Next-Generation Sequencing for HIV Drug Resistance Testing: Laboratory, Clinical, and Implementation Considerations
Abstract
:1. Introduction
2. Laboratory Considerations
2.1. Sample Type and Nucleic Acid Extraction
2.2. PCR Amplification
2.3. Library Preparation
2.4. Sequencing
2.5. Analysis Pipelines
3. Use of NGS for Clinical HIVDR Testing
4. NGS-Based HIVDR Testing for Public Health
5. Challenges in NGS-Based HIVDR Testing Implementation
5.1. Infrastructure Requirements
5.2. Equipment Requirements
5.3. Logistics and Supply Requirements
5.4. Personnel Requirements
5.5. Quality Assurance
5.6. Data and Information Technology Requirements
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brumme, C.J.; Poon, A.F.Y. Promises and pitfalls of Illumina sequencing for HIV resistance genotyping. Virus Res. 2017, 239, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Korn, K.; Reil, H.; Walter, H.; Schmidt, B. Quality control trial for human immunodeficiency virus type 1 drug resistance testing using clinical samples reveals problems with detecting minority species and interpretation of test results. J. Clin. Microbiol. 2003, 41, 3559–3565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuurman, R.; Brambilla, D.; de Groot, T.; Huang, D.; Land, S.; Bremer, J.; Benders, I.; Boucher, C.A.; Group, E.W. Underestimation of HIV type 1 drug resistance mutations: Results from the ENVA-2 genotyping proficiency program. AIDS Res. Hum. Retrovir. 2002, 18, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.R.; Parkin, N.; Jennings, C.; Brumme, C.J.; Enns, E.; Casadella, M.; Howison, M.; Coetzer, M.; Avila-Rios, S.; Capina, R.; et al. Performance comparison of next generation sequencing analysis pipelines for HIV-1 drug resistance testing. Sci. Rep. 2020, 10, 1634. [Google Scholar] [CrossRef] [Green Version]
- Avila-Rios, S.; Garcia-Morales, C.; Matias-Florentino, M.; Romero-Mora, K.A.; Tapia-Trejo, D.; Quiroz-Morales, V.S.; Reyes-Gopar, H.; Ji, H.; Sandstrom, P.; Casillas-Rodriguez, J.; et al. Pretreatment HIV-drug resistance in Mexico and its impact on the effectiveness of first-line antiretroviral therapy: A nationally representative 2015 WHO survey. Lancet HIV 2016, 3, e579–e591. [Google Scholar] [CrossRef]
- Derache, A.; Iwuji, C.C.; Baisley, K.; Danaviah, S.; Marcelin, A.G.; Calvez, V.; de Oliveira, T.; Dabis, F.; Porter, K.; Pillay, D. Impact of next-generation sequencing defined human immunodeficiency virus pretreatment drug resistance on virological outcomes in the ANRS 12249 treatment-as-prevention trial. Clin. Infect. Dis. Off. Pub. Infect. Dis. Soc. Am. 2019, 69, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Inzaule, S.C.; Hamers, R.L.; Noguera-Julian, M.; Casadella, M.; Parera, M.; Kityo, C.; Steegen, K.; Naniche, D.; Clotet, B.; Rinke de Wit, T.F.; et al. Clinically relevant thresholds for ultrasensitive HIV drug resistance testing: A multi-country nested case-control study. Lancet HIV 2018, 5, e638–e646. [Google Scholar] [CrossRef]
- Li, J.Z.; Paredes, R.; Ribaudo, H.J.; Svarovskaia, E.S.; Metzner, K.J.; Kozal, M.J.; Hullsiek, K.H.; Balduin, M.; Jakobsen, M.R.; Geretti, A.M.; et al. Low-frequency HIV-1 drug resistance mutations and risk of NNRTI-based antiretroviral treatment failure: A systematic review and pooled analysis. JAMA 2011, 305, 1327–1335. [Google Scholar] [CrossRef] [Green Version]
