Evaluation of Two Real-Time, TaqMan Reverse Transcription-PCR Assays for Detection of Rabies Virus in Circulating Variants from Argentina: Influence of Sequence Variation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. FAT
2.3. Viral RNA Extraction
2.4. RT-PCR and DNA Sequencing
2.5. Phylogenetic Analysis
2.6. LysGT1/β-Actin qRT-PCR
2.7. LN34 qRT-PCR
2.8. LysGT1 qRT-PCR Amplicon Sequencing and Alignment
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walker, P.J.; Siddell, S.G.; Lefkowitz, E.J.; Mushegian, A.R.; Dempsey, D.M.; Dutilh, B.E.; Harrach, B.; Harrison, R.L.; Hendrickson, R.C.; Junglen, S.; et al. Changes to virus taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2019). Arch. Virol. 2019, 164, 2417–2429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourhy, H.; Kissi, B.; Tordo, N. Molecular diversity of the lyssavirus genus. Virology 1993, 194, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Bourhy, H.; Kissi, B.; Lafon, M.; Sacramento, D.; Tordo, N. Antigenic and molecular characterization of bat rabies virus in Europe. J. Clin. Microbiol. 1992, 30, 2419–2426. [Google Scholar] [CrossRef] [Green Version]
- Badrane, H.; Bahloul, C.; Perrin, P.; Tordo, N. Evidence of two lyssavirus phylogroups with distinct pathogenicity and immunogenicity. J. Virol. 2001, 75, 3268–3276. [Google Scholar] [CrossRef] [Green Version]
- Nadin-Davis, S.; Abdel-Malik, M.; Armstrong, J.; Wandeler, A. Lyssavirus P Gene characterisation provides insights into the phylogeny of the genus and identifies structural similarities and diversity within the encoded phosphoprotein. Virology 2002, 298, 286–305. [Google Scholar] [CrossRef] [Green Version]
- Fooks, A. The challenge of new and emerging lyssaviruses. Expert Rev. Vaccines 2004, 3, 333–336. [Google Scholar] [CrossRef] [Green Version]
- Gunawardena, P.S.; Marston, D.A.; Ellis, R.J.; Wise, E.L.; Karawita, A.C.; Breed, A.C.; McElhinney, L.M.; Johnson, N.; Banyard, A.C.; Fooks, A.A. Lyssavirus in Indian flying foxes, Sri Lanka. Emerg. Infect. Dis. 2016, 22, 1456–1459. [Google Scholar] [CrossRef]
- Kwan, N.C.; Ogawa, H.; Yamada, A.; Sugiura, K. Quantitative risk assessment of the introduction of rabies into Japan through the illegal landing of dogs from Russian fishing boats in the ports of Hokkaido, Japan. Prev. Veter-Med. 2016, 128, 112–123. [Google Scholar] [CrossRef]
- Rupprecht, C.; Kuzmin, I.; Meslin, F. Lyssaviruses and rabies: Current conundrums, concerns, contradictions and controversies. F1000Research 2017, 6, 184. [Google Scholar] [CrossRef]
- Cisterna, D.M.; Bonaventura, R.; Caillou, S.; Pozo, O.; Andreau, M.L.; Fontana, L.D.; Echegoyen, C.; De Mattos, C.; De Mattos, C.; Russo, S.; et al. Antigenic and molecular characterization of rabies virus in Argentina. Virus Res. 2005, 109, 139–147. [Google Scholar] [CrossRef]
- Amarilla, A.C.F.; Pompei, J.C.A.; Araujo, D.B.; Vázquez, F.A.; Galeano, R.R.; Delgado, L.M.; Bogado, G.; Colman, M.; Sanabria, L.; Iamamoto, K.; et al. Re-emergence of rabies virus maintained by canid populations in Paraguay. Zoonoses Public Health 2017, 65, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Piñero, C.; Dohmen, F.G.; Beltran, F.; Martinez, L.; Novaro, L.; Russo, S.; Palacios, G.; Cisterna, D.M. High diversity of rabies viruses associated with insectivorous bats in Argentina: Presence of several independent enzootics. PLoS Negl. Trop. Dis. 2012, 6, e1635. [Google Scholar] [CrossRef] [PubMed]
- Delpietro, H.A.; Russo, R.G. Ecological and epidemiologic aspects of the attacks by vampire bats and paralytic rabies in Argentina and analysis of the proposals carried out for their control. Rev. Sci. Tech. OIE 1996, 15, 971–984. [Google Scholar] [CrossRef]
- Delpietro, H.A.; Gury-Dhomen, F.; Larghi, O.P.; Mena-Segura, C.; Abramo, L. Monoclonal antibody characterization of rabies virus strains isolated in the river plate basin. J. Veter-Med. Ser. B 1997, 44, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Torres, C.; Lema, C.; Dohmen, F.G.; Beltrán, F.; Novaro, L.; Russo, S.; Freire, M.C.; Velasco-Villa, A.; Mbayed, V.A.; Cisterna, D.M. Phylodynamics of vampire bat-transmitted rabies in Argentina. Mol. Ecol. 2014, 23, 2340–2352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. WHO Expert Consultation on Rabies: Third Report; World Health Organization: Geneva, Switzerland, 2018; ISBN 9789241210218. [Google Scholar]
