Diverse and Unexpected Roles of Human Monocytes/Macrophages in the Immune Response to Influenza Virus
Abstract
:1. Introduction
2. Dichotomy in the Human Monocyte/Macrophage Antigen-Presenting Accessory Cell Function for Lymphocyte Responses to IAV Challenge
3. Human Monocytes/Macrophages are Directly Responsible for Lymphocyte Infection by IAV
4. Human Monocytes/Macrophages are Directly Responsible for Lymphocyte Apoptosis in the Setting of IAV Infection
5. Unexpected Findings Regarding Interactions of Human Alveolar Macrophages (AM) with IAV
6. Different Human Monocyte/Macrophage Responses to Pandemic and Avian IAV
7. Animal Model Studies of Monocytes/Macrophages and IAV
8. Conclusions
Funding
Conflicts of Interest
References
- Ettensohn, D.B.; Roberts, N.J., Jr. Human Alveolar Macrophage Support of Lymphocyte Responses to Mitogens and Antigens: Analysis and Comparison With Autologous Peripheral-Blood-Derived Monocytes and Macrophages. Am. Rev. Respir. Dis. 1983, 128, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Ettensohn, D.B.; Frampton, M.W.; Nichols, J.E.; Roberts, N.J., Jr. Human Alveolar Macrophages May Not Be Susceptible to Direct Infection by a Human Influenza Virus. J. Infect. Dis. 2016, 214, 1658–1665. [Google Scholar] [CrossRef] [PubMed]
- Duan, M.; Hibbs, M.L.; Chen, W. The Contributions of Lung Macrophage and Monocyte Heterogeneity to Influenza Pathogenesis. Immunol. Cell Biol. 2017, 95, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, P.P.; Samarasinghe, A.E. The Role of Innate Leukocytes During Influenza Virus Infection. J. Immunol. Res. 2019, 2019, 8028725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyde, P.R.; Cate, T.R. Cellular Changes in Lungs of Mice Infected With Influenza Virus: Characterization of the Cytotoxic Responses. Infect. Immun. 1978, 22, 423–429. [Google Scholar] [CrossRef] [Green Version]
- Mock, D.J.; Domurat, F.; Roberts, N.J., Jr.; Walsh, E.E.; Licht, M.R.; Keng, P. Macrophages Are Required for Influenza Virus Infection of Human Lymphocytes. J. Clin. Investig. 1987, 79, 620–624. [Google Scholar] [CrossRef] [Green Version]
- Roberts, N.J., Jr.; Horan, P.K. Expression of Viral Antigens After Infection of Human Lymphocytes, Monocytes, and Macrophages With Influenza Virus. J. Infect. Dis. 1985, 151, 308–313. [Google Scholar] [CrossRef]
- Denman, A.M.; Rager-Zisman, B.; Merigan, T.C.; Tyrrell, D.A.J. Replication or Inactivation of Different Viruses by Human Lymphocyte Preparations. Infect. Immun. 1974, 9, 373–376. [Google Scholar] [CrossRef] [Green Version]
- Brownson, J.M.; Mahy, B.W.J.; Hazleman, B.L. Interaction of Influenza A Virus With Human Peripheral Blood Lymphocytes. Infect. Immun. 1979, 25, 749–756. [Google Scholar] [CrossRef] [Green Version]
- Nichols, J.E.; Fitzgerald, T.F.; Roberts, N.J., Jr. Human Macrophage Responses to Vaccine Strains of Influenza Virus: Synthesis of Viral Proteins, Interleukin-1beta, Interleukin-6, and Tumor Necrosis Factor-Alpha. Vaccine 1993, 11, 36–42. [Google Scholar] [CrossRef]
- Roberts, N.J., Jr.; Douglas, R.G., Jr.; Simons, R.L.; Diamond, M.E. Virus-Induced Interferon Production by Human Macrophages. J. Immunol. 1979, 123, 365–369. [Google Scholar] [PubMed]
- Randolph, G.J.; Jakubzick, C.; Qu, C. Antigen Presentation by Monocytes and Monocyte-Derived Cells. Curr. Opin. Immunol. 2008, 20, 52–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakubzick, C.V.; Randolph, G.J.; Henson, P.M. Monocyte Differentiation and Antigen-Presenting Functions. Nat. Rev. Immunol. 2017, 17, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Roberts, N.J., Jr.; Steigbigel, R.T. Effect of in Vitro Virus Infection on Response of Human Monocytes and Lymphocytes to Mitogen Stimulation. J. Immunol. 1978, 121, 1052–1058. [Google Scholar]
