Legacy of Plant Virology in Croatia—From Virus Identification to Molecular Epidemiology, Evolution, Genomics and Beyond
Abstract
:1. Introduction
2. Early Plant Virus Research
2.1. Identifications of Plant Viruses and Their Isolates in Croatia
2.2. Cytopathological Changes in Infected Plants
2.3. First Steps towards Virus Ecology
3. Plant Virus Research Models and the Path towards Investigations of Subviral Agents
3.1. Multipartite Viruses
3.2. Cucumber Mosaic Virus and Its Satellite RNA
3.3. The Application of Monolith Chromatography for the Investigations of Viruses and Subviral Agents
4. The Research Diversification in the Pregenomic Era
4.1. Viroids—The Ultimate Subviral RNA Pathogens
4.2. Viruses and Their Populations—Molecular Perspective
4.3. Trilateral Interactions of a Plant, a Phytopathogenic Fungus and a Mycovirus
4.4. The Other End of the Spectrum—Phytoplasmas, Prokaryotes Unusual Enough to Be Mistaken for Viruses
5. Current Trends in the -Omics Era
5.1. From Comparative and Functional Genomics of Phytoplasmas towards Deciphering Pathogenicity Mechanisms and Evolution
5.2. Viromes of the Plants and Beyond
5.3. Back to the Roots—The Untapped Potential of Plant Virus Collection for Phylogeography and Evolution
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Köhler, E.; Panjan, M. Das Paramosaikvirus der Tabakpflanze. Ber. Dtsch. Bot. Ges. 1943, 61, 175–180. [Google Scholar]
- Miličić, D. Viruskörper und Zellteilungsanomalien in Opuntia brasiliensis. Protoplasma 1954, 43, 228–236. [Google Scholar] [CrossRef]
- Juretić, N. Forty years of plant virus research in Botanical institute of Zagreb University. Acta Bot. Croat. 1994, 53, 187–199. [Google Scholar]
- Miličić, D. Sind verschiedene Eiweisskristalle der Kakteen Viruskörper? Acta Bot. Croat. 1960, 18–19, 37–63. [Google Scholar]
- Miličić, D.; Štefanac, Z.; Juretić, N.; Wrischer, M. Cell inclusions of Holmes’ ribgrass virus. Virology 1968, 35, 356–362. [Google Scholar] [CrossRef]
- Miličić, D.; Udjbinac, Z. Virus-Eiweißspindeln der Kakteen in Lokalläsionen von Chenopodium. Protoplasma 1961, 53, 584–596. [Google Scholar] [CrossRef]
- Pleše, N.; Miličić, D. Vergleichende Untersuchungen an Isolaten des Kakteen-X-Virus mit Testpflanzen. Phytopathol. Zeitschrift 1966, 55, 197–210. [Google Scholar] [CrossRef]
- Štefanac, Z.; Mamula, Đ. A strain of radish mosaic virus occurring in turnip in Yugoslavia. Ann. Appl. Biol. 1971, 69, 229–234. [Google Scholar] [CrossRef]
- Rana, G.L.; Krajačić, M.; Štefanac, Z.; Pleše, N.; Rubino, L.; Miličić, D. Properties of a new strain of tobacco streak virus from Clematis vitalba (Ranunculaceae). Ann. Appl. Biol. 1987, 111, 153–160. [Google Scholar] [CrossRef]
- Pleše, N.; Koenig, R.; Lesemann, D.E.; Bozarth, R.F. Maclura mosaic virus—An elongated plant virus with uncertain group membership. Phytopathology 1979, 69, 471–475. [Google Scholar] [CrossRef]
- Štefanac, Z.; Wrischer, M. Spinach latent virus: Some properties and comparison of two isolates. Acta Bot. Croat. 1983, 42, 1–9. [Google Scholar]
- Juretić, N.; Mamula, Đ. Application of single radial immunodiffusion for qualitative comparison of plant virus particles. Intervirology 1980, 13, 209–213. [Google Scholar]
- Juretić, N.; Vuković, T.; Grbelja, J.; Guzina, N. Immunogenicity of turnip yellow mosaic virus in green tench (Tinca tinca). Naturwissenschaften 1977, 64, 440–441. [Google Scholar] [CrossRef]
