Emerging Trends in the Epidemiology of COVID-19: The Croatian ‘One Health’ Perspective
Abstract
:1. Introduction
2. COVID-19 in Humans
3. COVID-19 in Pet Animals
4. COVID-19 in Wildlife
5. SARS-CoV-2 in the Environment
5.1. SARS-CoV-2 in Households with COVID-19 Cases
5.2. SARS-CoV-2 in Wastewater
6. SARS-CoV-2 Genetic Diversity in Croatia
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The Species Severe Acute Respiratory Syndrome-Related Coronavirus: Classifying 2019-NCoV and Naming It SARS-CoV-2. Nat. Microbiol. 2020, 5, 536–544. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cucinotta, D.; Vanelli, M. WHO Declares COVID-19 a Pandemic. Acta Biomed. 2020, 91, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef][Green Version]
- Rahman, H.S.; Aziz, M.S.; Hussein, R.H.; Othman, H.H.; Salih Omer, S.H.; Khalid, E.S.; Abdulrahman, N.A.; Amin, K.; Abdullah, R. The Transmission Modes and Sources of COVID-19: A Systematic Review. Int. J. Surg. Open 2020, 26, 125–136. [Google Scholar] [CrossRef]
- Zhang, L.; Shen, F.-M.; Chen, F.; Lin, Z. Origin and Evolution of the 2019 Novel Coronavirus. Clin. Infect. Dis. 2020, 71, 882–883. [Google Scholar] [CrossRef][Green Version]
- Jacob Machado, D.; Scott, R.; Guirales, S.; Janies, D.A. Fundamental Evolution of All Orthocoronavirinae Including Three Deadly Lineages Descendent from Chiroptera-Hosted Coronaviruses: SARS-CoV, MERS-CoV and SARS-CoV-2. Cladistics 2021, 37, 461–488. [Google Scholar] [CrossRef]
- Bonilla-Aldana, D.K.; García-Barco, A.; Jimenez-Diaz, S.D.; Bonilla-Aldana, J.L.; Cardona-Trujillo, M.C.; Muñoz-Lara, F.; Zambrano, L.I.; Salas-Matta, L.A.; Rodriguez-Morales, A.J. SARS-CoV-2 Natural Infection in Animals: A Systematic Review of Studies and Case Reports and Series. Vet. Q. 2021, 41, 250–267. [Google Scholar] [CrossRef] [PubMed]
- Dróżdż, M.; Krzyżek, P.; Dudek, B.; Makuch, S.; Janczura, A.; Paluch, E. Current State of Knowledge about Role of Pets in Zoonotic Transmission of SARS-CoV-2. Viruses 2021, 13, 1149. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Bellon, H.; Rodon, J.; Fernández-Bastit, L.; Almagro, V.; Padilla-Solé, P.; Lorca-Oró, C.; Valle, R.; Roca, N.; Grazioli, S.; Trogu, T.; et al. Monitoring Natural SARS-CoV-2 Infection in Lions (Panthera leo) at the Barcelona Zoo: Viral Dynamics and Host Responses. Viruses 2021, 13, 1683. [Google Scholar] [CrossRef]
- Coronavirus-Statistical Indicators for Croatia and EU. Available online: https://www.koronavirus.hr/en (accessed on 24 October 2021).