- Milne, R.S.; Silverman, R.A.; Beck, I.A.; McKernan-Mullin, J.; Deng, W.; Sibley, T.R.; Dross, S.; Kiarie, J.N.; Sakr, S.R.; Coombs, R.W.; et al. Minority and majority pretreatment HIV-1 drug resistance associated with failure of first-line nonnucleoside reverse-transcriptase inhibitor antiretroviral therapy in Kenyan women. Aids 2019, 33, 941–951. [Google Scholar] [CrossRef]
- Ji, H.; Enns, E.; Brumme, C.J.; Parkin, N.; Howison, M.; Lee, E.R.; Capina, R.; Marinier, E.; Avila-Rios, S.; Sandstrom, P.; et al. Bioinformatic data processing pipelines in support of next-generation sequencing-based HIV drug resistance testing: The Winnipeg Consensus. J. Int. AIDS Soc. 2018, 21, e25193. [Google Scholar] [CrossRef] [Green Version]
- Casadella, M.; Paredes, R. Deep sequencing for HIV-1 clinical management. Virus Res. 2017, 239, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Heather, J.M.; Chain, B. The sequence of sequencers: The history of sequencing DNA. Genom. 2016, 107, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, R.M.; Meyer, A.M.; Winner, D.; Archer, J.; Feyertag, F.; Ruiz-Mateos, E.; Leal, M.; Robertson, D.L.; Schmotzer, C.L.; Quinones-Mateu, M.E. Sensitive deep-sequencing-based HIV-1 genotyping assay to simultaneously determine susceptibility to protease, reverse transcriptase, integrase, and maturation inhibitors, as well as HIV-1 coreceptor tropism. Antimicrob. Agents Chemother. 2014, 58, 2167–2185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silver, N.; Paynter, M.; McAllister, G.; Atchley, M.; Sayir, C.; Short, J.; Winner, D.; Alouani, D.J.; Sharkey, F.H.; Bergefall, K.; et al. Characterization of minority HIV-1 drug resistant variants in the United Kingdom following the verification of a deep sequencing-based HIV-1 genotyping and tropism assay. AIDS Res. Ther. 2018, 15, 18. [Google Scholar] [CrossRef] [PubMed]
- Tzou, P.L.; Ariyaratne, P.; Varghese, V.; Lee, C.; Rakhmanaliev, E.; Villy, C.; Yee, M.; Tan, K.; Michel, G.; Pinsky, B.A.; et al. Comparison of an In Vitro Diagnostic Next-Generation Sequencing Assay with Sanger Sequencing for HIV-1 Genotypic Resistance Testing. J. Clin. Microbiol. 2018, 56, e00105–e00118. [Google Scholar] [CrossRef] [Green Version]
- Alidjinou, E.K.; Deldalle, J.; Hallaert, C.; Robineau, O.; Ajana, F.; Choisy, P.; Hober, D.; Bocket, L. RNA and DNA Sanger sequencing versus next-generation sequencing for HIV-1 drug resistance testing in treatment-naive patients. J. Antimicrob. Chemother. 2017, 72, 2823–2830. [Google Scholar] [CrossRef] [Green Version]
- Alidjinou, E.K.; Coulon, P.; Hallaert, C.; Robineau, O.; Meybeck, A.; Huleux, T.; Ajana, F.; Hober, D.; Bocket, L. Routine drug resistance testing in HIV-1 proviral DNA, using an automated next- generation sequencing assay. J. Clin. Virol. Off. Pub. Pan Am. Soc. Clin. Virol. 2019, 121, 104207. [Google Scholar] [CrossRef]
- Alidjinou, E.K.; Deldalle, J.; Robineau, O.; Hallaert, C.; Meybeck, A.; Huleux, T.; Ajana, F.; Hober, D.; Bocket, L. Routine drug resistance testing in proviral HIV-1 DNA: Prevalence of stop codons and hypermutation, and associated factors. J. Med. Virol. 2019, 91, 1684–1687. [Google Scholar] [CrossRef]
- Aitken, S.C.; Wallis, C.L.; Stevens, W.; de Wit, T.R.; Schuurman, R. Stability of HIV-1 Nucleic Acids in Dried Blood Spot Samples for HIV-1 Drug Resistance Genotyping. PLoS ONE 2015, 10, e0131541. [Google Scholar] [CrossRef] [Green Version]
- Parry, C.M.; Parkin, N.; Diallo, K.; Mwebaza, S.; Batamwita, R.; DeVos, J.; Bbosa, N.; Lyagoba, F.; Magambo, B.; Jordan, M.R.; et al. Field study of dried blood spot specimens for HIV-1 drug resistance genotyping. J. Clin. Microbiol. 2014, 52, 2868–2875. [Google Scholar] [CrossRef] [Green Version]