- Mamula, Đ.; Miličić, D. Über die Eigenschaften von zwei jugoslawischen Isolaten des Blumenkohlmosaikvirus. Phytopathol. Zeitschrift 1968, 61, 232–252. [Google Scholar]
- Štefanac, Z.; Ljubešić, N. Inclusion Bodies in Cells Infected with Radish Mosaic Virus. J. Gen. Virol. 1971, 13, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Štefanac, Z.; Ljubešić, N. The Spindle-shaped Inclusion Bodies of Narcissus Mosaic Virus. Phytopathol. Zeitschrift 1974, 80, 148–152. [Google Scholar] [CrossRef]
- Miličić, D.; Juretić, N.; Pleše, N.; Wrischer, M. Some Data on Cell Inclusions and Natural Hosts of Broad Bean Wilt Virus. Acta Bot. Croat. 1976, 35, 17–24. [Google Scholar]
- Harrison, B.D.; Štefanac, Z.; Roberts, I.M. Role of Mitochondria in the Formation of X-bodies in Cells of Nicotiana clevelandii infected by Tobacco Rattle Viruses. J. Gen. Virol. 1970, 6, 127–140. [Google Scholar] [CrossRef]
- Horváth, J.; Juretić, N.; Krajačić, M.; Mamula, Đ. Tobacco mosaic virus in Danube water in Hungary. Acta Phytopathol. Entomol. Hungarica 1986, 21, 337–340. [Google Scholar]
- Juretić, N.; Horváth, J.; Krajačić, M. Occurrence of a tobamovirus similar to Ribgrass mosaic virus in water of the Hungarian river Zala. Acta Phytopathol. Entomol. Hungarica 1986, 21, 291–295. [Google Scholar]
- Tošić, M.; Tošić, D. Occurrence of Tobacco Mosaic virus in Water Of the Danube and Sava Rivers. J. Phytopathol. 1984, 110, 200–202. [Google Scholar] [CrossRef]
- Juretić, N.; Horváth, J. Some data on adsorption of two plant viruses to soil. Acta Phytopathol. Entomol. Hungarica 1991, 26, 423–426. [Google Scholar]
- Pleše, N.; Juretić, N.; Mamula, Đ.; Polák, Z.; Krajačić, M. Plant viruses in soil and water of forest ecosystems in Croatia. Phyton 1996, 36, 135–143. [Google Scholar]
- Lucía-Sanz, A.; Manrubia, S. Multipartite viruses: Adaptive trick or evolutionary treat? NPJ Syst. Biol. Appl. 2017, 3, 34. [Google Scholar] [CrossRef]
- King, A.M.Q.; Adams, M.J.; Carstens, E.B.; Lefkowitz, E.J. Virus Taxonomy Classification and Nomenclature of Viruses Ninth Report of the International Committee on Taxonomy of Viruses; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Juretić, N.; Fulton, R.W. Some Characteristics of the Particle Types of Radish Mosaic Virus. Intervirology 1974, 4, 57–68. [Google Scholar] [CrossRef]
- Ladner, J.T.; Wiley, M.R.; Beitzel, B.; Auguste, A.J.; Dupuis, A.P.; Lindquist, M.E.; Sibley, S.D.; Kota, K.P.; Fetterer, D.; Eastwood, G.; et al. A Multicomponent Animal Virus Isolated from Mosquitoes. Cell Host Microbe 2016, 20, 357–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pallas, V.; Aparicio, F.; Herranz, M.C.; Sanchez-Navarro, J.A.; Scott, S.W. The Molecular Biology of Ilarviruses. In Advances in Virus Research, 1st ed.; Maramorosch, K., Murphy, F., Eds.; Academic Press: San Diego, CA, USA; Waltham, MA, USA; Oxford, UK; London, UK; Amsterdam, The Netherlans, 2013; pp. 139–181. [Google Scholar]
- Škorić, D. Molecular and Biological Properties of the Cucumber Mosaic Virus Satellite RNA Isolated from Tomatoes in Croatia. Master’s Thesis, University of Zagreb, Zagreb, Croatia, 1996. [Google Scholar]
- Škorić, D.; Krajačić, M.; Barbarossa, L.; Cillo, F.; Grieco, F.; Šaric, A.; Gallitelli, D. Occurrence of Cucumber Mosaic Cucumovirus with Satellite RNA in Lethal Necrosis Affected Tomatoes in Croatia. J. Phytopathol. 1996, 144, 543–549. [Google Scholar] [CrossRef]
- He, L.; Wang, Q.; Gu, Z.; Liao, Q.; Palukaitis, P.; Du, Z. A conserved RNA structure is essential for a satellite RNA-mediated inhibition of helper virus accumulation. Nucleic Acids Res. 2019, 47, 8255–8271. [Google Scholar] [CrossRef]