- World Organization for Animal Health (OIE). Rabies (infection with rabies virus and other lyssaviruses). In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2019; World Organisation for Animal Health: Paris, France, 2018; pp. 578–612. [Google Scholar]
- Fooks, A.R.; Johnson, N.; Freuling, C.M.; Wakeley, P.R.; Banyard, A.C.; McElhinney, L.M.; Müller, T. Emerging technologies for the detection of rabies virus: Challenges and hopes in the 21st century. PLoS Negl. Trop. Dis. 2009, 3. [Google Scholar] [CrossRef] [Green Version]
- David, D.; Yakobson, B.; Rotenberg, D.; Dveres, N.; Davidson, I.; Stram, Y. Rabies virus detection by RT-PCR in decomposed naturally infected brains. Vet. Microbiol. 2002, 87, 111–118. [Google Scholar] [CrossRef]
- Beltran, F.J.; Dohmen, F.G.; Del Pietro, H.; Cisterna, D.M. Diagnosis and molecular typing of rabies virus in samples stored in inadequate conditions. J. Infect. Dev. Ctries. 2014, 8, 1016–1021. [Google Scholar] [CrossRef]
- Hughes, G.J.; Smith, J.S.; Hanlon, C.A.; Rupprecht, C.E. Evaluation of a TaqMan PCR assay to detect rabies virus RNA: Influence of sequence variation and application to quantification of viral loads. J. Clin. Microbiol. 2004, 42, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Picard-Meyer, E.; De Garam, C.P.; Schereffer, J.L.; Robardet, E.; Cliquet, F. Evaluation of six TaqMan RT-rtPCR kits on two thermocyclers for the reliable detection of rabies virus RNA. J. Veter-Diagn. Investig. 2018, 31, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Wakeley, P.R.; Johnson, N.; McElhinney, L.M.; Marston, D.; Sawyer, J.; Fooks, A.R. Development of a real-time, TaqMan reverse transcription-PCR assay for detection and differentiation of lyssavirus genotypes 1, 5, and 6. J. Clin. Microbiol. 2005, 43, 2786–2792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayman, D.; Banyard, A.C.; Wakeley, P.R.; Harkess, G.; Marston, D.; Wood, J.L.; Cunningham, A.A.; Fooks, A.R. A universal real-time assay for the detection of Lyssaviruses. J. Virol. Methods 2011, 177, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Wadhwa, A.; Wilkins, K.; Gao, J.; Condori, R.E.C.; Gigante, C.M.; Zhao, H.; Ma, X.; Ellison, J.A.; Greenberg, L.; Velasco-Villa, A.; et al. A pan-lyssavirus taqman real-time RT-PCR assay for the detection of highly variable rabies virus and other lyssaviruses. PLoS Negl. Trop. Dis. 2017, 11, e0005258. [Google Scholar] [CrossRef] [PubMed]
- Gigante, C.M.; Dettinger, L.; Powell, J.W.; Seiders, M.; Condori, R.E.C.; Griesser, R.; Okogi, K.; Carlos, M.; Pesko, K.; Breckenridge, M.; et al. Multi-site evaluation of the LN34 pan-lyssavirus real-time RT-PCR assay for post-mortem rabies diagnostics. PLoS ONE 2018, 13, e0197074. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Laboratory Techniques in Rabies, 5th ed.; Rupprecht, C.E., Fooks, A.R., Abela-Ridder, B., Eds.; World Health Organization: Geneva, Switzerland, 2019; Volume 2. [Google Scholar]
- Orciari, L.A.; Niezgoda, M.; Hanlon, C.A.; Shaddock, J.H.; Sanderlin, D.W.; Yager, P.A.; Rupprecht, C.E. Rapid clearance of SAG-2 rabies virus from dogs after oral vaccination. Vaccine 2001, 19, 4511–4518. [Google Scholar] [CrossRef]
- Sievers, F.; Higgins, D.G. Clustal Omega, accurate alignment of very large numbers of sequences. In Multiple Sequence Alignment Methods; Springer: Berlin, Germany, 2013; Volume 1079, pp. 105–116. [Google Scholar]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES science gateway for inference of large phylogenetic trees. In Proceedings of the 2010 Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- Nylander, J. Mr Modeltest 2.2. Program Distributed by the Author. Uppsala Evolutionary Biology Centre, Uppsala University. Available online: https://github.com/nylander/MrModeltest2 (accessed on 18 November 2020).