- Jerković, I.; Ljubić, T.; Bašić, Ž.; Kružić, I.; Kunac, N.; Bezić, J.; Vuko, A.; Markotić, A.; Anđelinović, Š. SARS-CoV-2 Antibody Seroprevalence in Industry Workers in Split-Dalmatia and Šibenik-Knin County, Croatia. J. Occup. Environ. Med. 2021, 63, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Vilibic-Cavlek, T.; Stevanovic, V.; Tabain, I.; Betica-Radic, L.; Sabadi, D.; Peric, L.; Bogdanic, M.; Vilibic, M.; Kolaric, B.; Kudumija, B.; et al. Severe Acute Respiratory Syndrome Coronavirus 2 Seroprevalence among Personnel in the Healthcare Facilities of Croatia, 2020. Rev. Soc. Bras. Med. Trop. 2020, 53, e20200458. [Google Scholar] [CrossRef]
- Lenicek Krleza, J.; Zrinski Topic, R.; Stevanovic, V.; Lukic-Grlic, A.; Tabain, I.; Misak, Z.; Roic, G.; Kaic, B.; Mayer, D.; Hruskar, Z.; et al. Seroprevalence of SARS-CoV-2 Infection among Children in Children’s Hospital Zagreb during the Initial and Second Wave of COVID-19 Pandemic in Croatia. Biochem. Med. 2021, 31, 020706. [Google Scholar] [CrossRef] [PubMed]
- Vilibić-Čavlek, T.; Stevanović, V.; Barbić, L.; Tabain, I.; Milašinčić, L.; Antolašić, L.; Hruškar, Ž.; Capak, K.; Mrzljak, A.; Leniček Krleža, J.; et al. Temporal trends of SARS-CoV-2 seroprevalence in Croatia. In Proceedings of the Symposium with International Participation-Veterinarski Dani, Vodice, Croatia, 26–29 October 2021; pp. 9–16. (In Croatian). [Google Scholar]
- Stevanovic, V.; Vilibic-Cavlek, T.; Tabain, I.; Benvin, I.; Kovac, S.; Hruskar, Z.; Mauric, M.; Milasincic, L.; Antolasic, L.; Skrinjaric, A.; et al. Seroprevalence of SARS-CoV-2 Infection among Pet Animals in Croatia and Potential Public Health Impact. Transbound. Emerg. Dis. 2021, 68, 1767–1773. [Google Scholar] [CrossRef] [PubMed]
- Vilibic-Cavlek, T.; Stevanovic, V.; Ilic, M.; Barbic, L.; Capak, K.; Tabain, I.; Krleza, J.L.; Ferenc, T.; Hruskar, Z.; Topic, R.Z.; et al. SARS-CoV-2 Seroprevalence and Neutralizing Antibody Response after the First and Second COVID-19 Pandemic Wave in Croatia. Pathogens 2021, 10, 774. [Google Scholar] [CrossRef] [PubMed]
- Mrzljak, A.; Jureković, Ž.; Pavičić-Šarić, J.; Stevanović, V.; Tabain, I.; Hruškar, Ž.; Mikulić, D.; Barbić, L.; Vilibić-Čavlek, T. Seroprevalence of SARS-CoV-2 in Croatian Solid-Organ Transplant Recipients. Biochem. Med. 2021, 31, 030901. [Google Scholar] [CrossRef]
- Wang, P.; Liu, L.; Nair, M.S.; Yin, M.T.; Luo, Y.; Wang, Q.; Yuan, T.; Mori, K.; Solis, A.G.; Yamashita, M.; et al. SARS-CoV-2 Neutralizing Antibody Responses Are More Robust in Patients with Severe Disease. Emerg. Microbes Infect. 2020, 9, 2091–2093. [Google Scholar] [CrossRef]
- Piccaluga, P.P.; Malerba, G.; Navari, M.; Diani, E.; Concia, E.; Gibellini, D. Cross-Immunization Against Respiratory Coronaviruses May Protect Children From SARS-CoV2: More Than a Simple Hypothesis? Front. Pediatr. 2021, 8, 595539. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.S.; Mytton, O.T.; Mullins, E.W.S.; Fowler, T.A.; Falconer, C.L.; Murphy, O.B.; Langenberg, C.; Jayatunga, W.J.P.; Eddy, D.H.; Nguyen-Van-Tam, J.S. SARS-CoV-2 (COVID-19): What Do We Know About Children? A Systematic Review. Clin. Infect. Dis. 2020, 71, 2469–2479. [Google Scholar] [CrossRef] [PubMed]
