Discovery and Characterization of a Novel Ampelovirus on Firespike
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. RNA Extraction and Next-Generation Sequencing Analysis
2.3. Determination of the 5′ and 3′ End of Genomic RNAs
2.4. Virus Genome Sequence Analysis
2.5. Mechanical Inoculation
2.6. Construction of the FLRaV Infectious cDNA Clone
3. Results
3.1. Identification of FLRaV through Next-Generation Sequencing
3.2. Complete Sequence and Organization of FLRaV Genome
3.3. Phylogenetic Relationship of FLRaV with Other Ampeloviruses
3.4. Infectivity of FLRaV on Nicotiana benthamiana
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Naidu, R.A.; Maree, H.J.; Burger, J.T. Grapevine leafroll disease and associated viruses: A unique pathosystem. Annu. Rev. Phytopathol. 2015, 53, 613–634. [Google Scholar] [CrossRef] [PubMed]
- Karasev, A.V. Genetic diversity and evolution of closteroviruses. Annu. Rev. Phytopathol. 2000, 38, 293–324. [Google Scholar] [CrossRef] [PubMed]
- Martelli, G.P.; Agranovsky, A.A.; Bar-Joseph, M.; Boscia, D.; Candresse, T.; Coutts, R.H.A.; Dolja, V.V.; Falk, B.W.; Gonsalves, D.; Jelkmann, W. The family Closteroviridae revised. Arch. Virol. 2002, 147, 2039–2044. [Google Scholar] [CrossRef] [PubMed]
- Melzer, M.J.; Sether, D.M.; Karasev, A.V.; Borth, W.; Hu, J.S. Complete nucleotide sequence and genome organization of pineapple mealybug wilt-associated virus-1. Arch. Virol. 2008, 153, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Donda, B.P.; Jarugula, S.; Naidu, R.A. An analysis of the complete genome sequence and subgenomic RNAs reveals unique features of the ampelovirus, Grapevine leafroll-associated virus 1. Phytopathology 2017, 107, 1069–1079. [Google Scholar] [CrossRef]
- Fuchs, M.; Bar-Joseph, M.; Candresse, T.; Maree, H.J.; Martelli, G.P.; Melzer, M.J.; Menzel, W.; Minafra, A.; Sabanadzovic, S. ICTV virus taxonomy profile: Closteroviridae. J. Gen. Virol. 2020, 4, 364–365. [Google Scholar] [CrossRef]
- Martelli, G.P.; Agranovsky, A.A.; Bar-Joseph, M.; Boscia, D.; Candresse, T.; Coutts, R.H.A.; Dolja, V.V.; Hu, J.S.; Jelkmann, W.; Karasev, A.V.; et al. Family Closteroviridae. In Virus Taxonomy. Ninth Report of the International Committee on Taxonomy of Viruses; King, A., Adams, M.J., Carstens, E.B., Lefkowitz, E., Eds.; Elsevier-Academic Press: Amsterdam, The Netherlands, 2011; pp. 987–1001. [Google Scholar]
- Dolja, V.V.; Kreuze, J.F.; Valkonen, J.P.T. Comparative and functional genomics of Closteroviruses. Virus Res. 2006, 117, 38–51. [Google Scholar] [CrossRef]
- Agranovsky, A.A.; Koonin, E.V.; Boyko, V.P.; Maiss, E.; FrötschlN, R.; Lunina, N.A.; Atabekov, J.G. Beet yellows closterovirus: Complete genome structure and identification of a leader papain-like thiol protease. Virology 1994, 198, 311–324. [Google Scholar] [CrossRef]
- Rozanov, M.N.; Koonin, E.V.; Gorbalenya, A.E. Conservation of the putative methyltransferase domain: A hallmark of the “Sindbis-like” supergroup of positive-strand RNA viruses. J. Gen. Virol. 1992, 73, 2129–2134. [Google Scholar] [CrossRef]
- Van Den Born, E.; Omelchenko, M.V.; Bekkelund, A.; Leihne, V.; Koonin, E.V.; Dolja, V.V.; Falnes, P.Ø. Viral AlkB proteins repair RNA damage by oxidative demethylation. Nucl. Acids Res. 2008, 36, 5451–5461. [Google Scholar] [CrossRef] [Green Version]
- Gorbalenya, A.E.; Koonin, E.V. Helicases: Amino acid sequence comparisons and structure-function relationships. Curr. Opin. Struct. Biol. 1993, 3, 419–429. [Google Scholar] [CrossRef]
- Koonin, E.V. The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J. Gen. Virol. 1991, 72, 2197–2206. [Google Scholar] [CrossRef] [PubMed]