- Letunic, I.; Bork, P. Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016, 44, W242–W245. [Google Scholar] [CrossRef]
- Rambaut, A. Fig Tree v. 1.4.4. 2018. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 2 December 2011).
- LN34 Pan-Lyssavirus Real-Time RT-PCR for Post-Mortem Diagnosis Of rabies in Animals. Available online: https://www.protocols.io/view/ln34-pan-lyssavirus-real-time-rt-pcr-for-post-mort-n4tdgwn. (accessed on 18 November 2020).
- Smith, J.S. Rabies virus. In Manual of Clinical Microbiology; Ballows, A., Baron, E.S., Pfaller, M.A., Tenover, F.C., Yolken, R.H., Murray, P.R., Eds.; American Society for Microbiology Press: Washington, WA, USA, 1995; pp. 997–1003. [Google Scholar]
- Süss, B.; Flekna, G.; Wagner, M.; Hein, I. Studying the effect of single mismatches in primer and probe binding regions on amplification curves and quantification in real-time PCR. J. Microbiol. Methods 2009, 76, 316–319. [Google Scholar] [CrossRef]
- Klungthong, C.; Chinnawirotpisan, P.; Hussem, K.; Phonpakobsin, T.; Manasatienkij, W.; Ajariyakhajorn, C.; Rungrojcharoenkit, K.; Gibbons, R.V.; Jarman, R.G. The impact of primer and probe-template mismatches on the sensitivity of pandemic influenza A/H1N1/2009 virus detection by real-time RT-PCR. J. Clin. Virol. 2010, 48, 91–95. [Google Scholar] [CrossRef]
- Condori, R.; Niezgoda, M.; Lopez, G.; Matos, C.A.; Mateo, E.D.; Gigante, C.; Hartloge, C.; Filpo, A.P.; Haim, J.; Satheshkumar, P.S.; et al. Using the LN34 pan-lyssavirus real-time RT-PCR assay for rabies diagnosis and rapid genetic typing from formalin-fixed human brain tissue. Viruses 2020, 12, 120. [Google Scholar] [CrossRef] [Green Version]
qRT-PCR (Ct) | Mismatches | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample ID | Year | Organism | Province | Locality | Latitude | Longitude | FAT | RT-PCR | LN34 | LysGT1 | β-actin | Variant | JW12 | LysGT1 | N165-146 | Total |
1072 | 2018 | Horse | Córdoba | La Calera | −31.35 | −64.34 | Negative | Positive | 28 | - | 25 | V3A | NS | - | ||
1073 | 2018 | Horse | Córdoba | La Calera | −31.35 | −64.34 | Negative | Positive | 29 | - | 24 | V3A | NS | - | ||
1074 | 2018 | Vampire bat | Córdoba | Unknown (Colón) * | - | - | Negative | Positive | 18 | - | 25 | V3A | NS | - | ||
1077 | 2018 | Horse | Córdoba | La Calera | −31.35 | −64.34 | Negative | Positive | 22 | - | 22 | V3A | NS | - | ||
1079 | 2018 | Bovine | Córdoba | Ambul | −31.49 | −65.06 | Positive | Positive | 24 | - | 29 | V3A | NS | - | ||
323 | 2019 | Bovine | Tucumán | Ticucho | −26.52 | −65.25 | Positive | Positive | 26 | - | 25 | V3A | 0 | 3 | 1 | 4 |
801 | 2019 | Bovine | Córdoba | Santa María | −31.68 | −64.31 | Positive | Positive | 27 | - | 24 | V3A | 0 | 3 | 1 | 4 |
840 | 2019 | Bovine | Salta | Rosario de la Frontera | −25.80 | −64.97 | Positive | Positive | 26 | - | 25 | V3A | 0 | 3 | 1 | 4 |
