Plaque Reduction Neutralization Test (PRNT) in the Congenital Zika Syndrome: Positivity and Associations with Laboratory, Clinical, and Imaging Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Type of Study and Data Collection
2.2. Case Definition
2.3. Plaque Reduction Neutralization Test (PRNT90)
2.4. Anti-DENV and Anti-ZIKV IgG Antibodies
2.5. Clinical and Imaging Variables
2.6. Statistical Analysis
2.7. Ethics Statement
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zika Virus in Brasil: The SUS Role. Available online: https://bvsms.saude.gov.br/bvs/publicacoes/virus_zika_brasil_resposta_sus.pdf (accessed on 29 July 2020).
- Fitzgerald, B.; Boyle, C.; Honein, M.A. Birth defects potentially related to Zika virus infection during pregnancy in the United States. JAMA 2018, 319, 1195–1196. [Google Scholar] [CrossRef] [PubMed]
- Yepez, J.B.; Murati, F.A.; Pettito, M.; Peñaranda, C.F.; Yepez, J.; Maestre, G.; Arevalo, J.F.; Johns Hopkins Zika Center. Ophthalmic manifestations of congenital Zika syndrome in Colombia and Venezuela. JAMA Ophthalmol. 2017, 135, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Brasil. Capítulo IV–Investigação laboratorial. In Protocolo de Vigilância e Resposta à Ocorrência de Microcefalia e/Ou Alterações do SISTEMA Nervoso Central (SNC); Ministério da Saúde: Brasília, Brasil, 2016; pp. 31–38. [Google Scholar]
- Zika and Pregnancy: Evaluation & Testing for Zika Virus. Available online: https://www.cdc.gov/pregnancy/zika/testing-follow-up/evaluation-testing.html (accessed on 29 July 2020).
- Pan American Health Organization. Recommendations for laboratory diagnosis of DENV, CHIKV, and ZIKV infection. In Tool for Diagnosis and Care for Patients with Suspected Arboviral Diseases; PAHO: Washington, DC, USA, 2017; pp. 43–49. [Google Scholar]
- Screening, Assessment and Management of Neonates and Infants with Complications Associated with Zika Virus Exposure in Utero. Available online: https://apps.who.int/iris/bitstream/handle/10665/204475/WHO_ZIKV_MOC_16.3_eng.pdf;jsessionid=B007025568BE78ECC42B52E9E12F94BA?sequence=1 (accessed on 29 July 2020).
- Chua, A.; Prat, I.; Nueblig, C.M.; Wood, D.; Moussy, F. Update on Zika Diagnostic Tests and WHO’s Related Activities. PLoS Negl. Trop. Dis. 2017, 11, e0005269. [Google Scholar] [CrossRef] [PubMed]
- Brasil. Como investigar os casos e óbitos notificados. In Orientações Integradas de Vigilância e Atenção à Saúde no Âmbito da Emergência em Saúde Pública de Importância Nacional: Procedimentos Para o Monitoramento das Alterações no Crescimento e Desenvolvimento a Partir da Gestação até a Primeira Infância, Relacionadas à Infecção Pelo Vírus Zika e Outras Etiologias Infeciosas Dentro da Capacidade Operacional do SUS; Ministério da Saúde: Brasília, Brasil, 2017; pp. 28–49. [Google Scholar]
- Aragão, M.F.V.; van der Linden, V.; Brainer-Lima, A.M.; Coeli, R.R.; Rocha, M.A.; Silva, P.S.; Carvalho, M.D.C.G.; van der Linden, A.; Holanda, A.C.; Valenca, M.M. Clinical features and neuroimaging (CT and MRI) findings in presumed Zika virus related congenital infection and microcephaly: Retrospective case series study. BMJ 2016, 353, 1–10. [Google Scholar] [CrossRef] [Green Version]
- França, G.V.A.; Schuler-Faccini, L.; Oliveira, W.K.; Henriques, C.M.P.; Carmo, E.H.; Pedi, V.D.; Nunes, M.L.; Castro, M.C.; Silveira, M.F.; Barros, F.C.; et al. Congenital Zika virus syndrome in Brazil: A case series of the first 1501 livebirths with complete investigation. Lancet 2016, 388, 891–897. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.A.M.; Ganz, J.S.S.; Sousa, P.S.; Doriqui, M.J.R.; Ribeiro, M.R.C.; Branco, M.R.F.C.; Queiroz, R.C.S.; Costa, F.R.V.; Silva, F.S.; Simões, V.M.F.; et al. Early growth and neurologic outcomes of infants with probable congenital Zika virus syndrome. Emerg. Infect. Dis. 2016, 22, 1953–1956. [Google Scholar] [CrossRef]
