Molecular Characterization of Hovenia Dulcis-Associated Virus 1 (HDaV1) and 2 (HDaV2): New Tentative Species within the Order Picornavirales
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material
2.2. Enrichment of Viral Particles
2.3. High Throughput Sequencing and Analysis
2.4. RNA Extraction and Virus Detection by RT-PCR
2.5. 3′ RACE
2.6. Phylogenetic Analyses
2.7. Nucleotide Composition Analysis (NCA)
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Keenan, R.J.; Reams, G.A.; Achard, F.; de Freitas, J.V.; Grainger, A.; Lindquist, E. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 9–20. [Google Scholar] [CrossRef]
- Bełka, M.; Gonthier, P.; Nicolotti, G. 2013: Infectious Forest Diseases; Gonthier, P., Nicolotti, G., Eds.; CABI: Wallingford, UK; Boston, MA, USA, 2015; p. 641. [Google Scholar]
- Nienhaus, F.; Castello, J.D. Viruses in forest trees. Annu. Rev. Phytopathol. 1989, 27, 165–186. [Google Scholar] [CrossRef]
- Büttner, C.; Von Bargen, S.; Bandte, M.; Mühlbach, H.-P. Forest diseases caused by viruses. In Infectious Forest Diseases; CABI: Wallingford, UK, 2013; pp. 50–75. [Google Scholar]
- Lin, M.T.; Kitajima, E.W.; Costa, C.L. Association of cassia mild mosaic virus with dieback of Cassia macranthera in central Brazil. Plant Dis. 1980, 64, 587–589. [Google Scholar] [CrossRef]
- Beserra, J.E.A., Jr.; de Carvalho, M.G.; Barguil, B.M.; Zerbini, F.M. Partial genome sequence of a Potyvirus and of a virus in the order Tymovirales found in Senna macranthera in Brazil. Trop. Plant Pathol. 2012, 36, 116–120. [Google Scholar] [CrossRef]
- Lin, M.T.; Kitajima, E.W.; Cupertino, F.P.; Costa, C.L. Properties of a possible carlavirus isolated from a cerrado native plant, Cassia sylvestris. Plant Dis. 1979, 63, 501–505. [Google Scholar]
- Gama, M.; Kitagima, E.W.; Avila, A.C.; Lim, M.T. Um Carlavirus em seringueira (Hevea brasiliensis). Fitopatol. Bras. 1983, 8, 621. [Google Scholar]
- Nicolini, C.; Pio-Ribeiro, G.; Andrade, G.P.; Melo, F.L.; Oliveira, V.C.; Guimarães, F.C.; Resende, R.O.; Kitajima, E.W.; Rezende, J.A.M.; Nagata, T. A distinct tymovirus infecting Cassia hoffmannseggii in Brazil. Virus Genes 2012, 45, 190–194. [Google Scholar] [CrossRef]
- Morozova, O.; Marra, M.A. Applications of next-generation sequencing technologies in functional genomics. Genomics 2008, 92, 255–264. [Google Scholar] [CrossRef] [Green Version]
- De Bruijn, F.J. Handbook of Molecular Microbial Ecology II: Metagenomics in Different Habitats; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 15–24. [Google Scholar]
- Prabha, K.; Baranwal, V.K.; Jain, R.K. Applications of next generation high throughput sequencing technologies in characterization, discovery and molecular interaction of plant viruses. Indian J. Virol. 2013, 24, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Barba, M.; Czosnek, H.; Hadidi, A. Historical perspective, development and applications of next-generation sequencing in plant virology. Viruses 2014, 6, 106–136. [Google Scholar] [CrossRef]
- Roossinck, M.J.; Martin, D.P.; Roumagnac, P. Plant virus metagenomics: Advances in virus discovery. Phytopathology 2015, 105, 716–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melcher, U.; Muthukumar, V.; Wiley, G.B.; Min, B.E.; Palmer, M.W.; Verchot-Lubicz, J.; Ali, A.; Nelson, R.S.; Roe, B.A.; Thapa, V.; et al. Evidence for novel viruses by analysis of nucleic acids in virus-like particle fractions from Ambrosia psilostachya. J. Virol. Methods 2008, 152, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Pardina, P.E.R.; Bejerman, N.; Luque, A.V.; Di Feo, L. Complete nucleotide sequence of an Argentinean isolate of sweet potato virus G. Virus Genes 2012, 45, 593–595. [Google Scholar] [CrossRef] [PubMed]