- Roberts, N.J., Jr.; Diamond, M.E.; Douglas, R.G., Jr.; Simons, R.L.; Steigbigel, R.T. Mitogen Responses and Interferon Production After Exposure of Human Macrophages to Infectious and Inactivated Influenza Viruses. J. Med. Virol. 1980, 5, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Roberts, N.J., Jr.; Nichols, J.E. Regulation of Proliferation After Influenza Virus Infection of Human Mononuclear Leukocytes. J. Med. Virol. 1989, 27, 179–187. [Google Scholar] [CrossRef]
- Roberts, N.J., Jr. Different Effects of Influenza Virus, Respiratory Syncytial Virus and Sendai Virus on Human Lymphocytes and Macrophages. Infect. Immun. 1982, 35, 1142–1146. [Google Scholar] [CrossRef] [Green Version]
- Salkind, A.R.; McCarthy, D.O.; Nichols, J.E.; Domurat, F.M.; Walsh, E.E.; Roberts, N.J., Jr. Interleukin-1 Inhibitor Activity Induced by Respiratory Syncytial Virus: Abrogation of Virus-Specific and Alternate Human Lymphocyte Proliferative Responses. J. Infect. Dis. 1991, 163, 71–77. [Google Scholar] [CrossRef]
- Fleming, E.H.; Ochoa, E.E.; Nichols, J.E.; O’Banion, M.K.; Salkind, A.R.; Roberts, N.J., Jr. Reduced Activation and Proliferation of Human Lymphocytes Exposed to Respiratory Syncytial Virus Compared to Cells Exposed to Influenza Virus. J. Med. Virol. 2018, 90, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Roberts, N.J., Jr.; Prill, A.H.; Mann, T.N. Interleukin 1 and Interleukin 1 Inhibitor Production by Human Macrophages Exposed to Influenza Virus or Respiratory Syncytial Virus: Respiratory Syncytial Virus Is a Potent Inducer of Inhibitory Activity. J. Exp. Med. 1986, 163, 511–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, N.J., Jr. The Concept of Immunofocusing Illustrated by Influenza Virus Infection. Rev. Infect. Dis. 1988, 10, 1071–1074. [Google Scholar] [CrossRef] [PubMed]
- Roberts, N.J., Jr.; Domurat, F. Virus-Induced Immunosuppression: Influenza Virus. In Virus-Induced Immunosuppression; Specter, S., Bendinelli, M., Friedman, H., Eds.; Plenum Publishing, Inc.: New York, NY, USA, 1989. [Google Scholar]
- Salkind, A.R.; Nichols, J.E.; Roberts, N.J., Jr. Suppressed Expression of ICAM-1 and LFA-1 and Abrogation of Leukocyte Collaboration After Exposure of Human Mononuclear Leukocytes to Respiratory Syncytial Virus in Vitro: Comparison With Exposure to Influenza Virus. J. Clin. Investig. 1991, 88, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Mock, D.J.; Frampton, M.W.; Nichols, J.E.; Domurat, F.M.; Signs, D.J.; Roberts, N.J., Jr. Influenza Virus Infection of Human Lymphocytes Occurs in the Immune Cell Cluster of the Developing Antiviral Response. Viruses 2018, 10, 420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichols, J.E.; Niles, J.A.; Roberts, N.J., Jr. Human Lymphocyte Apoptosis After Exposure to Influenza A Virus. J. Virol. 2001, 75, 5921–5929. [Google Scholar] [CrossRef] [Green Version]
- Nichols, J.E.; Niles, J.A.; Fleming, E.H.; Roberts, N.J., Jr. The Role of Cell Surface Expression of Influenza Virus Neuraminidase in Induction of Human Lymphocyte Apoptosis. Virology 2019, 534, 80–86. [Google Scholar] [CrossRef]
- Jennings, S.T.; Ettensohn, D.B.; Roberts, N.J., Jr. Influenza Virus Infection of Human Alveolar and Peripheral Blood-Derived Macrophages: Production of Factors That Alter Fibroblast Proliferation. Am. Rev. Respir. Dis. 1984, 130, 98–102. [Google Scholar]
- Ettensohn, D.B.; Lalor, P.A.; Roberts, N.J., Jr. Human Alveolar Macrophage Regulation of Lymphocyte Proliferation. Am. Rev. Respir. Dis. 1986, 133, 1091–1096. [Google Scholar]