- Škorić, D.; Krajačić, M.; Ćurković-Perica, M.; Halupecki, E.; Topić, J.; Igrc-Barčić, J. Cucumber mosaic virus (Cucumovirus) and associated satRNA in weed species under the natural epidemic conditions of tomato lethal necrosis in Croatia. Z. Pflanzenkrankh. Pflanzenschutz 2000, 107, 304–309. [Google Scholar]
- Krajačić, M.; Lorković, Z. Optimizing alternative chromatography approach in isolation of viral replicative dsRNA from infected plant tussue. Acta Biol. HAZU 1992, 16, 1–9. [Google Scholar]
- Ćurković-Perica, M.; Šola, I.; Urbas, L.; Smrekar, F.; Krajačić, M. Separation of hypoviral double-stranded RNA on monolithic chromatographic supports. J. Chromatogr. A 2009, 1216, 2712–2716. [Google Scholar] [CrossRef]
- Ruščić, J.; Gutiérrez-Aguirre, I.; Urbas, L.; Kramberger, P.; Mehle, N.; Škorić, D.; Barut, M.; Ravnikar, M.; Krajačić, M. A novel application of methacrylate based short monolithic columns: Concentrating Potato spindle tuber viroid from water samples. J. Chromatogr. A 2013, 1274, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Ruščić, J.; Gutiérrez-Aguirre, I.; Tušek Žnidarič, M.; Kolundžija, S.; Slana, A.; Barut, M.; Ravnikar, M.; Krajačić, M. A new application of monolithic supports: The separation of viruses from one another. J. Chromatogr. A 2015, 1388, 69–78. [Google Scholar] [CrossRef]
- Krajačić, M.; Ravnikar, M.; Štrancar, A.; Gutiérrez-Aguirre, I. Application of monolithic chromatographic supports in virus research. Electrophoresis 2017, 38, 2827–2836. [Google Scholar] [CrossRef]
- Flores, R.; Minoia, S.; Carbonell, A.; Gisel, A.; Delgado, S.; López-Carrasco, A.; Navarro, B.; Di Serio, F. Viroids, the simplest RNA replicons: How they manipulate their hosts for being propagated and how their hosts react for containing the infection. Virus Res. 2015, 209, 136–145. [Google Scholar] [CrossRef]
- Škorić, D. Viroid Biology. In Viroids and Satellites, 1st ed.; Hadidi, A., Flores, R., Palukaitis, P., Randles, W.J., Eds.; Academic Press: San Diego, CA, USA; Oxford, UK; London, UK, 2017; pp. 53–61. [Google Scholar]
- Škorić, D. Primary Structure of Viroid RNAs and Their Pathogenicity in Croatian Citrus Cultivars. Ph.D. Thesis, University of Zagreb, Zagreb, Croatia, 2000. [Google Scholar]
- Škorić, D.; Szychowski, J.A.; Krajačić, M.; Semancik, J.S. Detection of citrus viroids in Croatia. In Proceedings of the 15th Conference of the International Organization of Citrus Virologists, Nicosia, Cyprus, 11–19 November 2001; Rouchouze, D., Hadjinicoli, A., Evrypidou, X., Eds.; Agricultural Research Institute: Nicosia, Cyprus, 2001; p. 148. [Google Scholar]
- Černi, S.; Ćurković-Perica, M.; Rusak, G.; Škorić, D. In vitro system for studying interactions between Citrus exocortis viroid and Gynura aurantiaca (Blume) DC. metabolism and growing conditions. J. Plant Interact. 2012, 7, 254–261. [Google Scholar] [CrossRef] [Green Version]
- Škorić, D.; Conerly, M.; Szychowski, J.A.; Semancik, J.S. CEVd-Induced Symptom Modification as a Response to a Host-Specific Temperature-Sensitive Reaction. Virology 2001, 280, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Škorić, D.; Černi, S.; Jezernik, K.; Butković, A. Molecular characterization of Coleus blumei viroids 1 and 3 in Plectranthus scutellarioides in Croatia. Eur. J. Plant Pathol. 2019, 155, 731–742. [Google Scholar] [CrossRef]