- Campo, M.; Feitosa, I.M.L.; Ribeiro, E.M.; Horovitz, D.D.G.; Pessoa, A.L.S.; França, G.V.A.; García-Alix, A.; Doriqui, M.A.R.; Wanderley, H.Y.C.; Sanseverino, M.V.T.; et al. The phenotypic spectrum of congenital Zika syndrome. Am. J. Med. Genet. 2017, 173, 841–857. [Google Scholar] [CrossRef] [Green Version]
- Castro, J.D.V.; Pereira, L.P.; Dias, D.A.; Aguiar, L.B.; Maia, J.C.N.; Costa, J.I.F.; Costa, E.C.M.; Feitosa, F.E.L.; Carvalho, F.H.G. Presumed Zika virus-related congenital brain malformations: The spectrum of CT and MRI findings in fetuses and newborns. Arq. Neuropsiquiatr. 2017, 75, 703–710. [Google Scholar] [CrossRef] [Green Version]
- Race, M.E.; Galang, R.R.; Roth, N.M.; Ellington, S.R.; Moore, C.A.; Valencia-Prado, M.; Ellis, E.M.; Tufa, A.J.; Taulung, L.A.; Alfred, J.M.; et al. Vital signs: Zika-associated birth defects and neurodevelopmental abnormalities possibly associated with congenital Zika virus infection—U.S. territories and freely associated States, 2018. MMWR Morb. Mort. Wkly. Rep. 2018, 67, 858–867. [Google Scholar] [CrossRef] [Green Version]
- Lage, M.L.C.; Carvalho, A.L.; Ventura, P.A.; Taguchi, T.B.; Fernandes, A.S.; Pinho, S.F.; Santos-Junior, O.T.; Ramos, C.L.; Nascimento-Carvalho, C.M. Clinical, neuroimaging, and neurophysiological findings in children with microcephaly related to congenital Zika virus infection. Int. J. Environ. Res. Public Health 2019, 16, 309. [Google Scholar] [CrossRef] [Green Version]
- Melo, A.; Gama, G.L.; Silva Júnior, R.A.; Assunção, P.L.; Tavares, J.S.; Silva, M.B.; Costa, K.N.F.S.; Vânia, M.L.; Evangelista, M.A.; Amorim, M.M.R. Motor function in children with congenital Zika syndrome. Dev. Med. Child Neurol. 2019, 62, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Venancio, F.A.; Bernal, M.E.Q.; Ramos, M.C.B.V.; Chaves, N.R.; Hendges, M.V.; Souza, M.M.R.; Medeiros, M.J.; Pinto, C.B.S.; Oliveira, E.F. Congenital Zika syndrome in a Brazil-Paraguay-Bolivia border region: Clinical features of cases diagnosed between 2015 and 2018. PLoS ONE 2019, 14, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Linden, V. van der; Pessoa, A.; Dobyns, W.; Barkovich, J.; Linden Júnior, H. van der; Rolim Filho, E.L.; Ribeiro, E.M.; Leal, M.C.; Coimbra, P.P.A.; Aragão, M.F.V.V.; et al. Description of 13 infants born during October 2015–January 2016 with congenital Zika virus infection—Brazil. MMWR 2016, 65, 1343–1348. [Google Scholar] [CrossRef] [PubMed]
- Aragão, M.F.V.V.; Holanda, A.C.; Brainer-Lima, A.M.; Petribu, N.C.L.; Castillo, M.; Linden, V. van der; Serpa, S.C.; Tenório, A.G.; Travassos, P.T.C.; Cordeiro, M.T.; et al. Nonmicrocephalic infants with congenital Zika syndrome suspected only after neuroimaging evaluation compared with those with microcephaly at birth and postnatally: How large is the Zika virus “iceberg”? AJNR Am. J. Neuroradiol. 2017, 38, 1427–1434. [Google Scholar] [CrossRef] [Green Version]
- Melo, A.S.O.; Aguiar, R.S.; Amorim, M.M.R.; Arruda, M.B.; Melo, F.O.; Ribeiro, S.T.C.; Batista, A.G.M.; Ferreira, T.; Santos, M.P.; Sampaio, V.V.; et al. Congenital Zika virus infection: Beyond neonatal microcephaly. JAMA Neurolo. 2019, 73, 1407–1416. [Google Scholar] [CrossRef]