- Bertagnolio, S.; Soto-Ramirez, L.; Pilon, R.; Rodriguez, R.; Viveros, M.; Fuentes, L.; Harrigan, P.R.; Mo, T.; Sutherland, D.; Sandstrom, P. HIV-1 drug resistance surveillance using dried whole blood spots. Antivir. Ther. 2007, 12, 107–113. [Google Scholar] [PubMed]
- Chew, C.B.; Potter, S.J.; Wang, B.; Wang, Y.M.; Shaw, C.O.; Dwyer, D.E.; Saksena, N.K. Assessment of drug resistance mutations in plasma and peripheral blood mononuclear cells at different plasma viral loads in patients receiving HAART. J. Clin. Virol. Off. Pub. Pan Am. Soc. Clin. Virol. 2005, 33, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Hallack, R.; Doherty, L.E.; Wethers, J.A.; Parker, M.M. Evaluation of dried blood spot specimens for HIV-1 drug-resistance testing using the Trugene HIV-1 genotyping assay. J. Clin. Virol. Off. Pub. Pan Am. Soc. Clin. Virol. 2008, 41, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Hearps, A.C.; Ryan, C.E.; Morris, L.M.; Plate, M.M.; Greengrass, V.; Crowe, S.M. Stability of dried blood spots for HIV-1 drug resistance analysis. Curr. HIV Res. 2010, 8, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Buckton, A.J.; Bissett, S.L.; Myers, R.E.; Beddows, S.; Edwards, S.; Cane, P.A.; Pillay, D. Development and optimization of an internally controlled dried blood spot assay for surveillance of human immunodeficiency virus type-1 drug resistance. J. Antimicrob. Chemother. 2008, 62, 1191–1198. [Google Scholar] [CrossRef]
- Masciotra, S.; Garrido, C.; Youngpairoj, A.S.; McNulty, A.; Zahonero, N.; Corral, A.; Heneine, W.; de Mendoza, C.; Garcia-Lerma, J.G. High concordance between HIV-1 drug resistance genotypes generated from plasma and dried blood spots in antiretroviral-experienced patients. Aids 2007, 21, 2503–2511. [Google Scholar] [CrossRef]
- Ji, H.; Li, Y.; Liang, B.; Pilon, R.; MacPherson, P.; Bergeron, M.; Kim, J.; Graham, M.; Van Domselaar, G.; Sandstrom, P.; et al. Pyrosequencing dried blood spots reveals differences in HIV drug resistance between treatment naive and experienced patients. PLoS ONE 2013, 8, e56170. [Google Scholar] [CrossRef]
- Zhou, S.; Jones, C.; Mieczkowski, P.; Swanstrom, R. Primer ID validates template sampling depth and greatly reduces the error rate of next-generation sequencing of HIV-1 genomic RNA populations. J. Virol. 2015, 89, 8540–8555. [Google Scholar] [CrossRef] [Green Version]
- Mbunkah, H.A.; Marzel, A.; Schmutz, S.; Kok, Y.L.; Zagordi, O.; Shilaih, M.; Nsanwe, N.N.; Mbu, E.T.; Besong, L.M.; Sama, B.A.; et al. Low prevalence of transmitted HIV-1 drug resistance detected by a dried blood spot (DBS)-based next-generation sequencing (NGS) method in newly diagnosed individuals in Cameroon in the years 2015-16. J. Antimicrob. Chemother. 2018, 73, 1917–1929. [Google Scholar] [CrossRef]
- Varghese, V.; Wang, E.; Babrzadeh, F.; Bachmann, M.H.; Shahriar, R.; Liu, T.; Mappala, S.J.; Gharizadeh, B.; Fessel, W.J.; Katzenstein, D.; et al. Nucleic acid template and the risk of a PCR-Induced HIV-1 drug resistance mutation. PLoS ONE 2010, 5, e10992. [Google Scholar] [CrossRef]
- Macalalad, A.R.; Zody, M.C.; Charlebois, P.; Lennon, N.J.; Newman, R.M.; Malboeuf, C.M.; Ryan, E.M.; Boutwell, C.L.; Power, K.A.; Brackney, D.E.; et al. Highly sensitive and specific detection of rare variants in mixed viral populations from massively parallel sequence data. PLoS Comput. Biol. 2012, 8, e1002417. [Google Scholar] [CrossRef]