- Šarić, A.; Dulić, I. Detection and serological identification of CTV in citrus cultivars in the lower reaches of the Neretva river valley. Agric. Conspetus Sci. 1990, 55, 171–176. [Google Scholar]
- Černi, S.; Škorić, D.; Ruščić, J.; Krajačić, M.; Papić, T.; Djelouah, K.; Nolasco, G. East Adriatic—a reservoir region of severe Citrus tristeza virus strains. Eur. J. Plant Pathol. 2009, 124, 701–706. [Google Scholar] [CrossRef]
- Černi, S.; Ruščić, J.; Nolasco, G.; Gatin, Ž.; Krajačić, M.; Škorić, D. Stem pitting and seedling yellows symptoms of Citrus tristeza virus infection may be determined by minor sequence variants. Virus Genes 2008, 36, 241–249. [Google Scholar] [CrossRef]
- Černi, S.; Šatović, Z.; Ruščić, J.; Nolasco, G.; Škorić, D. Determining intra-host genetic diversity of Citrus tristeza virus. What is the minimal sample size? Phytopathol. Mediterr. 2020, 59, 295–302. [Google Scholar] [CrossRef]
- Černi, S.; Hančević, K.; Škorić, D. Citruses in Croatia – cultivation, major virus and viroid threats and challenges. Acta Bot. Croat. 2020, 79, 228–235. [Google Scholar] [CrossRef]
- Kajić, V.; Černi, S.; Krajačić, M.; Mikec, I.; Škorić, D. Molecular typing of Plum Pox Virus isolates in Croatia. J. Plant Pathol. 2008, 90, 1-9-S1.13. [Google Scholar]
- Hančević, K.; Saldarelli, P.; Čarija, M.; Černi, S.; Zdunić, G.; Mucalo, A.; Radić, T. Predominance and Diversity of GLRaV-3 in Native Vines of Mediterranean Croatia. Plants 2021, 10, 17. [Google Scholar] [CrossRef] [PubMed]
- Černi, S.; Prpić, J.; Jemeršić, L.; Škorić, D. The application of single strand conformation polymorphism (SSCP) analysis in determining Hepatitis E virus intra-host diversity. J. Virol. Methods 2015, 221, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Ćurković-Perica, M.; Ježić, M.; Rigling, D. Mycoviruses as Antivirulence Elements of Fungal Pathogens. In The Biological Role of a Virus, 1st ed.; Hurst, C.J., Ed.; Springer International Publishing: Cham, Switzerland, 2021; in press. [Google Scholar]
- Rigling, D.; Borst, N.; Cornejo, C.; Supatashvili, A.; Prospero, S. Genetic and Phenotypic Characterization of Cryphonectria hypovirus 1 from Eurasian Georgia. Viruses 2018, 10, 687. [Google Scholar] [CrossRef] [Green Version]
- Mlinarec, J.; Nuskern, L.; Ježić, M.; Rigling, D.; Ćurković-Perica, M. Molecular evolution and invasion pattern of Cryphonectria hypovirus 1 in Europe: Mutation rate, and selection pressure differ between genome domains. Virology 2018, 514, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Bryner, S.F.; Rigling, D. Temperature-Dependent Genotype-by-Genotype Interaction between a Pathogenic Fungus and Its Hyperparasitic Virus. Am. Nat. 2011, 177, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Ježić, M.; Krstin, L.; Poljak, I.; Liber, Z.; Idžojtić, M.; Jelić, M.; Meštrović, J.; Zebec, M.; Ćurković-Perica, M. Castanea sativa: Genotype-dependent recovery from chestnut blight. Tree Genet. Genomes 2014, 10, 101–110. [Google Scholar] [CrossRef]
- Krstin, L.; Katanić, Z.; Ježić, M.; Poljak, I.; Nuskern, L.; Matković, I.; Idžojtić, M.; Ćurković-Perica, M. Biological control of chestnut blight in Croatia: An interaction between host sweet chestnut, its pathogen Cryphonectria parasitica and the biocontrol agent Cryphonectria hypovirus 1. Pest Manag. Sci. 2017, 73, 582–589. [Google Scholar] [CrossRef]
- Nuskern, L.; Ježić, M.; Liber, Z.; Mlinarec, J.; Ćurković-Perica, M. Cryphonectria hypovirus 1-Induced Epigenetic Changes in Infected Phytopathogenic Fungus Cryphonectria parasitica. Microb. Ecol. 2018, 75, 790–798. [Google Scholar] [CrossRef]
