Determination of Genetically Identical Strains of Four Honeybee Viruses in Bumblebee Positive Samples
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Prevalence of ABPV, BQCV, CBPV, DWV, SBV, and LSV in Bumblebee Samples
3.2. Detection of Genetically Identical Strains of ABPV, BQCV, SBV, and LSV in Honeybee and Bumblebee Positive Samples
3.3. Phylogenetic Comparison of Detected Strains of ABPV in Honeybee and Bumblebee Samples
3.4. Phylogenetic Comparison of Detected Strains of BQCV in Honeybee and Bumblebee Samples
3.5. Phylogenetic Comparison of Detected Strains of SBV in Honeybee and Bumblebee Samples
3.6. Phylogenetic Comparison of Detected Strains of LSV in Honeybee and Bumblebee Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Evans, J.D.; Schwarz, R.S. Bees brought to their knees: Microbes affecting honey bee health. Trends Microbiol. 2011, 19, 614–620. [Google Scholar] [CrossRef]
- Beaurepaire, A.; Piot, N.; Doublet, V.; Antunez, K.; Campbell, E.; Chantawannakul, P.; Chejanovsky, N.; Gajda, A.; Heerman, M.; Panziera, D.; et al. Diversity and Global Distribution of Viruses of the Western Honey Bee, Apis mellifera. Insects 2020, 11, 239. [Google Scholar] [CrossRef]
- Remnant, E.J.; Shi, M.; Buchmann, G.; Blacquiere, T.; Holmes, E.C.; Beekman, M.; Ashe, A. A Diverse Range of Novel RNA Viruses in Geographically Distinct Honey Bee populations. J. Virol. 2017, 91, e00158-17. [Google Scholar] [CrossRef] [Green Version]
- Runckel, C.; Flenniken, M.L.; Engel, J.C.; Ruby, J.G.; Ganem, D.; Andino, R.; DeRisi, J.L. Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema and Crithidia. PLoS ONE 2011, 6, e20656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šimenc, L.; Kuhar, U.; Jamnikar-Ciglenečki, U.; Toplak, I. First complete genome of Lake Sinai Virus Lineage 3 and genetic diversity of Lake Sinai virus Strains from honey bees and bumble bees. J. Econ. Entomol. 2020, 113, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Fürst, M.A.; McMahon, D.P.; Osborne, J.L.; Paxton, R.J.; Brown, M.J.F. Disease associations between honeybees and bumlebees as a threat to wild pollinators. Nature 2014, 506, 364–366. [Google Scholar] [CrossRef] [PubMed]
- Grozinger, C.M.; Flenniken, M.L. Bee Viruses: Ecology, Pathogenicity, and Impacts. Annu. Rev. Entomol. 2019, 64, 205–226. [Google Scholar] [CrossRef] [PubMed]
- Daughenbaugh, K.F.; Martin, M.; Brutscher, L.M.; Cavigli, I.; Garcia, E.; Lavin, M.; Flenniken, M.L. Honey Bee Infecting Lake Sinai Viruses. Viruses 2015, 7, 3285–3309. [Google Scholar] [CrossRef] [Green Version]
- Toplak, I.; Rihtarič, D.; Jamnikar Ciglenečki, U.; Hostnik, P.; Jenčič, V.; Barlič-Maganja, D. Detection of six honeybee viruses in clinically affected colonies of Carniolan gray bee (Appis mellifera carnica). Slov. Vet. Res. 2012, 49, 83–91. [Google Scholar]
- Jamnikar Ciglenečki, U.; Pislak Ocepek, M.; Jenčič, V.; Toplak, I. Seasonal variations of four heney bee viruses in pupae, hive and forager bees of Carniolan gray bee (Apis mellifera carnica). Slov. Vet. Res. 2014, 51, 131–140. [Google Scholar]
