwe, 2015. Emerg. Infect. Dis. 2017, 23, 860–861. [Google Scholar] [CrossRef]
- Duffy, S.; Shackelton, L.A.; Holmes, E.C. Rates of evolutionary change in viruses: Patterns and determinants. Nat. Rev. Genet. 2008, 9, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Alkhamis, M.A.; Gallardo, C.; Jurado, C.; Soler, A.; Arias, M.; Sánchez-Vizcaíno, J.M. Phylodynamics and evolutionary epidemiology of African swine fever p72-CVR genes in Eurasia and Africa. PLoS ONE 2018, 13, e0192565. [Google Scholar] [CrossRef]
- Michaud, V.; Randriamparany, T.; Albina, E. Comprehensive phylogenetic reconstructions of African Swine fever virus: Proposal for a new classification and molecular dating of the Virus. PLoS ONE 2013, 8, e69662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Time Period | Country | Number of Outbreaks | Number of Cases | Number of Deaths | Case Fatality Rate (%) |
---|---|---|---|---|---|
2005–2009 | Tanzania | 5 | 956 | 738 | 77.19 |
Rwanda | 134 | 7057 | 5863 | 83.08 | |
Burundi | - | - | - | - | |
Malawi | 86 | 16,973 | 10,785 | 63.54 | |
DRC | 81 | 1413 | 1329 | 94.05 | |
Mozambique | 78 | 6715 | 5194 | 77.35 | |
Zambia | 43 | 1570 | 1271 | 80.95 | |
Kenya | 9 | 924 | 549 | 59.41 | |
Uganda | 3 | 401 | 181 | 45.13 | |
Subtotal | 439 | 36,009 | 25,910 | 71.95 | |
2010–2014 | Tanzania | 41 | 4957 | 4275 | 86.24 |
Rwanda | 200 | 3553 | 1068 | 30.06 | |
Burundi | 1 | 159 | 26 | 16.35 | |
Malawi | 139 | 80,437 | 77,896 | 96.84 | |
DRC | 191 | 153,692 | 140,493 | 91.41 | |
Mozambique | 42 | 3136 | 2391 | 76.24 | |
Zambia | 44 | 3835 | 2381 | 62.08 | |
Kenya | 6 | 203 | 167 | 82.26 | |
Uganda | 10 | 622 | 473 | 76.04 | |
Subtotal | 674 | 250,594 | 229,170 | 91.45 | |
2015–2019 | Tanzania | 43 | 4981 | 3067 | 61.57 |
Rwanda | 47 | 593 | 532 | 89.71 | |
Burundi | 28 | 3633 | 560 | 15.41 | |
Malawi | 19 | 1813 | 1666 | 91.89 | |
DRC | 237 | 35,407 | 35,038 | 98.95 | |
Mozambique | 38 | 1239 | 936 | 75.54 | |
Zambia | 42 | 5966 | 5025 | 84.23 | |
Kenya | 3 | 231 | 223 | 96.53 | |
Uganda | 18 | 1276 | 612 | 47.96 | |
Subtotal | 475 | 55,139 | 47,659 | 86.43 | |
Grand total | 1588 | 341,742 | 302,739 | 88.58 |
ASFV p72 Genotype | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Country | I | II | V | VI | VIII | IX | X | XI | XII | XIII | XIV | XV | XVI | XX | XXIV | Total Genotypes |
Burundi | 1 | |||||||||||||||
DRC | 5 | |||||||||||||||
Kenya | 3 | |||||||||||||||
Malawi | 4 | |||||||||||||||
Mozambique | 5 | |||||||||||||||
Rwanda | 0 | |||||||||||||||
Tanzania | 5 | |||||||||||||||
Uganda | 2 | |||||||||||||||
Zambia | 7 | |||||||||||||||
Total countries | 3 | 4 | 2 | 1 | 3 | 4 | 5 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 1 |
Reference | Targeted Genomic Region | Reported ASFV p72 Genotype | Host Species | Country (Number of Papers) |
---|---|---|---|---|
[38] | p72 | I | Tick | Zambia (7) |
[39] | Whole genome sequencing | I | Tick | |
[40] | p72, p54, p30, CVR | II | Domestic pig | |
[41] | p72, p54 | I | Domestic pig | |
[22] | p72 | I, II, VIII, XI, XII, XIII, XIV | Domestic pig and tick | |