- Gianella, S.; Richman, D.D. Minority variants of drug-resistant HIV. J. Infect. Dis. 2010, 202, 657–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mbunkah, H.A.; Bertagnolio, S.; Hamers, R.L.; Hunt, G.; Inzaule, S.; Rinke de Wit, T.F.; Paredes, R.; Parkin, N.T.; Jordan, M.R.; Metzner, K.J.; et al. Low-abundance drug-resistant HIV-1 variants in antiretroviral drug-naive individuals: A systematic review of detection methods, prevalence, and clinical impact. J. Infect. Dis. 2020, 221, 1584–1597. [Google Scholar] [CrossRef] [PubMed]
- Picelli, S.; Bjorklund, A.K.; Reinius, B.; Sagasser, S.; Winberg, G.; Sandberg, R. Tn5 transposase and tagmentation procedures for massively scaled sequencing projects. Genome Res. 2014, 24, 2033–2040. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, P.; Evans, T.C., Jr.; Ettwiller, L.M. DNA damage is a pervasive cause of sequencing errors, directly confounding variant identification. Science 2017, 355, 752–756. [Google Scholar] [CrossRef] [PubMed]
- Quail, M.A.; Smith, M.; Coupland, P.; Otto, T.D.; Harris, S.R.; Connor, T.R.; Bertoni, A.; Swerdlow, H.P.; Gu, Y. A tale of three next generation sequencing platforms: Comparison of ion torrent, pacific biosciences and illumina MiSeq sequencers. BMC Genom. 2012, 13, 341. [Google Scholar] [CrossRef] [Green Version]
- Tzou, P.L.; Kosakovsky Pond, S.L.; Avila-Rios, S.; Holmes, S.P.; Kantor, R.; Shafer, R.W. Analysis of unusual and signature APOBEC-mutations in HIV-1 pol next-generation sequences. PLoS ONE 2020, 15, e0225352. [Google Scholar] [CrossRef] [Green Version]
- WHO. The Use of Next-Generation Sequencing Technologies for the Detection of Mutations Associated with Drug Resistance in Mycobacterium Tuberculosis Complex: Technical Guide. 2018. Available online: https://apps.who.int/iris/handle/10665/274443 (accessed on 28 May 2020).
- Gunthard, H.F.; Wong, J.K.; Ignacio, C.C.; Havlir, D.V.; Richman, D.D. Comparative performance of high-density oligonucleotide sequencing and dideoxynucleotide sequencing of HIV type 1 pol from clinical samples. AIDS Res. Hum. Retrovir. 1998, 14, 869–876. [Google Scholar] [CrossRef]
- Lee, E.R.; Enns, E.; Parkin, N.; Brumme, C.J.; Howison, M.; Avila-Rios, S.; Jennings, C.; Van Domselaar, G.; Noguera-Julian, M.; Harrigan, P.R.; et al. Comparison of next-generation sequencing analysis pipelines for HIV-1 drug resistance. In Proceedings of the Conference on Retroviruses and Opportunistic Infections, Seattle, WA, USA, 4–7 March 2019. Abstract 542. [Google Scholar]
- Chen, N.Y.; Kao, S.W.; Liu, Z.H.; Wu, T.S.; Tsai, C.L.; Lin, H.H.; Wong, W.W.; Chang, Y.Y.; Chen, S.S.; Ku, S.W. Shall I trust the report? Variable performance of Sanger sequencing revealed by deep sequencing on HIV drug resistance mutation detection. Int. J. Infect. Dis. IJID: Off. Pub. Int. Soc. Infect. Dis. 2020, 93, 182–191. [Google Scholar] [CrossRef]
- Nicot, F.; Jeanne, N.; Raymond, S.; Delfour, O.; Carcenac, R.; Lefebvre, C.; Saune, K.; Delobel, P.; Izopet, J. Performance comparison of deep sequencing platforms for detecting HIV-1 variants in the pol gene. J. Med. Virol. 2018, 90, 1486–1492. [Google Scholar] [CrossRef]
- Ram, D.; Leshkowitz, D.; Gonzalez, D.; Forer, R.; Levy, I.; Chowers, M.; Lorber, M.; Hindiyeh, M.; Mendelson, E.; Mor, O. Evaluation of GS Junior and MiSeq next-generation sequencing technologies as an alternative to Trugene population sequencing in the clinical HIV laboratory. J. Virol. Methods 2015, 212, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Parkin, N.; Gao, F.; Denny, T.; Jennings, C.; Sandstrom, P.; Kantor, R. External quality assessment program for next generation sequencing-based HIV drug resistance testing: Logistical considerations. Viruses 2020, 12, 556. [Google Scholar] [CrossRef] [PubMed]