- Candresse, T.; Filloux, D.; Muhire, B.; Julian, C.; Galzi, S.; Fort, G.; Bernardo, P.; Daugrois, J.-H.; Fernandez, E.; Martin, D.P. Appearances can be deceptive: Revealing a hidden viral infection with deep sequencing in a plant quarantine context. PLoS ONE 2014, 9, e102945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheveleva, A.; Kudryavtseva, A.; Speranskaya, A.; Belenikin, M.; Melnikova, N.; Chirkov, S. Complete genome sequence of a novel Plum pox virus strain W isolate determined by 454 pyrosequencing. Virus Genes 2013, 47, 385–388. [Google Scholar] [CrossRef]
- Rott, M.; Xiang, Y.; Boyes, I.; Belton, M.; Saeed, H.; Kesanakurti, P.; Hayes, S.; Lawrence, T.; Birch, C.; Bhagwat, B.; et al. Application of next generation sequencing for diagnostic testing of tree fruit viruses and viroids. Plant Dis. 2017, 101, 1489–1499. [Google Scholar] [CrossRef] [Green Version]
- Maliogka, V.I.; Minafra, A.; Saldarelli, P.; Ruiz-García, A.B.; Glasa, M.; Katis, N.; Olmos, A. Recent advances on detection and characterization of fruit tree viruses using high-throughput sequencing technologies. Viruses 2018, 10, 436. [Google Scholar] [CrossRef] [Green Version]
- Fajardo, T.V.M.; Silva, F.N.; Eiras, M.; Nickel, O. High-throughput sequencing applied for the identification of viruses infecting grapevines in Brazil and genetic variability analysis. Trop. Plant Pathol. 2017, 42, 250–260. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef]
- Gruber, A.R.; Bernhart, S.H.; Lorenz, R. The ViennaRNA web services. In RNA Bioinformatics; Springer: Berlin/Heidelberg, Germany, 2015; pp. 307–326. [Google Scholar]
- Lorenz, A.R.; Bernhart, S.H.; Neubock, R.; Hofacker, I.L. The vienna RNA websuite. Nucleic Acids Res. 2008, 36 (Suppl. 2), W70–W74. [Google Scholar]
- Lorenz, R.; Bernhart, S.H.; Zu Siederdissen, C.H.; Tafer, H.; Flamm, C.; Stadler, P.F.; Hofacker, I.L. Vienna RNA Package 2.0. Algorithms Mol. Biol. 2011, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Verwoerd, T.C.; Dekker, B.M.; Hoekema, A. A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res. 1989, 17, 2362. [Google Scholar] [CrossRef] [PubMed]
- Silva, K.N.; Nicolini, C.; Silva, M.S.; Fernandes, C.D.; Nagata, T.; Resende, R.O. First report of Johnsongrass mosaic virus (JGMV) infecting Pennisetum purpureum in Brazil. Plant Dis. 2013, 97, 1003. [Google Scholar] [CrossRef]
- Chen, J.; Adams, M.J. A universal PCR primer to detect members of the Potyviridae and its use to examine the taxonomic status of several members of the family. Arch. Virol. 2001, 146, 757–766. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gibson, T.J.; Higgins, D.G. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinform. 2003, 1, 2–3. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 2009, 26, 1641–1650. [Google Scholar] [CrossRef]
- Jones, D.T.; Taylor, W.R.; Thornton, J.M. The rapid generation of mutation data matrices from protein sequences. Bioinformatics 1992, 8, 275–282. [Google Scholar] [CrossRef]
- Guindon, S.; Dufayard, J.-F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, B.; Gao, S.; Lercher, M.J.; Hu, S.; Chen, W.-H. Evolview v3: A webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res. 2019, 47, W270–W275. [Google Scholar] [CrossRef]