- Nuskern, L.; Tkalec, M.; Ježić, M.; Katanić, Z.; Krstin, L.; Ćurković-Perica, M. Cryphonectria hypovirus 1-Induced Changes of Stress Enzyme Activity in Transfected Phytopathogenic Fungus Cryphonectria parasitica. Microb. Ecol. 2017, 74, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Nuskern, L.; Tkalec, M.; Srezović, B.; Ježić, M.; Gačar, M.; Ćurković-Perica, M. Laccase Activity in Fungus Cryphonectria parasitica Is Affected by Growth Conditions and Fungal–Viral Genotypic Interactions. J. Fungi 2021, 7, 958. [Google Scholar] [CrossRef]
- Krstin, L.; Novak-Agbaba, S.; Rigling, D.; Krajačić, M.; Ćurković-Perica, M. Chestnut blight fungus in Croatia: Diversity of vegetative compatibility types, mating types and genetic variability of associated Cryphonectria hypovirus 1. Plant Pathol. 2008, 57, 1086–1096. [Google Scholar] [CrossRef]
- Krstin, L.; Novak-Agbaba, S.; Rigling, D.; Ćurković-Perica, M. Diversity of vegetative compatibility types and mating types of Cryphonectria parasitica in Slovenia and occurrence of associated Cryphonectria hypovirus 1. Plant Pathol. 2011, 60, 752–761. [Google Scholar] [CrossRef]
- Krstin, L.; Katanić, Z.; Repar, J.; Ježić, M.; Kobaš, A.; Ćurković-Perica, M. Genetic Diversity of Cryphonectria hypovirus 1, a Biocontrol Agent of Chestnut Blight, in Croatia and Slovenia. Microb. Ecol. 2020, 79, 148–163. [Google Scholar] [CrossRef] [PubMed]
- Ježić, M.; Kolp, M.; Prospero, S.; Sotirovski, K.; Double, M.; Rigling, D.; Risteski, M.; Karin-Kujundžić, V.; Idžojtić, M.; Poljak, I.; et al. Diversity of Cryphonectria parasitica in callused chestnut blight cankers on European and American chestnut. For. Pathol. 2019, 49, e12566. [Google Scholar] [CrossRef]
- Ježić, M.; Mlinarec, J.; Vuković, R.; Katanić, Z.; Krstin, L.; Nuskern, L.; Poljak, I.; Idžojtić, M.; Tkalec, M.; Ćurković-Perica, M. Changes in Cryphonectria parasitica populations affect natural biological control of chestnut blight. Phytopathology 2018, 108, 870–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ježić, M.; Schwarz, J.M.; Prospero, S.; Sotirovski, K.; Risteski, M.; Ćurković-Perica, M.; Nuskern, L.; Krstin, L.; Katanić, Z.; Maleničić, E.; et al. Temporal and spatial genetic population structure of Cryphonectria parasitica and its associated hypovirus across an invasive range of chestnut blight in Europe. Phytopathology 2021, 111, 1327–1337. [Google Scholar] [CrossRef]
- Wang, M.Q.; Maramorosch, K. Earliest historical record of a tree mycoplasma disease: Beneficial effect of mycoplasma-like organisms on peonies. In Mycoplasma Diseases of Crops: Basic and Applied Aspects, 1st ed.; Maramorosch, K., Raychaudhuri, S.P., Eds.; Springer-Verlag: New York, NY, USA, 1988; pp. 349–356. [Google Scholar]
- Doi, Y.; Teranaka, M.; Yora, K.; Asuyama, H. Mycoplasma- or PLT Group-like Microorganisms Found in the Phloem Elements of Plants Infected with Mulberry Dwarf, Potato Witches’ Broom, Aster Yellows, or Paulownia Witches’ Broom. Jpn. J. Phytopathol. 1967, 33, 259–266. [Google Scholar] [CrossRef]
- Namba, S. Molecular and biological properties of phytoplasmas. Proc. Jpn. Acad. Ser. B 2019, 95, 401–418. [Google Scholar] [CrossRef] [Green Version]
- Panjan, M. Stolbur virus. Zaštita Bilja 1957, 5, 51–54. [Google Scholar]
- Panjan, M.; Šarić, A.; Wrischer, M. Mycoplasmaähnliche gebilde in tomatenpflanzen nach infektion mit kartoffel gelbsucht. Phytopatologische Z. 1970, 69, 31–35. [Google Scholar] [CrossRef]