- Pauser, J.; Schwarz, C.; Morgan, J.; Jantsch, J.; Brem, M. SARS-CoV-2 Transmission during an Indoor Professional Sporting Event. Sci. Rep. 2021, 11, 20723. [Google Scholar] [CrossRef] [PubMed]
- Contreras, Z.; Ngo, V.; Pulido, M.; Washburn, F.; Meschyan, G.; Gluck, F.; Kuguru, K.; Reporter, R.; Curley, C.; Civen, R.; et al. Industry Sectors Highly Affected by Worksite Outbreaks of Coronavirus Disease, Los Angeles County, California, USA, 19 March–30 September 2020. Emerg. Infect. Dis. 2021, 27, 1769–1775. [Google Scholar] [CrossRef]
- Murti, M.; Achonu, C.; Smith, B.T.; Brown, K.A.; Kim, J.H.; Johnson, J.; Ravindran, S.; Buchan, S.A. COVID-19 Workplace Outbreaks by Industry Sector and Their Associated Household Transmission, Ontario, Canada, January to June 2020. J. Occup. Environ. Med. 2021, 63, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Bui, D.P.; McCaffrey, K.; Friedrichs, M.; LaCross, N.; Lewis, N.M.; Sage, K.; Barbeau, B.; Vilven, D.; Rose, C.; Braby, S.; et al. Racial and Ethnic Disparities Among COVID-19 Cases in Workplace Outbreaks by Industry Sector-Utah, 6 March–5 June 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1133–1138. [Google Scholar] [CrossRef] [PubMed]
- Rauber, C.; Tiwari-Heckler, S.; Pfeiffenberger, J.; Mehrabi, A.; Lund, F.; Gath, P.; Mieth, M.; Merle, U.; Rupp, C. SARS-CoV-2 Seroprevalence and Clinical Features of COVID-19 in a German Liver Transplant Recipient Cohort: A Prospective Serosurvey Study. Transplant. Proc. 2021, 53, 1112–1117. [Google Scholar] [CrossRef] [PubMed]
- Stevanovic, V.; Tabain, I.; Vilibic-Cavlek, T.; Mauric Maljkovic, M.; Benvin, I.; Hruskar, Z.; Kovac, S.; Smit, I.; Miletic, G.; Hadina, S.; et al. The Emergence of SARS-CoV-2 within the Dog Population in Croatia: Host Factors and Clinical Outcome. Viruses 2021, 13, 1430. [Google Scholar] [CrossRef]
- Abate, B.B.; Kassie, A.M.; Kassaw, M.W.; Aragie, T.G.; Masresha, S.A. Sex Difference in Coronavirus Disease (COVID-19): A Systematic Review and Meta-Analysis. BMJ Open 2020, 10, e040129. [Google Scholar] [CrossRef] [PubMed]
- Stall, N.M.; Wu, W.; Lapointe-Shaw, L.; Fisman, D.N.; Giannakeas, V.; Hillmer, M.P.; Rochon, P.A. Sex- and Age-Specific Differences in COVID-19 Testing, Cases, and Outcomes: A Population-Wide Study in Ontario, Canada. J. Am. Geriatr. Soc. 2020, 68, 2188–2191. [Google Scholar] [CrossRef]
- Lee, P.-I.; Hu, Y.-L.; Chen, P.-Y.; Huang, Y.-C.; Hsueh, P.-R. Are Children Less Susceptible to COVID-19? J. Microbiol. Immunol. Infect. 2020, 53, 371–372. [Google Scholar] [CrossRef]