- McMahon, D.P.; Furst, M.A.; Caspar, J.; Theodorou, P.; Brown, M.J.; Paxton, R.J. A sting in the split: Widespread cross-infection of multiple RNA viruses across wild and managed bees. J. Anim. Ecol. 2015, 84, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Alger, S.A.; Burnham, P.A.; Boncristiani, H.F.; Brody, A.K. RNA virus spillover from managed honeybees (Apis mellifera) to wild bumblebees (Bombus spp.). PLoS ONE 2019, 14, e0217822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Evans, J.D.; Feldlaufer, M.F. Horizontal and vertical transmission of viruses in honey bee Apis mellifera. J. Invertebr. Pathol. 2006, 92, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Yañez, O.; Piot, N.; Dalmon, A.; de Miranda, J.R.; Chantawannakul, P.; Panziera, D.; Amiri, E.; Smagghe, G.; Schroeder, D.; Chejanovsky, N. Bee Viruses: Routes of Infection in Hymenoptera. Front. Microbiol. 2020, 11, 943. [Google Scholar] [CrossRef]
- Woolhouse, M.E.J.; Haydon, D.T.; Anita, R. Emerging pathogens: The epidemiology and evolution of species jumps. Trend Ecol. Evol. 2005, 20, 238–244. [Google Scholar] [CrossRef]
- Jamnikar Ciglenečki, U.; Pislak Ocepek, M.; Toplak, I. Genetic diversity of deformed wing virus from Apis mellifera carnica (Hymenoptera: Apidae) and varroa mite (Mesostigmata: Varroidae). J. Econ. Entomol. 2019, 112, 11–19. [Google Scholar] [CrossRef]
- Grad, J.; Toplak, I. Žuželke, muha Hermetia illucens in virusi kot možni škodljivci čmrljem. Acta Entomol. Slov. 2018, 26, 29–40. [Google Scholar]
- De Miranda, J.R.; Bailey, L.; Ball, B.V.; Blanchard, P.; Budge, G.E.; Chejanovsky, N.; Chen, Y.-P.; Gauthier, L.; Genersch, E.; de Graaf, D.C.; et al. Standard methods for virus research in Apis mellifera. J. Apic. Res. 2013, 52, 1–56. [Google Scholar] [CrossRef] [Green Version]
- Ravoet, J.; De Smet, L.; Wenseleers, T.; De Graaf, D.C. Genome sequence of Lake Sinai Virus found in honey bees and Orf1/RdRP-based polymorphism in a single host. Virus Res. 2015, 201, 67–72. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
- Graystock, P.; Goulson, D.; Hughes, W.H.O. The relationship between managed bees and the prevalence of parasites in bumblebees. PeerJ 2014, 2, e522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tehel, A.; Brown, M.J.F.; Paxton, R. Impact of managed honey bee viruses on wild bees. Curr. Opin. Virol. 2016, 19, 16–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolezal, A.G.; Hendrix, S.D.; Scavo, N.A.; Carrillo-Tripp, J.; Harris, M.A.; Wheelock, M.J.; O’Neal, M.E.; Toth, A.L. Honeybee viruses and wild bees: Viral prevalence, loads and experimental inoculation. PLoS ONE 2016, 11, e0166190. [Google Scholar] [CrossRef]
- Benaets, K.; van Geystelen, A.; Cardoen, D.; de Smet, L.; de Graaf, D.C.; Schoofs, L.; Larmuseau, M.H.D.; Brettell, L.E.; Martin, S.J.; Wenseleers, T. Covert deformed wing virus infections have long-term deleterious effects on honeybee foraging and survival. Proc. R. Soc. B 2017, 284, 20162149. [Google Scholar] [CrossRef] [PubMed]
- Bailes, E.J.; Deutsch, K.R.; Bagi, J.; Rondissone, L.; Brown, M.J.F.; Lewis, O.T. First detection of bee viruses in hoverfly (syrphid) pollinators. Biol. Lett. 2018, 14, 20180001. [Google Scholar] [CrossRef] [PubMed]
- Jamnikar Ciglenečki, U.; Toplak, I. Genetic diversity of acute bee paralysis virus in Slovenian honeybee samples. Acta Vet. Hung. 2013, 61, 244–256. [Google Scholar] [CrossRef]
- Tehel, A.; Streicher, T.; Tragust, S.; Paxton, R.J. Experimental infection of bumblebees with honeybee-associated viruses: No direct fitness cost but potential future threats to novel wild bee host. R. Soc. Open Sci. 2020, 7, 200480. [Google Scholar] [CrossRef] [PubMed]
- Meeus, I.; de Miranda, J.R.; de Graaf, D.C.; Wäckers, F.; Smagghe, G. Effect of oral infection with Kashmir bee virus and Israeli acute bee paralysis virus on bumblebee (Bombus terrestris) reproductive success. J. Invertebr. Pathol. 2014, 121, 64–69. [Google Scholar] [CrossRef] [Green Version]