- Araújo, T.V.B.; Ximenes, R.A.A.; Miranda-Filho, D.B.; Souza, W.V.; Montarroyos, U.R.; Melo, A.P.L.; Valongueiro, S.; Albuquerque, M.F.P.M.; Braga, C.; Brandão Filho, S.P. Association between microcephaly, Zika virus infection, and other risk factors in Brazil: Final report of a case-control study. Lancet Infect. Dis. 2018, 18, 328–336. [Google Scholar] [CrossRef] [Green Version]
- Meneses, J.A.; Ishigami, A.C.; Mello, L.M.; Albuquerque, L.L.; Brito, C.A.A.; Cordeiro, M.T.; Pena, L.J. Lessons learned at the epicenter of Brazil’s congenital Zika epidemic: Evidence from 87 confirmed cases. Clin. Infect. Dis. 2017, 64, 1302–1308. [Google Scholar] [CrossRef]
- Satterfield-Nash, A.; Kotzky, K.; Allen, J.; Bertolli, J.; Moore, C.A.; Pereira, I.O.; Pessoa, A.; Melo, F.; Santelli, A.C.F.S.; Boyle, C.; et al. Health and development at age 19-24 months of 19 children who were born with microcephaly and laboratory evidence of congenital Zika virus infection during the 2015 zika virus outbreak–Brazil, 2017. MMWR 2017, 66, 1347–1351. [Google Scholar] [CrossRef] [Green Version]
- Pomar, L.; Vouga, M.; Lambert, V.; Pomar, C.; Hcini, N.; Jolivet, A.; Benoist, G.; Rousset, D.; Matheus, S.; Malinger, G.; et al. Maternal-fetal transmission and adverse perinatal outcomes in pregnant women infected with Zika virus: Prospective cohort study in French Guiana. BMJ 2018, 363, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Cordeiro, M.T.; Brito, C.A.A.; Pena, L.J.; Castanha, P.M.S.; Gil, L.H.V.G.; Lopes, K.G.S.; Dhalia, R.; Meneses, J.A.; Ishigami, L.M.M.; Mello, L.M.; et al. Results of a Zika Virus (ZIKV) Immunoglobulin M–Specific Diagnostic Assay Are Highly Correlated With Detection of Neutralizing Anti-ZIKV Antibodies in Neonates With Congenital Disease. J. Infect. Dis. 2016, 214, 1897–1904. [Google Scholar] [CrossRef]
- Pool, K.; Adashi, K.; Kamezis, S.; Salamon, N.; Romero, T.; Nielsen-Saines, K.; Pone, S.; Boechat, M.; Aibe, M.; Silva, T.G.; et al. Association Between Neonatal Neuroimaging and Clinical Outcomes in Zika-Exposed Infants From Rio de Janeiro, Brazil. JAMA Network Open 2019, 2, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Venturi, G.; Fortuna, C.; Alves, R.M.; Paschoal, A.G.P.P.; Silva Júnior, P.J.; Remoli, M.E.; Benedetti, E.; Amendola, A.; Batista, E.S.; Gama, D.V.N.; et al. Epidemiological and clinical suspicion of congenital Zika virus infection: Serological findings in mothers and children from Brazil. J. Med. Virol. 2019, 91, 1577–1583. [Google Scholar] [CrossRef] [PubMed]
- Ximenes, R.A.A.; Miranda-Filho, D.B.; Brickley, E.B.; Montarroyos, U.R.; Martelli, C.M.T.; Araújo, T.V.B.; Rodrigues, L.C.; Albuquerque, M.F.P.M.; Souza, W.V.; Castanha, P.M.S.; et al. Zika virus infection in pregnancy: Establishing a case definition for clinical research on pregnant women with rash in an active transmission setting. PLoS Negl. Trop. Dis. 2019, 13, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- População Residente–Estudos de Estimativas Populacionais Por Município, Idade e Sexo 2000–2015—Brasil. Available online: http://tabnet.datasus.gov.br/cgi/tabcgi.exe?novapop/cnv/popbr.def (accessed on 29 July 2020).
- Radar IDHM: Evolução do IDHM e de Seus Índices Componentes no Período de 2012 a 2017. Available online: https://www.ipea.gov.br/portal/images/stories/PDFs/livros/livros/190416_rada_IDHM.pdf (accessed on 29 July 2020).
- Desigualdade de Renda Cresce Em Quinze Estados Brasileiros. Available online: https://fpabramo.org.br/2018/04/17/desigualdade-de-renda-cresce-em-15-estados/ (accessed on 29 July 2020).