- Laher, N.; Bocchinfuso, S.; Chidiac, M.; Doherty, C.; Persson, A.; Warren, E. The Biopsychosocial Impact of COVID-19 on Older Adults. Gerontol. Geriatr. Med. 2021, 7, 23337214211034274. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.A.; Talal, N. Sex Hormones and the Immune System--Part 2. Animal Data. Baillieres Clin. Rheumatol. 1990, 4, 13–31. [Google Scholar] [CrossRef]
- Kissick, H.T.; Sanda, M.G.; Dunn, L.K.; Pellegrini, K.L.; On, S.T.; Noel, J.K.; Arredouani, M.S. Androgens Alter T-Cell Immunity by Inhibiting T-Helper 1 Differentiation. Proc. Natl. Acad. Sci. USA 2014, 111, 9887–9892. [Google Scholar] [CrossRef][Green Version]
- Arredouani, M.S. New Insights into Androgenic Immune Regulation. Oncoimmunology 2014, 3, e954968. [Google Scholar] [CrossRef][Green Version]
- Wallis, L.J.; Range, F.; Müller, C.A.; Serisier, S.; Huber, L.; Zsó, V. Lifespan Development of Attentiveness in Domestic Dogs: Drawing Parallels with Humans. Front. Psychol. 2014, 5, 71. [Google Scholar] [CrossRef][Green Version]
- Patterson, E.I.; Elia, G.; Grassi, A.; Giordano, A.; Desario, C.; Medardo, M.; Smith, S.L.; Anderson, E.R.; Prince, T.; Patterson, G.T.; et al. Evidence of Exposure to SARS-CoV-2 in Cats and Dogs from Households in Italy. Nat. Commun. 2020, 11, 6231. [Google Scholar] [CrossRef]
- Jemeršić, L.; Lojkić, I.; Krešić, N.; Keros, T.; Zelenika, T.A.; Jurinović, L.; Skok, D.; Bata, I.; Boras, J.; Habrun, B.; et al. Investigating the Presence of SARS-CoV-2 in Free-Living and Captive Animals. Pathogens 2021, 10, 635. [Google Scholar] [CrossRef]
- Marcenac, P.; Park, G.W.; Duca, L.M.; Lewis, N.M.; Dietrich, E.A.; Barclay, L.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Rispens, J.; et al. Detection of SARS-CoV-2 on Surfaces in Households of Persons with COVID-19. Int. J. Environ. Res. Public Health 2021, 18, 8184. [Google Scholar] [CrossRef]
- Espinoza, E.P.S.; Cortes, M.F.; Noguera, S.V.; Paula, A.V.; de Guimarães, T.; Boas, L.S.V.; Park, M.; da Silva, C.C.; Morales, I.; Perdigão Neto, L.V.; et al. Are Mobile Phones Part of the Chain of Transmission of SARS-CoV-2 in Hospital Settings? Rev. Inst. Med. Trop. Sao Paulo 2021, 63, e74. [Google Scholar] [CrossRef]
- Fernandez-Cassi, X.; Scheidegger, A.; Bänziger, C.; Cariti, F.; Tuñas Corzon, A.; Ganesanandamoorthy, P.; Lemaitre, J.C.; Ort, C.; Julian, T.R.; Kohn, T. Wastewater Monitoring Outperforms Case Numbers as a Tool to Track COVID-19 Incidence Dynamics When Test Positivity Rates Are High. Water Res. 2021, 200, 117252. [Google Scholar] [CrossRef]
- Hovi, T.; Shulman, L.M.; van der Avoort, H.; Deshpande, J.; Roivainen, M.; DE Gourville, E.M. Role of Environmental Poliovirus Surveillance in Global Polio Eradication and Beyond. Epidemiol. Infect. 2012, 140, 1–13. [Google Scholar] [CrossRef][Green Version]
- Wu, Y.; Guo, C.; Tang, L.; Hong, Z.; Zhou, J.; Dong, X.; Yin, H.; Xiao, Q.; Tang, Y.; Qu, X.; et al. Prolonged Presence of SARS-CoV-2 Viral RNA in Faecal Samples. Lancet Gastroenterol. Hepatol. 2020, 5, 434–435. [Google Scholar] [CrossRef]