916 | 2019 | Bovine | Córdoba | Calamuchita | −32.08 | −64.55 | Positive | Positive | 26 | - | 21 | V3A | 0 | 3 | 1 | 4 |
973 | 2019 | Horse | Córdoba | Santa María | −31.72 | −64.18 | Positive | Positive | 37 | - | 25 | V3A | NS | - | ||
975 | 2019 | Bovine | Córdoba | Santa María | −31.85 | −64.08 | Positive | Positive | 27 | - | 27 | V3A | 0 | 3 | 1 | 4 |
1131 | 2019 | Bovine | San Luis | Junín | −32.20 | −65.32 | Positive | Positive | 24 | - | 22 | V3A | NS | - | ||
1145 | 2019 | Bovine | Córdoba | Córdoba Capital | −31.40 | −64.22 | Positive | Positive | 24 | - | 23 | V3A | 0 | 3 | 1 | 4 |
1178 | 2019 | Bovine | Formosa | Estanislao del Campo | −25.06 | −60.08 | Positive | Positive | 20 | - | 25 | V3A | 0 | 3 | 1 | 4 |
1322 | 2019 | Bovine | San Luis | Santa Rosa de Conlara | −32.35 | −65.21 | Positive | Positive | 27 | - | 25 | V3A | NS | - | ||
1326 | 2019 | Bovine | Córdoba | La Patria | −31.52 | −65.50 | Positive | Positive | 32 | - | 26 | V3A | NS | - | ||
1327 | 2019 | Bovine | Córdoba | Villa Dolores | −31.94 | −65.21 | Positive | Positive | 28 | - | 28 | V3A | 0 | 3 | 1 | 4 |
1368 | 2019 | Bovine | Salta | La Candelaria | −26.13 | −65.05 | Positive | Positive | 28 | - | 26 | V3A | 0 | 3 | 1 | 4 |
286 | 2020 | Bovine | Córdoba | Tilquicho | −32.17 | −65.23 | Positive | Positive | 23 | - | 24 | V3A | 0 | 3 | 1 | 4 |
1173 | 2019 | Bovine | Formosa | Mariano Boedo | −26.11 | −58.49 | Positive | Positive | 15 | 13 | 21 | V3 | 0 | 1 | 1 | 2 |
1174 | 2019 | Bovine | Formosa | Misión Laishi | −26.24 | −58.62 | Positive | Positive | 17 | 13 | 20 | V3 | 0 | 1 | 1 | 2 |
1175 | 2019 | Bovine | Formosa | Pirané | −25.73 | −59.09 | Positive | Positive | 18 | 14 | 20 | V3 | 0 | 1 | 1 | 2 |
1179 | 2019 | Bovine | Formosa | Salvación | −25.29 | −58.11 | Positive | Positive | 16 | 12 | 20 | V3 | 0 | 1 | 1 | 2 |
1180 | 2019 | Bovine | Chaco | Gral. San Martín | −26.54 | −59.36 | Positive | Positive | 17 | 14 | 23 | V3 | 0 | 1 | 1 | 2 |
1181 | 2019 | Bovine | Formosa | El Salado | −25.15 | −59.39 | Positive | Positive | 24 | 18 | 23 | V3 | 0 | 1 | 1 | 2 |
107 | 2020 | Bovine | Santiago del Estero | Pozo Hondo | −27.17 | −64.49 | Positive | Positive | 29 | 22 | 24 | V3 | 0 | 1 | 1 | 2 |
qRT-PCR (Ct) | Mismatches | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample ID | Year | Organism | Province | Locality | Latitude | Longitude | FAT | RT-PCR | LN34 | LysGT1 | β-actin | Variant | JW12 | LysGT1 | N165-146 | Total |
588 | 2018 | Dog | Salta | Salvador Mazza | −22.05 | −63.69 | Negative | Positive | 25 | 19 | 25 | V1 | 0 | 1 | 0 | 1 |
713 | 2018 | Dog | Salta | Salvador Mazza | −22.05 | −63.69 | Positive | Positive | 26 | 22 | 21 | V1 | NA | - | ||
848 | 2018 | Dog | Salta | Salvador Mazza | −22.07 | −63.69 | Positive | Positive | 22 | 18 | 23 | V1 | 0 | 1 | 0 | 1 |
1182 | 2019 | Dog | Formosa | Colonia El Bañadero | −26.19 | −59.36 | Positive | Positive | 22 | 20 | 23 | V2 | NA | - | ||