- Cvjetković, B. Decay of pears in Dalmatia. Biljn. Žaštita 1976, 3, 104–105. [Google Scholar]
- Šarić, A.; Cvjetković, B. Mycoplasma-like organism associated with apple proliferation and pear decline—Like disease of pearse. Agric. Conspetus Sci. 1985, 68, 61–65. [Google Scholar]
- Šarić, A.; Škorić, D.; Bertaccini, A.; Vibio, M.; Murari, E. Molecular detection of phytoplasmas infecting grapevines in Slovenia and Croatia. In Proceedings of the 12th Meeting ICVG, Lisbon, Portugal, 28 September–2 October 1997; de Sequeira, O.A., Sequeira, J.C., Santos, M.T., Eds.; Oficina Grafica da Secretatia General do Ministerio da Agricultura: Oeiras, Portugal, 1997; pp. 77–78. [Google Scholar]
- Škorić, D.; Šarić, A.; Vibio, M.; Murari, E.; Krajačić, M.; Bertaccini, A. Molecular identification and seasonal monitoring of phytoplasmas infecting Croatian grapevines. Vitis 1998, 37, 171–175. [Google Scholar] [CrossRef]
- Šeruga, M.; Ćurković-Perica, M.; Škorić, D.; Kozina, B.; Mirošević, N.; Šarić, A.; Bertaccini, A.; Krajačić, M. Geographical Distribution of Bois Noir Phytoplasmas Infecting Grapevines in Croatia. J. Phytopathol. 2000, 148, 239–242. [Google Scholar] [CrossRef]
- Šeruga Musić, M.; Pušić, P.; Fabre, A.; Škorić, D.; Foissac, X. Variability of stolbur phytoplasma strains infecting croatian grapevine by multilocus sequence typing. Bull. Insectology 2011, 64, 2010–2012. [Google Scholar]
- Plavec, J. Molecular Epidemiology of Grapevine Phytoplasma Pathosystems: Multilocus Sequence Typing Approach. Ph.D. Thesis, University of Zagreb, Zagreb, Croatia, 2015. [Google Scholar]
- Plavec, J.; Križanac, I.; Budinšćak, Ž.; Škorić, D.; Šeruga Musić, M. A case study of FD and BN phytoplasma variability in Croatia: Multigene sequence analysis approach. Eur. J. Plant Pathol. 2015, 142, 591–601. [Google Scholar] [CrossRef]
- Plavec, J.; Budinšćak, Ž.; Križanac, I.; Škorić, D.; Šeruga Musić, M. Stamp gene as the highly discriminative marker for assessment of BN variability in Croatia. Mitt. Klosterneubg. 2016, 66, 46–49. [Google Scholar]
- Plavec, J.; Budinšćak, Ž.; Križanac, I.; Ivančan, G.; Samaržija, I.; Škorić, D.; Foissac, X.; Šeruga Musić, M. Genetic diversity of ‘Candidatus Phytoplasma solani’ strains associated with “Bois Noir” disease in Croatian vineyards. In Proceedings of the 5th European Bois Noir Workshop, Ljubljana, Slovenia, 18–19 September 2018. [Google Scholar]
- Šeruga Musić, M.; Škorić, D.; Haluška, I.; Križanac, I.; Plavec, J.; Mikec, I. First Report of Flavescence Dorée-Related Phytoplasma Affecting Grapevines in Croatia. Plant Dis. 2011, 95, 353. [Google Scholar] [CrossRef] [PubMed]
- Plavec, J.; Budinšćak, Ž.; Križanac, I.; Škorić, D.; Foissac, X.; Šeruga Musić, M. Multilocus sequence typing reveals the presence of three distinct flavescence dorée phytoplasma genetic clusters in Croatian vineyards. Plant Pathol. 2019, 68, 18–30. [Google Scholar] [CrossRef]
- Križanac, I.; Mikec, I.; Budinščak, Ž.; Šeruga Musić, M.; Škorić, D. Diversity of Phytoplasmas Infecting Fruit Trees and Their Vectors in Croatia. J. Plant Dis. Prot. 2010, 117, 206–213. [Google Scholar] [CrossRef]
- Križanac, I.; Plavec, J.; Budinšćak; Ivić, D.; Škorić, D.; Šeruga Musić, M. Apple proliferation disease in croatian orchards: A molecular characterization of ‘Candidatus phytoplasma mali’. J. Plant Pathol. 2017, 99, 95–101. [Google Scholar] [CrossRef]