- Huber, M.; Metzner, K.J.; Geissberger, F.D.; Shah, C.; Leemann, C.; Klimkait, T.; Boni, J.; Trkola, A.; Zagordi, O. MinVar: A rapid and versatile tool for HIV-1 drug resistance genotyping by deep sequencing. J. Virol. Methods 2017, 240, 7–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raymond, S.; Nicot, F.; Pallier, C.; Bellecave, P.; Maillard, A.; Trabaud, M.A.; Morand-Joubert, L.; Rodallec, A.; Amiel, C.; Mourez, T.; et al. Impact of Human Immunodeficiency Virus Type 1 Minority Variants on the Virus Response to a Rilpivirine-Based First-line Regimen. Clin. Infect. Dis. Off. Pub. Infect. Dis. Soc. Am. 2018, 66, 1588–1594. [Google Scholar] [CrossRef] [Green Version]
- Tornheim, J.A.; Starks, A.M.; Rodwell, T.C.; Gardy, J.L.; Walker, T.M.; Cirillo, D.M.; Jayashankar, L.; Miotto, P.; Zignol, M.; Schito, M. Building the framework for standardized clinical laboratory reporting of next-generation sequencing data for resistance-associated mutations in mycobacterium tuberculosis complex. Clin. Infect. Dis. Off. Pub. Infect. Dis. Soc. Am. 2019, 69, 1631–1633. [Google Scholar] [CrossRef]
- Lee, E.R.; Gao, F.; Sandstrom, P.; Ji, H. External quality assessment for next-generation sequencing-based HIV drug resistance testing: Unique requirements and challenges. Viruses 2020, 12, 550. [Google Scholar] [CrossRef]
- Noguera-Julian, M.; Lee, E.R.; Travers, S.; Shafer, R.W.; Kantor, R.; Ji, H. Dry panels supporting external quality assessment programs for next generation sequencing-based HIV drug resistance testing. Viruses 2020, 12, 550, submitted. [Google Scholar]
- Gupta, R.K.; Gregson, J.; Parkin, N.; Haile-Selassie, H.; Tanuri, A.; Andrade Forero, L.; Kaleebu, P.; Watera, C.; Aghokeng, A.; Mutenda, N.; et al. HIV-1 drug resistance before initiation or re-initiation of first-line antiretroviral therapy in low-income and middle-income countries: A systematic review and meta-regression analysis. Lancet Infect. Dis. 2018, 18, 346–355. [Google Scholar] [CrossRef] [Green Version]
- WHO. HIV Drug Resistance Report 2019; WHO: Geneva, Switzerland, 2019; Available online: https://www.who.int/hiv/pub/drugresistance/hivdr-report-2019/en/ (accessed on 28 May 2020).
- UNAIDS. 90-90-90: An Ambitious Treatment Target to Help End the AIDS Epidemic. Available online: http://www.unaids.org/sites/default/files/media_asset/90-90-90_en_0.pdf (accessed on 28 May 2020).
- WHO Global Action Plan on HIV Drug Resistance 2017–2021. Available online: http://www.who.int/hiv/pub/drugresistance/hivdr-action-plan-2017-2021/en/ (accessed on 28 May 2020).
- WHO Surveillance of HIV Drug Resistance in Adults Receiving ART (Acquired HIV Drug Resistance), Concept Note. Available online: http://www.who.int/hiv/pub/drugresistance/acquired_drugresistance/en/ (accessed on 28 May 2020).
- WHO Surveillance of HIV Drug Resistance in Adults Initiating Antiretroviral Therapy (Pre-Treatment HIV Drug Resistance). Concept Note. March 2014. Available online: http://www.who.int/hiv/pub/drugresistance/pretreatment_drugresistance/en/ (accessed on 28 May 2020).
- WHO. WHO/HIV ResNet HIV Drug Resistance Laboratory Operational Framework. December 2017. Available online: http://www.who.int/hiv/pub/drugresistance/hivdr-laboratory-framework-2017/en/ (accessed on 28 May 2020).