- Dergham, J.; Delerce, J.; Bedotto, M.; La Scola, B.; Moal, V. Isolation of Viable SARS-CoV-2 Virus from Feces of an Immunocompromised Patient Suggesting a Possible Fecal Mode of Transmission. J. Clin. Med. 2021, 10, 2696. [Google Scholar] [CrossRef]
- Ahmed, W.; Angel, N.; Edson, J.; Bibby, K.; Bivins, A.; O’Brien, J.W.; Choi, P.M.; Kitajima, M.; Simpson, S.L.; Li, J.; et al. First Confirmed Detection of SARS-CoV-2 in Untreated Wastewater in Australia: A Proof of Concept for the Wastewater Surveillance of COVID-19 in the Community. Sci. Total Environ. 2020, 728, 138764. [Google Scholar] [CrossRef] [PubMed]
- Medema, G.; Heijnen, L.; Elsinga, G.; Italiaander, R.; Brouwer, A. Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The Netherlands. Environ. Sci. Technol. Lett. 2020, 7, 511–516. [Google Scholar] [CrossRef]
- Agrawal, S.; Orschler, L.; Lackner, S. Long-Term Monitoring of SARS-CoV-2 RNA in Wastewater of the Frankfurt Metropolitan Area in Southern Germany. Sci. Rep. 2021, 11, 5372. [Google Scholar] [CrossRef]
- Graham, K.E.; Loeb, S.K.; Wolfe, M.K.; Catoe, D.; Sinnott-Armstrong, N.; Kim, S.; Yamahara, K.M.; Sassoubre, L.M.; Mendoza Grijalva, L.M.; Roldan-Hernandez, L.; et al. SARS-CoV-2 RNA in Wastewater Settled Solids Is Associated with COVID-19 Cases in a Large Urban Sewershed. Environ. Sci. Technol. 2020, 55, 488–498. [Google Scholar] [CrossRef] [PubMed]
- Bisseux, M.; Debroas, D.; Mirand, A.; Archimbaud, C.; Peigue-Lafeuille, H.; Bailly, J.-L.; Henquell, C. Monitoring of Enterovirus Diversity in Wastewater by Ultra-Deep Sequencing: An Effective Complementary Tool for Clinical Enterovirus Surveillance. Water Res. 2020, 169, 115246. [Google Scholar] [CrossRef]
- ECDC. Guidance for Representative and Targeted Genomic SARS-CoV-2 Monitoring. Available online: https://www.ecdc.europa.eu/en/publications-data/guidance-representative-and-targeted-genomic-sars-cov-2-monitoring (accessed on 24 October 2021).
- Wahid, M.; Jawed, A.; Mandal, R.K.; Dailah, H.G.; Janahi, E.M.; Dhama, K.; Somvanshi, P.; Haque, S. Variants of SARS-CoV-2, Their Effects on Infection, Transmission and Neutralization by Vaccine-Induced Antibodies. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 5857–5864. [Google Scholar] [CrossRef] [PubMed]
- Ferenčak, I.; Kuzle, J.; Mišić, A.; Stevanović, V.; Bekavac, B.; Hruškar, Ž.; Barbić, L.; Vilibić-Čavlek, T.; Tabain, I. SARS-CoV-2 in Croatia-genomic analysis of the third and fourth epidemic wave. In Proceedings of the 9th International Congress “Veterinary Science and Profession”, Zagreb, Croatia, 9 October 2021; p. 53. [Google Scholar]
- Ruckert, A.; Zinszer, K.; Zarowsky, C.; Labonté, R.; Carabin, H. What Role for One Health in the COVID-19 Pandemic? Can. J. Public Health 2020, 111, 641–644. [Google Scholar] [CrossRef]
Population Group | Sampling Time | N Tested | SARS-CoV-2 IgG ELISA | SARS-CoV-2 VNT | Reference | ||
---|---|---|---|---|---|---|---|