- Ettensohn, D.B.; Roberts, N.J., Jr. Influenza Virus Infection of Human Alveolar and Blood-Derived Macrophages: Differences in Accessory Cell Function and Interferon Production. J. Infect. Dis. 1984, 149, 942–949. [Google Scholar] [CrossRef]
- Yu, W.C.; Chan, R.W.; Wang, J.; Travanty, E.A.; Nicholls, J.M.; Peiris, J.M.; Mason, R.J.; Chan, M.C. Viral replication and innate host responses in primary human alveolar epithelial cells and alveolar macrophages infected with influenza H5N1 and H1N1 viruses. J. Virol. 2011, 85, 6844–6855. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.C.; Cheung, C.Y.; Law, A.H.; Mok, C.K.; Peiris, M.; Lau, A.S. p38 mitogen-activated protein kinase-dependent hyperinduction of tumor necrosis factor alpha expression in response to avian influenza virus H5N1. J. Virol. 2005, 79, 10147–10154. [Google Scholar] [CrossRef] [Green Version]
- Van Riel, D.; Leijten, L.M.; van der Eerden, M.; Hoogsteden, H.C.; Boven, L.A.; Lambrecht, B.N.; Osterhaus, A.D.; Kuiken, T. Highly pathogenic avian influenza virus H5N1 infects alveolar macrophages without virus production or excessive TNF-alpha induction. PLoS Pathog. 2011, 7, e1002099. [Google Scholar] [CrossRef] [Green Version]
- Westenius, V.; Makela, S.M.; Julkunen, I.; Osterlund, P. Highly Pathogenic H5N1 Influenza A Virus Spreads Efficiently in Human Primary Monocyte-Derived Macrophages and Dendritic Cells. Front. Immunol. 2018, 9, 1664. [Google Scholar] [CrossRef] [PubMed]
- Friesenhagen, J.; Boergeling, Y.; Hrincius, E.; Ludwig, S.; Roth, J.; Viemann, D. Highly pathogenic avian influenza viruses inhibit effective immune responses of human blood-derived macrophages. J. Leukoc. Biol. 2012, 92, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Sakabe, S.; Iwatsuki-Horimoto, K.; Takano, R.; Nidom, C.A.; Le, M.T.Q.; Nagamura-Inoue, T.; Horimoto, T.; Yamashita, N.; Kawaoka, Y. Cytokine production by primary human macrophages infected with highly pathogenic H5N1 or pandemic H1N1 2009 influenza viruses. J. Gen. Virol. 2011, 92, 1428–1434. [Google Scholar] [CrossRef]
- Österlund, P.; Pirhonen, J.; Ikonen, N.; Rönkkö, E.; Strengell, M.; Mäkelä, S.M.; Broman, M.; Hamming, O.J.; Hartmann, R.; Ziegler, T.; et al. Pandemic H1N1 2009 influenza A virus induces weak cytokine responses in human macrophages and dendritic cells and is highly sensitive to the antiviral actions of interferons. J. Virol. 2010, 84, 1414–1422. [Google Scholar]
- Lee, S.M.; Dutry, I.; Peiris, J.S. Editorial: Macrophage heterogeneity and responses to influenza virus infection. J. Leukoc. Biol. 2012, 92, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Murphy, E.A.; Davis, J.M.; McClellan, J.L.; Carmichael, M.D.; Rooijen, N.V.; Gangemi, J.D. Susceptibility to infection and inflammatory response following influenza virus (H1N1, A/PR/8/34) challenge: Role of macrophages. J. Interferon Cytokine Res. 2011, 31, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Tate, M.D.; Pickett, D.L.; Van, R.N.; Brooks, A.G.; Reading, P.C. Critical role of airway macrophages in modulating disease severity during influenza virus infection of mice. J. Virol. 2010, 84, 7569–7580. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.M.; Kang, Y.M.; Ku, K.B.; Park, E.H.; Yum, J.; Kim, J.C.; Jin, S.Y.; Lee, J.S.; Kim, H.S.; Seo, S.H. The severe pathogenicity of alveolar macrophage-depleted ferrets infected with 2009 pandemic H1N1 influenza virus. Virology 2013, 444, 394–403. [Google Scholar] [CrossRef] [Green Version]