- Peremyslov, V.V.; Hagiwara, Y.; Dolja, V.V. HSP70 homolog functions in cell-to-cell movement of a plant virus. Proc. Natl. Acad. Sci. USA 1999, 96, 14771–14776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolja, V.V.; Boyko, V.P.; Agranovsky, A.A.; Koonin, E.V. Phylogeny of capsid proteins of rod-shaped and filamentous RNA plant viruses: Two families with distinct patterns of sequence and probably structure conservation. Virology 1991, 184, 79–86. [Google Scholar] [CrossRef]
- Rezaian, M.A.; Fazeli, C.F. Nucleotide sequence and organization of ten open reading frames in the genome of Grapevine leafroll-associated virus 1 and identification of three subgenomic RNAs. J. Gen. Virol. 2000, 81, 605–615. [Google Scholar]
- Ling, K.S. Complete nucleotide sequence and genome organization of Grapevine leafroll-associated virus 3, type member of the genus Ampelovirus. J. Gen. Virol. 2004, 85, 2099–2102. [Google Scholar] [CrossRef] [PubMed]
- Rott, M.E.; Jelkmann, W. Detection and Partial Characterization of a Second Closterovirus Associated with Little Cherry Disease, Little cherry virus-2. Phytopathology 2001, 91, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Melzer, M.J.; Karasev, A.V.; Sether, D.M.; Hu, J.S. Nucleotide sequence, genome organization and phylogenetic analysis of pineapple mealybug wilt-associated virus-2. J. Gen. Virol. 2001, 82, 1–7. [Google Scholar] [CrossRef]
- Gambley, C.F.; Steele, V.; Geering, A.D.W.; Thomas, J.E. The genetic diversity of ampeloviruses in Australian pineapples and their association with mealybug wilt disease. Aust. Plant Pathol. 2008, 37, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Rwahnih, M.A.; Uyemoto, J.K.; Falk, B.W.; Rowhani, A. Molecular characterization and detection of plum bark necrosis stem pitting-associated virus. Arch. Virol. 2007, 152, 2197–2206. [Google Scholar] [CrossRef]
- Ghanem-Sabanadzovic, N.A.; Sabanadzovic, S.; Gugerli, P.; Rowhani, A. Genome organization, serology and phylogeny of Grapevine leafroll-associated viruses 4 and 6: Taxonomic implications. Virus Res. 2012, 163, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Dey, K.K.; Sugikawa, J.; Kerr, C.; Melzer, M.J. Air potato (Dioscorea bulbifera) plants displaying virus-like symptoms are co-infected with a novel potyvirus and a novel ampelovirus. Virus Genes 2018, 55, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Scotto-Lavino, E.; Du, G.; Frohman, M.A. 5′ end cDNA amplification using classic RACE. Nat. Protocol. 2006, 1, 2555–2562. [Google Scholar] [CrossRef]
- Sun, K.; Zhao, D.Y.; Liu, Y.; Huang, C.J.; Zhang, W.; Li, Z.H. Rapid Construction of Complex Plant RNA Virus Infectious cDNA Clones for Agroinfection Using a Yeast-E. coli-Agrobacterium Shuttle Vector. Viruses 2017, 9, 332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarugula, S.; Gowda, S.; Dawson, W.O.; Naidu, R.A. Development of infectious cDNA clones of Grapevine leafroll-associated virus 3 and analyses of the 5′ non-translated region for replication and virion formation. Virology 2018, 523, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Yelina, N.E.; Savenkov, E.I.; Soloyev, A.G.; Morozov, S.Y.; Valkonen, J.P.T. Long-distance movement, virulence, and RNA silencing suppression controlled by a single protein in Hordei- and Potyviruses: Complementary functions between virus families. J. Virol. 2002, 76, 12981–12991. [Google Scholar] [CrossRef] [Green Version]
- Qiu, W.; Park, J.W.; Scholthof, H.B. Tombusvirus P19-mediated suppression of virus-induced gene silencing is controlled by genetic and dosage features that influence pathogenicity. Mol. Plant Microbe Interact. 2002, 15, 269–280. [Google Scholar] [CrossRef] [Green Version]