- Kapoor, A.; Simmonds, P.; Lipkin, W.I.; Zaidi, S.; Delwart, E. Use of nucleotide composition analysis to infer hosts for three novel picorna-like viruses. J. Virol. 2010, 84, 10322–10328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmonds, P. SSE: A nucleotide and amino acid sequence analysis platform. BMC Res. Notes 2012, 5, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Roberts, J.M.K.; Anderson, D.L.; Durr, P.A. Metagenomic analysis of Varroa-free Australian honey bees (Apis mellifera) shows a diverse Picornavirales virome. J. Gen. Virol. 2018, 99, 818–826. [Google Scholar] [CrossRef] [PubMed]
- Bourgarel, M.; Noël, V.; Pfukenyi, D.; Michaux, J.; André, A.; Becquart, P.; Cerqueira, F.; Barrachina, C.; Boué, V.; Talignani, L.; et al. Next-generation sequencing on insectivorous bat guano: An accurate tool to identify arthropod viruses of potential agricultural concern. Viruses 2019, 11, 1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonning, B.C.; Miller, W.A. Dicistroviruses. Annu. Rev. Entomol. 2010, 55, 129–150. [Google Scholar] [CrossRef]
- Nakasu, E.Y.T.; Hedil, M.; Nagata, T.; Michereff-Filho, M.; Lucena, V.S.; Inoue-Nagata, A.K. Complete genome sequence and phylogenetic analysis of a novel dicistrovirus associated with the whitefly Bemisia tabaci. Virus Res. 2019, 260, 49–52. [Google Scholar] [CrossRef]
- Shi, M.; Lin, X.D.; Tian, J.H.; Chen, L.J.; Chen, X.; Li, C.X.; Qin, X.C.; Li, J.; Cao, J.P.; Eden, J.S.; et al. Redefining the invertebrate RNA virosphere. Nature 2016, 540, 539–543. [Google Scholar] [CrossRef]
- François, S.; Mutuel, D.; Duncan, A.B.; Rodrigues, L.R.; Danzelle, C.; Lefevre, S.; Santos, I.; Frayssinet, M.; Fernandez, E.; Filloux, D.; et al. A new prevalent densovirus discovered in Acari. Insight from metagenomics in viral communities associated with two-spotted mite (Tetranychus urticae) populations. Viruses 2019, 11, 233. [Google Scholar] [CrossRef] [Green Version]
- Olendraite, I.; Lukhovitskaya, N.I.; Porter, S.D.; Valles, S.M.; Firth, A.E. Polycipiviridae: A proposed new family of polycistronic picorna-like RNA viruses. J. Gen. Virol. 2017, 98, 2368–2378. [Google Scholar] [CrossRef]
- Le Gall, O.; Christian, P.; Fauquet, C.M.; King, A.M.Q.; Knowles, N.J.; Nakashima, N.; Stanway, G.; Gorbalenya, A.E. Picornavirales, a proposed order of positive-sense single-stranded RNA viruses with a pseudo-T= 3 virion architecture. Arch. Virol. 2008, 153, 715. [Google Scholar] [CrossRef]
- Lang, A.S.; Vlok, M.; Suttle, C.A. Assigning 4 new and 2 unassigned genera to the family Marnaviridae. Int. Comm. Taxon. Viruses ICTV 2018, 2, 1–6. [Google Scholar]
- King, A.M.Q.; Lefkowitz, E.; Adams, M.J.; Carstens, E.B. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Gildow, F.E.; D’arcy, C.J. Cytopathology and experimental host range of Rhopalosiphum padi virus, a small isometric RNA virus infecting cereal grain aphids. J. Invertebr. Pathol. 1990, 55, 245–257. [Google Scholar] [CrossRef]
- Li, J.L.; Cornman, R.S.; Evans, J.D.; Pettis, J.S.; Zhao, Y.; Murphy, C.; Peng, W.J.; Wu, J.; Hamilton, M.; Boncristiani, H.F.; et al. Systemic spread and propagation of a plant-pathogenic virus in European honeybees, Apis mellifera. MBio Am. Soc. Microbiol. 2014, 5, e00898-13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flenniken, M.L. Honey bee-infecting plant virus with implications on honey bee colony health. MBio 2014, 5, e00877-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galbraith, D.A.; Fuller, Z.L.; Ray, A.M.; Brockmann, A.; Frazier, M.; Gikungu, M.W.; Martinez, J.F.I.; Kapheim, K.M.; Kerby, J.T.; Kocher, S.D.; et al. Investigating the viral ecology of global bee communities with high-throughput metagenomics. Sci. Rep. 2018, 8, 8879. [Google Scholar] [CrossRef] [Green Version]