N (%) | 95% CI | N (%) | 95% CI | ||||
First pandemic wave | |||||||
Industry workers | April 2020 | 1494 | 19 (1.27) * | 0.77–1.98 | NT | NT | [12] |
Healthcare workers | April–May 2020 | 592 | 16 (2.7) | 1.5–4.3 | 9 (1.5) | 0.7–2.9 | [13] |
Children and adolescents | May 2020 | 240 | 9 (3.9) | 1.7–7.0 | 7 (2.9) | 1.2–5.9 | [14] |
Hemodialysis patients | May 2020 | 136 | 9 (6.6) | 3.1–12.1 | 0 (0) | 0–2.7 ** | [15] |
Veterinary personnel | May 2020 | 122 | 6 (4.9) | 1.8–10.4 | 0 (0) | 0–2.9 ** | [15,16] |
Construction workers | May–June 2020 | 135 | 4 (2.9) | 0.8–7.4 | 3 (2.2) | 0.4–6.4 | [15] |
General population | May–July 2020 | 1088 | 24 (2.2) | 1.4–3.2 | 2 (0.2) | 0.02–0.7 | [17] |
Professional athletes | June 2020 | 90 | 10 (11.1) | 5.5–19.5 | 5 (5.5) | 1.8–12.5 | [15] |
Second pandemic wave | |||||||
Liver transplant recipients | September–November 2020 | 280 | 59 (21.1) | 16.4–26.3 | 10 (3.6) | 1.7–6.5 | [18] |
Kidney transplant recipients | September–November 2020 | 232 | 44 (19.0) | 14.1–24.6 | 6 (2.6) | 0.9–5.5 | [18] |
Children and adolescents | October–November 2020 | 308 | 27 (8.8) | 5.0–12.5 | 26 (8.4) | 5.6–12.1 | [14] |
General population | December 2020–February 2021 | 1436 | 360 (25.1) | 22.8–27.4 | 268 (18.7) | 16.7–20.8 | [17] |
Veterinary personnel | March 2021 | 121 | 22 (18.2) | 11.8–26.2 | 11 (9.1) | 4.6–15.7 | [15,16] |
Population Group | SARS-CoV-2 IgG ELISA | SARS-CoV-2 VNT | ||||
---|---|---|---|---|---|---|
OR | 95% CI OR | p | OR | 95% CI OR | p | |
First pandemic wave | ||||||
General population | Ref. | Ref. | ||||
Industry workers * | 0.57 | 0.31–1.05 | 0.07 | NA | NA | NA |
Healthcare workers | 1.23 | 0.65–2.34 | 0.52 | 8.38 | 1.8–38.20 | 0.002 |
Children and adolescents | 1.73 | 0.79–3.76 | 0.16 | 16.31 | 3.37–79.30 | <0.001 |
Hemodialysis patients | 3.14 | 1.43–6.91 | 0.007 | 1.59 | 0.08–33.33 | 1.00 |
Veterinary personnel | 2.29 | 0.92–5.72 | 0.11 | 1.77 | 0.08–37.16 | 1.00 |
Construction workers | 1.35 | 0.46–3.96 | 0.54 | 12.34 | 2.04–74.53 | 0.01 |
Professional athletes | 5.54 | 2.56–11.99 | <0.001 | 31.94 | 6.11–167.09 | <0.001 |
Second pandemic wave | ||||||
General population | Ref. | Ref. | ||||
Liver transplant recipients | 0.80 | 0.58–1.09 | 0.15 | 0.16 | 0.08–0.31 | <0.001 |
Kidney transplant recipients | 0.70 | 0.49–0.99 | 0.04 | 0.12 | 0.05–0.26 | <0.001 |
Children and adolescents | 0.29 | 0.19–0.43 | <0.001 | 0.40 | 0.16–0.61 | <0.001 |
Veterinary personnel | 0.66 | 0.41–1.07 | 0.09 | 0.44 | 0.23–0.82 | 0.008 |
Sample Origin | SARS-CoV-2 IgG ELISA | OR | 95% CI OR | p | ||
---|---|---|---|---|---|---|
N Tested | N Positive (%) | 95% CI | ||||
Human | 458 | 94 (20.5) | 16.92–24.52 | Ref. | – | – |
Dog | 167 | 31 (18.6) | 12.97–25.30 | 0.88 | 0.56–1.39 | 0.59 |
Cat | 29 | 4 (13.8) | 3.89–31.66 | 0.62 | 0.21–1.82 | 0.38 |
Animal Species | Sampling Time | N Tested | SARS-CoV-2 IgG ELISA | SARS-CoV-2 sVNT | SARS-CoV-2 RT-PCR | ||
---|---|---|---|---|---|---|---|