- Martelli, G.P.; Ghanem-Sabanadzovic, N.A.; Agranovsky, A.A.; Rwahnih, M.A.; Dolja, V.V.; Dovas, C.I.; Fuchs, M.; Gugerli, P.; Hu, J.S.; Jelkmann, W.; et al. Taxonomic revision of the family Closteroviridae with special reference to the grapevine leafroll-associated members of the genus Ampelovirus and the putative species unassigned to the family. J. Plant Pathol. 2012, 94, 7–19. [Google Scholar]
- Gouveia, P.; Dandlen, S.; Costa, Â.; Marques, N.; Nolasco, G. Identification of an RNA silencing suppressor encoded by Grapevine leafroll-associated virus 3. Eur. J. Plant Pathol. 2012, 133, 237–245. [Google Scholar] [CrossRef]
- Dey, K.K.; Borth, W.B.; Melzer, M.J.; Wang, M.L.; Hu, J.S. Analysis of pineapple mealybug wilt associated virus-1 and-2 for potential RNA silencing suppressors and pathogenicity factors. Viruses 2015, 7, 969–995. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhang, J.; Feng, M.; Wang, X.; Luo, C.; Wang, Q.; Cheng, Y. Characterization of silencing suppressor p24 of Grapevine leafroll-associated virus 2. Mol. Plant Pathol. 2018, 19, 355–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boscia, D.; Greif, C.; Gugerli, P.; Martelli, G.P.; Walter, B.; Gonsalves, D. Nomenclature of grapevine leafroll-associated putative closterovirus. Vitis 1995, 34, 171–175. [Google Scholar]
- Goszczynski, D.E.; Kasdorf, G.G.F.; Pietersen, G.; Van Tonder, H. Grapevine leafroll-associated virus-2 (GLRaV-2)—Mechanical transmission, purification, production and properties of antisera, detection by ELISA. S. Afr. J. Enol. Vitic. 1996, 17, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Prator, C.A.; Kashiwagi, C.M.; Voncina, D.; Almeida, R.P. Infection and colonization of Nicotiana benthamiana by Grapevine leafroll-associated virus 3. Virology 2017, 510, 60–66. [Google Scholar] [CrossRef]
- Baker, C.A.; Webster, C.G.; Adkins, S. Odontonema cuspidatum and Psychotria punctata, Two New Hosts of Cucumber mosaic virus in the United States. Plant Dis. 2012, 96, 1384. [Google Scholar] [CrossRef]
Amino Acid (%) | ||||
---|---|---|---|---|
ORF 1a | RdRp | HSP70h | CP | |
AiPoV-1 a | 28.6 | 43.7 | 50.4 | 35.9 |
BVBaV | 25.2 | 35.1 | 35.4 | 26.5 |
GLRaV-1 | 28.2 | 36.6 | 35.5 | 24.1 |
GLRaV-3 | 29.8 | 37.9 | 37.8 | 28.7 |
GLRaV-4 | 31.2 | 44.7 | 50.0 | 42.4 |
GLRaV-13 | 27.6 | 42.7 | 37.5 | 22.5 |
PBNSPaV | 30.6 | 44.5 | 50.6 | 34.8 |
PMWaV-1 | 29.9 | 40.4 | 47.8 | 36.6 |
PMWaV-2 | 24.9 | 35.6 | 35.0 | 27.3 |
PMWaV-3 | 29.5 | 41.4 | 47.1 | 43.8 |
LChV-2 | 26.4 | 35.8 | 37.4 | 28.9 |
PAVA | - b | 39.4 | 33.4 | 26.7 |
Plant Species | No. of Positive Plants/Total |
---|---|
N. benthamiana | 27/32 |
N. glutinosa | 0/8 |
N. tabacum | 0/9 |
N. rustica | 0/9 |
N. sylvestris | 0/9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Song, Y.; Wang, Y.; Cao, M.; Hu, T.; Zhou, X. Discovery and Characterization of a Novel Ampelovirus on Firespike. Viruses 2020, 12, 1452. https://doi.org/10.3390/v12121452
Wang Y, Song Y, Wang Y, Cao M, Hu T, Zhou X. Discovery and Characterization of a Novel Ampelovirus on Firespike. Viruses. 2020; 12(12):1452. https://doi.org/10.3390/v12121452
Chicago/Turabian StyleWang, Yaqin, Yu Song, Yongzhi Wang, Mengji Cao, Tao Hu, and Xueping Zhou. 2020. "Discovery and Characterization of a Novel Ampelovirus on Firespike" Viruses 12, no. 12: 1452. https://doi.org/10.3390/v12121452
APA StyleWang, Y., Song, Y., Wang, Y., Cao, M., Hu, T., & Zhou, X. (2020). Discovery and Characterization of a Novel Ampelovirus on Firespike. Viruses, 12(12), 1452. https://doi.org/10.3390/v12121452