Species | No of Samples | Year of Sampling | ABPV | BQCV | CBPV | DWV | SBV | LSV |
---|---|---|---|---|---|---|---|---|
B. lapidarius | n = 10 | 2017 | 30% | 60% | 0% | 10% | 0% | 0% |
B. pascuorum | n = 26 | 2017 | 7.69% | 23.1% | 0% | 0% | 30.8% | 11.5% |
B. terrestris/lucorum | n = 30 | 2017 | 13.3% | 26.3% | 0% | 6.6% | 33.3% | 10% |
Apis mellifera | n = 4 | 2017 | 75% | 100% | 0% | 25% | 50% | 75% |
B. lapidarius | n = 11 | 2018 | 0% | 90% | 0% | 0% | 0% | 9.1% |
B. pascuorum | n = 29 | 2018 | 3.4% | 65.5% | 0% | 0% | 48% | 24.1% |
B. terrestris/lucorum | n = 25 | 2018 | 4% | 84% | 0% | 0% | 4% | 28% |
B. hortorum | n = 3 | 2018 | 66% | 100% | 0% | 0% | 33% | 33% |
B. humilis | n = 2 | 2018 | 0% | 100% | 0% | 50% | 0% | 0% |
B. sylvarum | n = 12 | 2018 | 0% | 91.7% | 0% | 0% | 16.7% | 8.3% |
Apis mellifera | n = 4 | 2018 | 50% | 100% | 25% | 25% | 50% | 100% |
Average Bombus spp. | n = 148 | 2017–2018 | 8.8% | 58.1% | 0% | 2.7% | 24.3% | 14.8% |
Average Apis mellifera | n = 8 | 2017–2018 | 62.5% | 100% | 12.5% | 25% | 50% | 87.5% |
Honeybee Samples | Bumblebee Samples | |||||
---|---|---|---|---|---|---|
Honeybee Virus | Name of Honeybee Sample (Date of Sampling) | GenBank Accession Number | Name of Bumblebee Sample (Date of Sampling) | GenBank Accession Number | Number of Nucleotides Comparison | % of Nucleotide identity between Honeybee and Bumblebee Positive Samples |
ABPV | 246/2016 (7 October 2016) | MH900021 | Bombus-BP4/2017 (9 August 2017) | MH900051 | 408 | 99.75% |
ABPV | 281/2016 (10 May 2017) | MH900044 | Bombus-BL3/2017 (9 August 2017) | MH900049 | 408 | 100.00% |
ABPV | M99/2010 (17 May 2010) | HQ877404 | Bombus-BT29/2017 (23 August 2017) | MH900047 | 408 | 99.26% |
BQCV | 279/2017 (21 April 2017) | MH899977 | Bombus-BT23/2017 (22 August 2017) | MH900014 | 653 | 100.00% |
BQCV | 1960-1/2009 (26 August 2009) | MH899998 | Bombus-BT27/2017 (22 August 2017) | MH900015 | 653 | 100.00% |
BQCV | 287-2/2007 (14 June 2007) | MH899984 | Bombus-BL6/2017 (9 August 2017) | MH900010 | 653 | 100.00% |
SBV | NAK/2017 (10 August 2017) | MH900064 | Bombus-BP11/2017 (10 August 2017) | MH900065 | 783 | 100.00% |
SBV | AZ2/2016 (14 June 2016) | MH900059 | Bombus-BT33/2017 (28 August 2017) | MH900078 | 783 | 100.00% |
LSV3 | M92/2010 (year 2010) | MG918125 | LSV3/BombusBT35/2017 (28 August 2017) | MH350871 | 557 | 99.28% |
LSV3 | LSV3/CBNA/2017 (10 August 2017) | MH350882 | LSV3/BombusBP9/2017 (10 August 2017) | MH350883 | 557 | 98.74% |
LSV2 | LSV2/286/2017 (4 September 2017) | MH350890 | LSV2/BombusBP21/2017 (22 August 2017) | MH350889 | 557 | 99.64% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toplak, I.; Šimenc, L.; Pislak Ocepek, M.; Bevk, D. Determination of Genetically Identical Strains of Four Honeybee Viruses in Bumblebee Positive Samples. Viruses 2020, 12, 1310. https://doi.org/10.3390/v12111310
Toplak I, Šimenc L, Pislak Ocepek M, Bevk D. Determination of Genetically Identical Strains of Four Honeybee Viruses in Bumblebee Positive Samples. Viruses. 2020; 12(11):1310. https://doi.org/10.3390/v12111310
Chicago/Turabian StyleToplak, Ivan, Laura Šimenc, Metka Pislak Ocepek, and Danilo Bevk. 2020. "Determination of Genetically Identical Strains of Four Honeybee Viruses in Bumblebee Positive Samples" Viruses 12, no. 11: 1310. https://doi.org/10.3390/v12111310
APA StyleToplak, I., Šimenc, L., Pislak Ocepek, M., & Bevk, D. (2020). Determination of Genetically Identical Strains of Four Honeybee Viruses in Bumblebee Positive Samples. Viruses, 12(11), 1310. https://doi.org/10.3390/v12111310