- Baer, A.; Kehn-Hall, K. Viral Concentration Determination Through Plaque Assays: Using Traditional and Novel Overlay Systems. J. Vis. Exp. 2014, 93, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Villar, J.; Ismail, L.C.; Victora, C.G.; Ohuma, E.O.; Bertino, E.; Altman, D.G.; Lambert, A.; Papageorghiou, A.T.; Carvalho, M.; Jaffer, Y.A.; et al. International standards for newborn weight, length, and head circumference by gestational age and sex: The newborn cross-sectional study of the INTERGROWTH-21st Project. Lancet 2014, 384, 857–868. [Google Scholar] [CrossRef]
- WHO Child Growth Standards. Available online: https://www.who.int/childgrowth/en/ (accessed on 29 July 2020).
- Kwan, P.; Arzimanoglou, A.; Berg, A.T.; Brodie, M.J.; Allen Hauser, W.; Mathern, G.; Moshé, S.L.; Perucca, E.; Wiebe, S.; French, J. Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 2009, 51, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Palisano, R.; Rosenbaum, P.; Walter, S.; Russell, D.; Wood, E.; Galuppi, B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev. Med. Child Neurol. 1997, 39, 214–223. [Google Scholar] [CrossRef]
- Castanha, P.M.S.; Souza, W.V.; Braga, C.; Araújo, T.V.B.; Ximenes, R.A.A.; Albuquerque, M.F.P.M.; Montarroyos, U.R.; Miranda-Filho, D.B.; Cordeiro, M.T.; Dhalia, R.; et al. Perinatal analyses of Zika- and dengue virus specific neutralizing antibodies: A microcephaly case-control study in an area of high dengue endemicity in Brazil. PLoS Negl. Trop. Dis. 2019, 13, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Moore, C.A.; Staples, J.E.; Dobyns, W.B.; Pessoa, A.; Ventura, C.V.; Fonseca, E.B.; Ribeiro, E.M.; Ventura, L.O.; Nogueira Neto, N.; Arena, F.; et al. Characterizing the pattern of anomalies in congenital zika syndrome for pediatric clinicians. JAMA Pediatr. 2017, 171, 288–295. [Google Scholar] [CrossRef] [Green Version]
- Congenital Zika Syndrome & Other Birth Defects. Available online: https://www.cdc.gov/pregnancy/zika/testing-follow-up/zika-syndrome-birth-defects.html (accessed on 29 July 2020).
- Sulleiro, E.; Frick, M.A.; Rodó, C.; Espasa, M.; Thome, C.; Espiau, M.; Martin-Nalda, A.; Suy, A.; Giaquinto, C.; Melendo, S.; et al. The challenge of the laboratory diagnosis in a confirmed congenital Zika virus syndrome in utero: A case report. Medicine 2019, 98, 1–6. [Google Scholar] [CrossRef]
- Ravichandran, S.; Hahn, M.; Belaunzarán-Zamudio, P.F.; Ramos-Castañeda, J.; Nájera-Cancino, G.; Caballero-Sosa, S.; Navarro-Fuentes, K.R.; Ruiz-Palacios, G.; Golding, H.; Beigel, J.H.; et al. Differential human antibody repertoires following Zika infection and the implications for serodiagnostics and disease outcome. Nat. Commun. 2019, 10, 1943. [Google Scholar] [CrossRef] [PubMed]
- Robbiani, D.F.; Bozzacco, L.; Keeffe, J.R.; Khouri, R.; Olsen, P.C.; Gazumyan, A.; Schaefer-Babajew, D.; Avila-Rios, S.; Nogueira, L.; Patel, R.; et al. Recurrent potent human neutralizing antibodies to Zika virus in Brazil and Mexico. Cell 2017, 169, 597–609.e11. [Google Scholar] [CrossRef]
- Robbiani, D.F.; Olsen, P.C.; Costa, F.; Wang, Q.; Oliveira, T.Y.; Nery Jr, N.; Aromolaran, A.; Rosário, M.S.; Sacramento, G.A.; Cruz, J.S.; et al. Risk of Zika microcephaly correlates with features of maternal antibodies. J. Exp. Med. 2019, 216, 2302–2315. [Google Scholar] [CrossRef] [Green Version]