[23] | p72, CVR | I, VIII | Tick and domestic pig | |
[17] | p72, p54, CVR | I, II, XIV | Domestic pig | |
[42] | WGS | IX | Domestic pig | Uganda (10) |
[43] | p72, p54, CVR | IX | Domestic pig | |
[44] | p72, p54, CVR | IX | Domestic pig | |
[45] | p72, p54, CVR | IX | Domestic pig | |
[46] | WGS | IX | Domestic pig | |
[47] | p72, p54, CVR | IX | Domestic pig | |
[21] | p72, p54, CVR | IX, X | Domestic pig | |
[22] | p72 | IX | Domestic pig | |
[23] | p72, CVR | IX, X | Domestic pig | |
[48] | p72, p54, CVR, TK | IX | Domestic pig | |
[49] | p72, CVR | II, V, VI, VIII | Domestic pig | Mozambique (5) |
[21] | p72, p54, CVR | V | Domestic pig | |
[22] | p72 | II, VIII | Domestic pig | |
[23] | p72, CVR | VI | Domestic pig | |
[20] | p72, CVR, p30, p54 | II, V, XXIV | Tick | |
[50] | p72, p54 | IX | Domestic pig | DRC (6) |
[51] | p72, p54, CVR, CD2v, I73R-I329L | X | Domestic pig | |
[52] | Whole genome sequencing | XX | Domestic pig | |
[22] | p72 | I | Not known | |
[53] | p72, p54, CVR | I, IX, XIV | Domestic pig | |
[23] | p72, CVR | I | Domestic pig | |
[54] | WGS | IX, X | Domestic pig | Kenya (8) |
[15] | WGS | X | Domestic pig | |
[16] | p72, p54, p30, CVR | IX, X | Domestic pig, tick and warthog | |
[21] | p72, p54, CVR | IX | Domestic pig | |
[48] | p72, p54, CVR, TK | IX | Domestic pig | |
[55] | p72, p54 | IX | Domestic pig | |
[22] | p72 | I, X | Warthog, domestic pig and bush pig | |
[23] | p72, CVR | X | Warthog | |
[56] | p72, p54, CVR, I73R-I329L | II, IX | Domestic pig | Tanzania (9) |
[57] | p72, p54, CVR | XV | Tick | |
[58] | p72, p54, CVR | XV | Domestic pig | |
[59] | p72 | II | Domestic pig | |
[60] | p72, p54, CVR | X | Domestic pig | |
[61] | p72 | X | Domestic pig | |
[22] | p72 | X, XV, XVI | Tick, warthog and domestic pig | |
[23] | p72, CVR | X | Warthog | |
[62] | p72 | II, IX, X | Domestic pig | |
[63] | p72, CVR, I73R-I329L | II | Domestic pig | Malawi (4) |
[21] | p72, p54, CVR | V, VIII | Domestic pig and tick | |
[22] | p72 | VIII, V, XII | Domestic pig | |
[23] | p72, CVR | V, VIII | Warthog and domestic pig | |
[22] | p72 | X | Domestic pig | Burundi (3) |
[23] | p72, CVR | X | Domestic pig | |
[64] | p72, CVR, I73R-I329L | X | Domestic pig | |
- | - | - | - | Rwanda (0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hakizimana, J.N.; Yona, C.; Kamana, O.; Nauwynck, H.; Misinzo, G. African Swine Fever Virus Circulation between Tanzania and Neighboring Countries: A Systematic Review and Meta-Analysis. Viruses 2021, 13, 306. https://doi.org/10.3390/v13020306
Hakizimana JN, Yona C, Kamana O, Nauwynck H, Misinzo G. African Swine Fever Virus Circulation between Tanzania and Neighboring Countries: A Systematic Review and Meta-Analysis. Viruses. 2021; 13(2):306. https://doi.org/10.3390/v13020306
Chicago/Turabian StyleHakizimana, Jean N., Clara Yona, Olivier Kamana, Hans Nauwynck, and Gerald Misinzo. 2021. "African Swine Fever Virus Circulation between Tanzania and Neighboring Countries: A Systematic Review and Meta-Analysis" Viruses 13, no. 2: 306. https://doi.org/10.3390/v13020306