- Jiwaji, M.; Matcher, G.F.; de Bruyn, M.-M.; Awando, J.A.; Moodley, H.; Waterworth, D.; Jarvie, R.A.; Dorrington, R.A. Providence virus: An animal virus that replicates in plants or a plant virus that infects and replicates in animal cells? PLoS ONE 2019, 14, e0217494. [Google Scholar] [CrossRef] [Green Version]
- Regelin, Z.T. Translation and Replication of Rhopalosiphum Padi Virus RNA in a Plant Cellular Environment. Master of Science Thesis, Digital Repository Iowa State University, Ames, Iowa, 30 April 2010. [Google Scholar]
- Ma, Y.; Marais, A.; Lefebvre, M.; Theil, S.; Svanella-Dumas, L.; Faure, C.; Candresse, T. Phytovirome analysis of wild plant populations: Comparison of double-stranded RNA and virion-associated nucleic acid metagenomic approaches. J. Virol. 2019, 94, e01462-19. [Google Scholar] [CrossRef]
Primer Name | Primer Sequence 5′–3′ | AT 1 (°C) | Amplicon Size (bp) | Application/Target Genomic Regions |
---|---|---|---|---|
HDaV1_7626_F 2 | AGTCACTGGTGCGTTAGGTG | 57 | 993 | Detection/Capsid |
HDaV1_8618_R 3 | GTAAGCATACCTCCACGCGA | |||
HDaV2_6983_F | GAATGAACTGCGTGCTACAC | 59 | 757 | Detection/Capsid |
HDaV2_7739_R | CCGGGGGAAAACAGCAGT | |||
C1622_254_F 4 | TTAATGGGGTTGCAGGGCTT | 60 | 519 | Detection/RdRp |
C1622_772_R 4 | TCATGACTCCTATGCGCCAC | |||
C1177_207_F 5 | GTGTCGTTTGTATCGCAGGC | 59 | 674 | Detection/RdRp |
C1177_880_R 5 | CGCGCTCATAGCCAAACAAA | |||
C_1797_31_F 6 | ATTGAAAACGCGACCTGCAC | 59 | 571 | Detection/RdRp |
C1797_601_R 6 | GCGGGATAAGCTCACCAAGT | |||
HDaV2_1630_F | TGCAAGAGTACCAGGAACAGAATAAT | 54 | 608 | Low coverage region 1/ORF1 |
HDaV2_2236_R | GCAAGGCCATGATACATGACCA | |||
HDaV2_3431_F | AGAAAGTGTTTACTATGTAGCACCAACT | 59 | 549 | Low coverage region 2/ORF1b |
HDaV2_3981_R | CTATTCCTTGGCAGGCTTGACG | |||
HDaV2_6422_F | GTCTGCTCCTGATGCTAATCCG | 58 | 540 | Low coverage region 3 |
HDaV2_6961_R | GCTGGGACATCATCAAGGGAAC | |||
Oligod50TM4 | GTTTTCCCAGTCACGACTTAATTAA(T)50 | 65 | − | Race cDNA |
M4 | GTTTTCCCAGTCACGACT | 56 | − | Race 3′ PCR |
HDaV1_9041_F | CCTCAGAAGTTTTCGAGACTGC | 56 | − | Race 3′ PCR |
HDaV2_7256_F | ACCTCACAAATATACTGTTGGTGAGG | 60 | − | Race 3′ PCR |
HDaV2_7518_F | CCTGAACTTGGTATATTGGATGTTCCC | 60 | − | Race 3′ PCR |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nery, F.M.B.; Melo, F.L.; Boiteux, L.S.; Ribeiro, S.G.; Resende, R.O.; Orílio, A.F.; Batista, J.G.; Lima, M.F.; Pereira-Carvalho, R.C. Molecular Characterization of Hovenia Dulcis-Associated Virus 1 (HDaV1) and 2 (HDaV2): New Tentative Species within the Order Picornavirales. Viruses 2020, 12, 950. https://doi.org/10.3390/v12090950
Nery FMB, Melo FL, Boiteux LS, Ribeiro SG, Resende RO, Orílio AF, Batista JG, Lima MF, Pereira-Carvalho RC. Molecular Characterization of Hovenia Dulcis-Associated Virus 1 (HDaV1) and 2 (HDaV2): New Tentative Species within the Order Picornavirales. Viruses. 2020; 12(9):950. https://doi.org/10.3390/v12090950
Chicago/Turabian StyleNery, Flávia M. B., Fernando L. Melo, Leonardo S. Boiteux, Simone G. Ribeiro, Renato O. Resende, Anelise F. Orílio, Josiane G. Batista, Mirtes F. Lima, and Rita C. Pereira-Carvalho. 2020. "Molecular Characterization of Hovenia Dulcis-Associated Virus 1 (HDaV1) and 2 (HDaV2): New Tentative Species within the Order Picornavirales" Viruses 12, no. 9: 950. https://doi.org/10.3390/v12090950