N (%) | 95% CI | N (%) | 95% CI | N (%) | |||
Yellow-legged gulls (Larus michahellis) | November 2020 | 111 | 0 (0) | 0–3.3 * | 0 (0) | 0–3.3 * | 0 (0) |
Wild boars (Sus scrofa) | June–December 2020 | 153 | 6 (3.9) | 1.5–8.3% | 0 (0) | 0–2.4 * | 0 (0) |
Red foxes (Vulpes vulpes) | June–November 2020 | 204 | 6 (2.9) | 1.0–6.2 | 0 (0) | 0–1.8 * | 0 (0) |
Jackals (Canis aureus moreoticus) | June–October 2020 | 65 | 3 (4.6) | 0.9–12.9 | 0 (0) | 0–5.5 * | 0 (0) |
Sampling Location | High-Touch Personal Objects 1 | Room 2 | Toilet/Bathroom 3 | Kitchen 4 | Total | ||
---|---|---|---|---|---|---|---|
N Positive/N | N Positive/N | N Positive/N | N Positive/N | N Positive/N | % Positive | 95% CI | |
1 | 0/3 | 0/5 | 0/3 | - | 0/11 | 0 | 0–28.4 * |
2 | 0/2 | 1/1 | 1/4 | 1/4 | 3/11 | 27.2 | 6.0–60.1 |
3 | 0/3 | 0/3 | 0/5 | 0/3 | 0/14 | 0 | 0–25.2 * |
4 | 1/3 | 1/4 | 0/2 | 0/2 | 2/11 | 18.2 | 2.3–51.8 |
5 | 2/4 | 2/4 | 0/3 | 0/1 | 4/12 | 33.3 | 9.9–65.1 |
6 | 0/6 | 0/3 | 0/5 | - | 0/14 | 0 | 0–23.2 * |
7 | 0/4 | 0/3 | 1/3 | 0/1 | 1/11 | 9.1 | 2.3–49.3 |
8 | 0/2 | 2/2 | 0/1 | 1/3 | 3/8 | 37.5 | 8.5–75.5 |
9 | 0/2 | 0/4 | 0/2 | 0/1 | 0/9 | 0 | 0–33.6 * |
10 | 3/5 | 0/1 | 0/2 | 1/3 | 4/11 | 36.4 | 10.9–69.2 |
11 | 0/5 | 0/3 | 0/1 | - | 0/9 | 0 | 0–33.6 * |
12 | 0/4 | 0/2 | 0/3 | 0/3 | 0/12 | 0 | 0–26.5 * |
13 | 0/3 | 0/4 | 0/5 | 1/2 | 1/14 | 0 | 0–33.9 |
14 | 1/2 | 0/1 | 0/3 | 0/3 | 1/9 | 1.1 | 2.8–48.2 |
15 | 2/4 | 0/1 | 2/6 | 0/4 | 4/15 | 26.7 | 7.8–55.1 |
Total | 9/52 (17.3%) | 6/41 (14.6%) | 4/48 (8.3%) | 4/30 (13.3%) | 23/171 | 13.5 | 8.7–19.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilibic-Cavlek, T.; Stevanovic, V.; Brlek-Gorski, D.; Ferencak, I.; Ferenc, T.; Ujevic-Bosnjak, M.; Tabain, I.; Janev-Holcer, N.; Perkovic, I.; Anticevic, M.; Bekavac, B.; Kaic, B.; Mrzljak, A.; Ganjto, M.; Zmak, L.; Mauric Maljkovic, M.; Jelicic, P.; Bucic, L.; Barbic, L. Emerging Trends in the Epidemiology of COVID-19: The Croatian ‘One Health’ Perspective. Viruses 2021, 13, 2354. https://doi.org/10.3390/v13122354
Vilibic-Cavlek T, Stevanovic V, Brlek-Gorski D, Ferencak I, Ferenc T, Ujevic-Bosnjak M, Tabain I, Janev-Holcer N, Perkovic I, Anticevic M, Bekavac B, Kaic B, Mrzljak A, Ganjto M, Zmak L, Mauric Maljkovic M, Jelicic P, Bucic L, Barbic L. Emerging Trends in the Epidemiology of COVID-19: The Croatian ‘One Health’ Perspective. Viruses. 2021; 13(12):2354. https://doi.org/10.3390/v13122354
Chicago/Turabian StyleVilibic-Cavlek, Tatjana, Vladimir Stevanovic, Diana Brlek-Gorski, Ivana Ferencak, Thomas Ferenc, Magdalena Ujevic-Bosnjak, Irena Tabain, Natasa Janev-Holcer, Ivana Perkovic, Mario Anticevic, Barbara Bekavac, Bernard Kaic, Anna Mrzljak, Marin Ganjto, Ljiljana Zmak, Maja Mauric Maljkovic, Pavle Jelicic, Lovro Bucic, and Ljubo Barbic. 2021. "Emerging Trends in the Epidemiology of COVID-19: The Croatian ‘One Health’ Perspective" Viruses 13, no. 12: 2354. https://doi.org/10.3390/v13122354