Test (Manufacturer) | HIV Gene Coverage | NGS Platform | Analysis Software | Reported Sensitivity | Regulatory Status | Cost Per Sample |
---|---|---|---|---|---|---|
DeepChek-HIV (ABL, Luxemburg) | PR, RT, IN | Ion Torrent PGM, Illumina MiSeq | ViroScore-HIV/DeepChek-HIV | 1% | CE-IVD for software, RUO for kits | $120 |
DeepGen (CWRU, USA) | PR, RT, IN | Ion Torrent PGM, Illumina MiSeq | DeepGen | 1%–5% | Core service a | $100 |
Sentosa SQ HIV (Vela Diagnostics, Singapore) | PR, RT, IN | Ion Torrent PGM | Sentosa SQ | 10% | TGA CE-IVD HAS Class C IVD FDA Class II IVD | $400 |
In-house assays | PR, RT, IN | Ion Torrent PGM, Illumina MiSeq | HyDRA, PASEQ, MiCall, HIVmmer | Variable | - | $50–150 |
Library Preparation Kit | Manufacturer | System Compatibility | Principle | Minimum DNA Input Quantity |
---|---|---|---|---|
Nextera XT | Illumina | Illumina | Tagmentation | 1 ng |
Nextera DNA Flex | Illumina | Illumina | Tagmentation | 1 ng |
Ion Xpress Plus Fragment | ThermoFisher | Ion Torrent | Enzymatic fragmentation | 100 ng |
MuSeek | ThermoFisher | Ion Torrent, Illumina | Tagmentation | 50 ng |
NEXTFLEX DNA Seq | PerkinElmer | Ion Torrent, Illumina | Enzymatic fragmentation | 1 ng |
KAPA HyperPlus | Roche | Illumina | Enzymatic fragmentation | 50 ng |
NEBNext Ultra | New England BioLabs | Ion Torrent, Illumina | Enzymatic fragmentation | 100 pg |
Instrument (Manufacturer) | Chemistry | Detection | Data Output | Maximum Read Length | Reported Accuracy a/Error Rate | Sequencing Time | Instrument Cost (USD) | Strengths | Weaknesses |
---|---|---|---|---|---|---|---|---|---|
MiSeq (Illumina) | Sequencing by synthesis (bridge PCR) | Fluorescence | 0.3–15 Gb; 2–50 million reads | 2 × 300 bp | Mostly > Q30/0.8% | 4–55 h | 128,000 | Accuracy, read length | Long run time |
PGM (ThermoFisher) | Sequencing by synthesis (emulsion PCR) | Semi-conductor | 0.03–2 Gb; 0.4–5.5 million reads | 400 bp | Mostly > Q20/1.7% | 2–10 h | 80,000 | Short run time, read length | Low throughput, homopolymers |
Challenges | Solutions |
---|---|
Cost | Generate economies of scale: high-throughput sample processing; |
Instrument access | Use of core facilities; negotiations with suppliers. |
Comparability | Using Sanger mimic conditions with conservative thresholds (20%) to report DRMs; Recommendations of the First “Winnipeg Consensus” [10]. |
Bioinformatics and data analysis | Specialized, freely available, or low-cost pipelines. |
Personnel training/retention | Support of laboratories within WHO HIVResNet. Support from instrument manufacturers and suppliers. |
Quality assurance | Support from WHO HIVResNet; Search for additional support from other leading international agencies, such as the Public Health Agency of Canada or the US Centers for Disease Control and Prevention. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ávila-Ríos, S.; Parkin, N.; Swanstrom, R.; Paredes, R.; Shafer, R.; Ji, H.; Kantor, R. Next-Generation Sequencing for HIV Drug Resistance Testing: Laboratory, Clinical, and Implementation Considerations. Viruses 2020, 12, 617. https://doi.org/10.3390/v12060617
Ávila-Ríos S, Parkin N, Swanstrom R, Paredes R, Shafer R, Ji H, Kantor R. Next-Generation Sequencing for HIV Drug Resistance Testing: Laboratory, Clinical, and Implementation Considerations. Viruses. 2020; 12(6):617. https://doi.org/10.3390/v12060617
Chicago/Turabian StyleÁvila-Ríos, Santiago, Neil Parkin, Ronald Swanstrom, Roger Paredes, Robert Shafer, Hezhao Ji, and Rami Kantor. 2020. "Next-Generation Sequencing for HIV Drug Resistance Testing: Laboratory, Clinical, and Implementation Considerations" Viruses 12, no. 6: 617. https://doi.org/10.3390/v12060617