- Tumpey, T.M.; García-Sastre, A.; Taubenberger, J.K.; Palese, P.; Swayne, D.E.; Pantin-Jackwood, M.J.; Schultz-Cherry, S.; Solórzano, A.; Van Rooijen, N.; Katz, J.M.; et al. Pathogenicity of influenza viruses with genes from the 1918 pandemic virus: Functional roles of alveolar macrophages and neutrophils in limiting virus replication and mortality in mice. J. Virol. 2005, 79, 14933–14944. [Google Scholar] [CrossRef] [Green Version]
- Maines, T.R.; Lu, X.H.; Erb, S.M.; Edwards, L.; Guarner, J.; Greer, P.W.; Nguyen, D.C.; Szretter, K.J.; Chen, L.M.; Thawatsupha, P.; et al. Avian influenza (H5N1) viruses isolated from humans in Asia in 2004 exhibit increased virulence in mammals. J. Virol. 2005, 79, 11788–11800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauzon-Joset, J.F.; Scott, N.M.; Mincham, K.T.; Stumbles, P.A.; Holt, P.G.; Strickland, D.H. Pregnancy Induces a Steady-State Shift in Alveolar Macrophage M1/M2 Phenotype That Is Associated With a Heightened Severity of Influenza Virus Infection: Mechanistic Insight Using Mouse Models. J. Infect. Dis. 2019, 219, 1823–1831. [Google Scholar] [CrossRef] [PubMed]
- Coates, B.M.; Staricha, K.L.; Koch, C.M.; Cheng, Y.; Shumaker, D.K.; Budinger, G.R.S.; Perlman, H.; Misharin, A.V.; Ridge, K.M. Inflammatory Monocytes Drive Influenza A Virus-Mediated Lung Injury in Juvenile Mice. J. Immunol. 2018, 200, 2391–2404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wein, A.N.; Dunbar, P.R.; McMaster, S.R.; Li, Z.T.; Denning, T.L.; Kohlmeier, J.E. IL-36gamma Protects against Severe Influenza Infection by Promoting Lung Alveolar Macrophage Survival and Limiting Viral Replication. J. Immunol. 2018, 201, 573–582. [Google Scholar] [CrossRef] [Green Version]
- Wahl, A.; De, C.; Fernandez, M.A.; Lenarcic, E.M.; Xu, Y.; Cockrell, A.S.; Cleary, R.A.; Johnson, C.E.; Schramm, N.J.; Rank, L.M.; et al. Precision mouse models with expanded tropism for human pathogens. Nat. Biotechnol. 2019, 37, 1163–1173. [Google Scholar] [CrossRef]
- Matsuoka, Y.; Lamirande, E.W.; Subbarao, K. The mouse model for influenza. Curr. Protoc. Microbiol. 2009, 13, 15G.3.1–15G.3.30. [Google Scholar] [CrossRef]
- Iwatsuki-Horimoto, K.; Nakajima, N.; Ichiko, Y.; Sakai-Tagawa, Y.; Noda, T.; Hasegawa, H.; Kawaoka, Y. Syrian Hamster as an Animal Model for the Study of Human Influenza Virus Infection. J. Virol. 2018, 92, e01693-17. [Google Scholar] [CrossRef] [Green Version]
- Califano, D.; Furuya, Y.; Metzger, D.W. Effects of Influenza on Alveolar Macrophage Viability Are Dependent on Mouse Genetic Strain. J. Immunol. 2018, 201, 134–144. [Google Scholar] [CrossRef]
- Mestas, J.; Hughes, C.C. Of mice and not men: Differences between mouse and human immunology. J. Immunol. 2004, 172, 2731–2738. [Google Scholar] [CrossRef] [Green Version]
- Memoli, M.J.; Han, A.; Walters, K.A.; Czajkowski, L.; Reed, S.; Athota, R.; Angela Rosas, L.; Cervantes-Medina, A.; Park, J.K.; Morens, D.M.; et al. Influenza A Reinfection in Sequential Human Challenge: Implications for Protective Immunity and “Universal” Vaccine Development. Clin. Infect. Dis. 2020, 70, 748–753. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roberts, N.J., Jr. Diverse and Unexpected Roles of Human Monocytes/Macrophages in the Immune Response to Influenza Virus. Viruses 2020, 12, 379. https://doi.org/10.3390/v12040379
Roberts NJ Jr. Diverse and Unexpected Roles of Human Monocytes/Macrophages in the Immune Response to Influenza Virus. Viruses. 2020; 12(4):379. https://doi.org/10.3390/v12040379
Chicago/Turabian StyleRoberts, Norbert J., Jr. 2020. "Diverse and Unexpected Roles of Human Monocytes/Macrophages in the Immune Response to Influenza Virus" Viruses 12, no. 4: 379. https://doi.org/10.3390/v12040379