1183 | 2019 | Dog | Formosa | Colonia El Bañadero | −26.18 | −59.37 | Positive | Positive | 22 | 20 | 29 | V2 | 0 | 1 | 0 | 1 |
1287 | 2018 | Bat | Neuquén | Neuquén | −38.97 | −68.10 | Positive | Positive | 21 | 21 | 18 | V4 * | 0 | 0 | 2 | 2 |
1291 | 2018 | Bat | Córdoba | Río Cuarto | −33.12 | −64.35 | Positive | Positive | 21 | 15 | 24 | V4 ** | 0 | 0 | 1 | 1 |
1304 | 2018 | Bat | La Pampa | Santa Rosa | −37.10 | −65.67 | Positive | Positive | 19 | 14 | 21 | V4 ** | 0 | 0 | 1 | 1 |
978 | 2019 | Bat | La Rioja | La Rioja | −29.41 | −66.85 | Positive | Positive | 22 | 19 | 22 | V4 ** | 0 | 0 | 1 | 1 |
201 | 2018 | Bat | La Pampa | Santa Rosa | −36.60 | −64.34 | Negative | Positive | 25 | - | 21 | V6 * | 0 | 2 | 1 | 3 |
974 | 2019 | Bat | Córdoba | Córdoba Capital | −31.42 | −64.19 | Positive | Positive | 27 | - | 24 | V6 ** | 0 | 2 | 1 | 3 |
442 | 2018 | Bat | Buenos Aires | San Miguel del Monte | −35.44 | −58.81 | Positive | Positive | 22 | - | 20 | Myotis * | 0 | 2 | 2 | 4 |
622 | 2018 | Bat | Río Negro | Viedma | −40.81 | −63.00 | Positive | Positive | 21 | - | 22 | Myotis ** | 0 | 3 | 2 | 5 |
29 | 2020 | Bat | Río Negro | Choele Choel | −39.29 | −65.66 | Positive | Positive | 20 | - | 20 | Myotis *** | 0 | 3 | 2 | 5 |
26 | 2020 | Bat | Neuquén | Junín de los Andes | −39.95 | −71.07 | Positive | Positive | 24 | 18 | 26 | Histiotus * | 0 | 0 | 1 | 1 |
141 | 2020 | Bat | Río Negro | Bariloche | −41.13 | −71.31 | Positive | Positive | 22 | 17 | 19 | Histiotus ** | 0 | 0 | 1 | 1 |
175 | 2018 | Bat | La Pampa | Santa Rosa | −36.62 | −64.29 | Negative | Positive | 39 | - | 23 | Eptesicus | NA | - | ||
1172 | 2019 | Bat | Chaco | Castelli | −25.95 | −60.62 | Positive | Positive | 24 | 19 | 23 | Eptesicus | 0 | 1 | 1 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caraballo, D.A.; Lombardo, M.A.; Becker, P.; Sabio, M.S.; Lema, C.; Martínez, L.M.; Beltrán, F.J.; Li, Y.; Cisterna, D.M. Evaluation of Two Real-Time, TaqMan Reverse Transcription-PCR Assays for Detection of Rabies Virus in Circulating Variants from Argentina: Influence of Sequence Variation. Viruses 2021, 13, 23. https://doi.org/10.3390/v13010023
Caraballo DA, Lombardo MA, Becker P, Sabio MS, Lema C, Martínez LM, Beltrán FJ, Li Y, Cisterna DM. Evaluation of Two Real-Time, TaqMan Reverse Transcription-PCR Assays for Detection of Rabies Virus in Circulating Variants from Argentina: Influence of Sequence Variation. Viruses. 2021; 13(1):23. https://doi.org/10.3390/v13010023
Chicago/Turabian StyleCaraballo, Diego A., María A. Lombardo, Paula Becker, María S. Sabio, Cristina Lema, Leila M. Martínez, Fernando J. Beltrán, Yu Li, and Daniel M. Cisterna. 2021. "Evaluation of Two Real-Time, TaqMan Reverse Transcription-PCR Assays for Detection of Rabies Virus in Circulating Variants from Argentina: Influence of Sequence Variation" Viruses 13, no. 1: 23. https://doi.org/10.3390/v13010023