- Križanac, I. Molecular Epidemiology and Multigene Typing of ‘Candidatus Phytoplasma mali’ in Croatia. Ph.D. Thesis, University of Zagreb, Zagreb, Croatia, 2017. [Google Scholar]
- Mikec, I.; Križanac, I.; Budinščak, Ž.; Šeruga Musić, M.; Krajačić, M.; Škorić, D. Phytoplasmas and their potential vectors in vineyards of indigenous Croatian varieties. In Proceedings of the Extended Abstracts 15th Meeting ICVG, Stellenbosch, South Africa, 3–7 April 2006; South African Society for Enology and Viticulture: Stellenbosch, South Africa, 2006; pp. 255–257. [Google Scholar]
- Šeruga, M.; Škorić, D.; Botti, S.; Paltrinieri, S.; Juretić, N.; Bertaccini, A.F.; Juretic, N.; Bertaccini, A.F. Molecular characterization of a phytoplasma from the aster yellows (16SrI) group naturally infecting Populus nigra L. “Italica” trees in Croatia. For. Ecol. Manag. 2003, 33, 113–125. [Google Scholar] [CrossRef]
- Ježić, M.; Poljak, I.; Šafarić, B.; Idžojtić, M.; Ćurković-Perica, M. ‘Candidatus Phytoplasma pini’ in pine species in Croatia. J. Plant Dis. Prot. 2013, 120, 160–163. [Google Scholar] [CrossRef]
- Katanić, Z.; Krstin, L.; Ježić, M.; Zebec, M.; Ćurković-Perica, M. Molecular characterization of elm yellows phytoplasmas in Croatia and their impact on Ulmus spp. Plant Pathol. 2016, 65, 1430–1440. [Google Scholar] [CrossRef]
- Drčelić, M.; Jović, J.; Krstić, O.; Toševski, I.; Cvrković, T.; Ivančan, G.; Šeruga Musić, M. Phytoplasma ribosomal subgroup 16SrIX-C—A newly described phytoplasma species in Croatia. In Proceedings of the World Microbe Forum Online, Worldwide, 20–24 June 2021. [Google Scholar]
- Pecman, A.; Kutnjak, D.; Gutiérrez-Aguirre, I.; Adams, I.; Fox, A.; Boonham, N.; Ravnikar, M. Next Generation Sequencing for Detection and Discovery of Plant Viruses and Viroids: Comparison of Two Approaches. Front. Microbiol. 2017, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Valiunas, D.; Jomantiene, R.; Ivanauskas, A.; Sneideris, D.; Zizyte-Eidetiene, M.; Shao, J.; Yan, Z.; Costanzo, S.; Davis, R.E. Rapid detection and identification of ‘ Candidatus Phytoplasma pini’-related strains based on genomic markers present in 16S rRNA and tuf genes. For. Pathol. 2019, 49, e12553. [Google Scholar] [CrossRef]
- Hogenhout, S.A.; Šeruga Musić, M. Phytoplasma genomics, from sequencing to comparative and functional genomics—What have we learnt. In Phytoplasmas—Genomes, Plant Hosts and Vectors; Weintraub, P.G., Jones, P., Eds.; CABI: Wallingford, UK, 2010; pp. 19–36. [Google Scholar]
- Šeruga Musić, M.; Samaržija, I.; Hogenhout, S.A.; Haryono, M.; Cho, S.-T.; Kuo, C.-H. The genome of ‘Candidatus Phytoplasma solani’ strain SA-1 is highly dynamic and prone to adopting foreign sequences. Syst. Appl. Microbiol. 2019, 42, 117–127. [Google Scholar] [CrossRef]
- Cho, S.-T.; Kung, H.-J.; Huang, W.; Hogenhout, S.A.; Kuo, C.-H. Species Boundaries and Molecular Markers for the Classification of 16SrI Phytoplasmas Inferred by Genome Analysis. Front. Microbiol. 2020, 11, 1531. [Google Scholar] [CrossRef] [PubMed]
- Samaržija, I.; Šeruga Musić, M. Phylogenetic analyses of phytoplasma replisome proteins demonstrate their distinct and complex evolutionary history. Phytopathogenic Mollicutes 2019, 9, 227–228. [Google Scholar] [CrossRef]
- Šeruga Musić, M.; Duc Nguyen, H.; Černi, S.; Mamula, Đ.; Ohshima, K.; Škorić, D. Multilocus sequence analysis of ‘Candidatus Phytoplasma asteris’ strain and the genome analysis of Turnip mosaic virus co-infecting oilseed rape. J. Appl. Microbiol. 2014, 117, 774–785. [Google Scholar] [CrossRef]
- Kawakubo, S.; Gao, F.; Li, S.; Tan, Z.; Huang, Y.-K.; Adkar-Purushothama, C.R.; Gurikar, C.; Maneechoat, P.; Chiemsombat, P.; Aye, S.S.; et al. Genomic analysis of the brassica pathogen turnip mosaic potyvirus reveals its spread along the former trade routes of the Silk Road. Proc. Natl. Acad. Sci. USA 2021, 118, e2021221118. [Google Scholar] [CrossRef]
- Massart, S.; Candresse, T.; Gil, J.; Lacomme, C.; Predajna, L.; Ravnikar, M.; Reynard, J.-S.; Rumbou, A.; Saldarelli, P.; Škorić, D.; et al. A Framework for the Evaluation of Biosecurity, Commercial, Regulatory, and Scientific Impacts of Plant Viruses and Viroids Identified by NGS Technologies. Front. Microbiol. 2017, 8, 45. [Google Scholar] [CrossRef] [Green Version]
- Bačnik, K.; Kutnjak, D.; Černi, S.; Bielen, A.; Hudina, S. Virome analysis of signal crayfish (Pacifastacus leniusculus) along its invasion range reveals diverse and divergent RNA viruses. Viruses. 2021, 13, 2259. [Google Scholar] [CrossRef]
- Škorić, D.; Šeruga Musić, M.; Černi, S.; Massart, S. The first finding of Coleus vein necrosis virus in Europe. In Proceedings of the Power of Viruses Book of Abstracts, Poreč, Croatia, 16–18 May 2018; Bielen, A., Ježić, M., Jurak, I., Škorić, D., Tomaić, V., Eds.; Croatian Microbiological Society: Zagreb, Croatia, 2018; p. 97. [Google Scholar]
- Fox, A.; Mumford, R.A. Plant viruses and viroids in the United Kingdom: An analysis of first detections and novel discoveries from 1980 to 2014. Virus Res. 2017, 241, 10–18. [Google Scholar] [CrossRef]
- Fraile, A.; Escriu, F.; Aranda, M.A.; Malpica, J.M.; Gibbs, A.J.; García-Arenal, F. A century of tobamovirus evolution in an Australian population of Nicotiana glauca. J. Virol. 1997, 71, 8316–8320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammond, J.; Adams, I.P.; Fowkes, A.R.; McGreig, S.; Botermans, M.; Oorspronk, J.J.A.; Westenberg, M.; Verbeek, M.; Dullemans, A.M.; Stijger, C.C.M.M.; et al. Sequence analysis of 43-year old samples of Plantago lanceolata show that Plantain virus X is synonymous with Actinidia virus X and is widely distributed. Plant Pathol. 2021, 70, 249–258. [Google Scholar] [CrossRef]
- Ingram, D.S. A case for conserving plant pathogens. Plant Pathol. 2021, ppa.13448. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Škorić, D.; Černi, S.; Ćurković-Perica, M.; Ježić, M.; Krajačić, M.; Šeruga Musić, M. Legacy of Plant Virology in Croatia—From Virus Identification to Molecular Epidemiology, Evolution, Genomics and Beyond. Viruses 2021, 13, 2339. https://doi.org/10.3390/v13122339
Škorić D, Černi S, Ćurković-Perica M, Ježić M, Krajačić M, Šeruga Musić M. Legacy of Plant Virology in Croatia—From Virus Identification to Molecular Epidemiology, Evolution, Genomics and Beyond. Viruses. 2021; 13(12):2339. https://doi.org/10.3390/v13122339
Chicago/Turabian StyleŠkorić, Dijana, Silvija Černi, Mirna Ćurković-Perica, Marin Ježić, Mladen Krajačić, and Martina Šeruga Musić. 2021. "Legacy of Plant Virology in Croatia—From Virus Identification to Molecular Epidemiology, Evolution, Genomics and Beyond" Viruses 13, no. 12: 2339. https://doi.org/10.3390/v13122339
APA StyleŠkorić, D., Černi, S., Ćurković-Perica, M., Ježić, M., Krajačić, M., & Šeruga Musić, M. (2021). Legacy of Plant Virology in Croatia—From Virus Identification to Molecular Epidemiology, Evolution, Genomics and Beyond. Viruses, 13(12), 2339. https://doi.org/10.3390/v13122339