- Baud, D.; Gubler, D.J.; Schaub, B.; Lanteri, M.C.; Musso, D. An update on Zika virus infection. Lancet 2017, 390, 2099–2109. [Google Scholar] [CrossRef] [Green Version]
Laboratory Characteristics | PRNT90 a Positive b | PRNT90 a Negative c | p-Value | ||
---|---|---|---|---|---|
f | % | f | % | ||
In children | |||||
ZIKV IgM d,h (n = 27) | |||||
Negative | 7 | 41.2 | 10 | 58.8 | 0.236 |
Positive | 7 | 70.0 | 3 | 30.0 | |
Age (in months) of child at collection of PRNT90 a (n = 88) | 0.280 | ||||
<12 | 3 | 60.0 | 2 | 40.0 | |
12 to 17 | 2 | 20.0 | 8 | 80.0 | |
≥18 | 35 | 44.3 | 44 | 55.7 | |
ZIKV IgG e,h (n = 88) | 0.219 | ||||
Negative | 30 | 39.0 | 47 | 61.0 | |
Positive g | 2 | 33.3 | 4 | 66.7 | |
Inconclusive | 4 | 80.0 | 1 | 20.0 | |
Dengue IgG f,i (n = 88) | 0.195 | ||||
Negative | 16 | 34.0 | 31 | 66.0 | |
Positive | 20 | 48.8 | 21 | 51.2 | |
In mothers | |||||
ZIKV IgG e,h (n = 90) | 0.447 | ||||
Negative | 5 | 62.5 | 3 | 37.5 | |
Positive g | 32 | 41.0 | 46 | 59.0 | |
Inconclusive | 1 | 25.0 | 3 | 75.0 | |
Dengue IgG f,h (n = 90) | 0.669 | ||||
Negative | 1 | 50.0 | 1 | 50.0 | |
Positive | 37 | 42.0 | 51 | 58.0 |
Pregnant Women’s Infection Symptoms | PRNT90 a Positive b | PRNT90 a Negative c | p-Value | ||
---|---|---|---|---|---|
f | % | f | % | ||
Rash during pregnancy d (n = 90) | 0.424 | ||||
No | 17 | 48.6 | 18 | 51.4 | |
Yes | 22 | 40.0 | 33 | 60.0 | |
Presence of Zika virus infection symptoms during pregnancy d (n = 90) | 0.637 | ||||
No | 9 | 39.1 | 14 | 60.9 | |
Yes | 30 | 44.8 | 37 | 55.2 | |
Zika virus infections symptoms in the first trimester of pregnancy d (n = 67) | 0.981 | ||||
No | 9 | 45.0 | 11 | 55.0 | |
Yes | 21 | 44.7 | 26 | 55.3 |
Clinical Characteristics | PRNT90 a Positive b | PRNT90 a Negative c | p-Value | ||
---|---|---|---|---|---|
f | % | F | % | ||
Microcephaly at birth d (n = 79) | 0.016 | ||||
No microcephaly | 8 | 26.7 | 22 | 73.3 | |
Microcephaly | 4 | 28.6 | 10 | 71.4 | |
Severe microcephaly | 21 | 60.0 | 14 | 40.0 | |
Congenital Zika Syndrome clinical phenotype (n = 93) | |||||
Craniofacial disproportion d | 0.523 | ||||
No | 3 | 37.5 | 5 | 62.5 | |
Yes | 37 | 43.5 | 48 | 56.5 | |
Biparietal depression e | 0.447 | ||||
No | 21 | 39.6 | 32 | 60.4 | |
Yes | 19 | 47.5 | 21 | 52.5 | |
Occipital protuberance | 0.295 | ||||
No | 16 | 37.2 | 27 | 62.8 | |
Yes | 24 | 48.0 | 26 | 52.0 | |
Fronto-temporal retraction e | 0.457 | ||||
No | 10 | 37.0 | 17 | 63.0 | |
Yes | 30 | 45.5 | 36 | 54.5 | |
Excess nuchal skin e | 0.476 | ||||
No | 30 | 42.1 | 43 | 58.9 | |
Yes | 10 | 50.0 | 10 | 50.0 | |
Suture stripping e | 0.623 | ||||
No | 26 | 41.3 | 37 | 58.7 | |
Yes | 14 | 46.7 | 16 | 53.3 | |
Ophthalmic changes (n = 87) | |||||
Mobilization of macular pigment e | 0.955 | ||||
No | 30 | 46.2 | 35 | 53.8 | |
Yes | 10 | 45.5 | 12 | 54.5 | |
Chorioretinal scar e | 0.891 | ||||
No | 31 | 45.6 | 37 | 54.4 | |
Yes | 9 | 47.4 | 10 | 52.6 | |
Neurological changes | |||||
Age of first seizure d (n = 91) | 0.387 | ||||
No seizure | 6 | 66.7 | 3 | 33.3 | |
0-5 months | 19 | 39.6 | 29 | 60.4 | |
6-11 months | 8 | 38.1 | 13 | 61.9 | |
>12 months | 7 | 53.8 | 6 | 46.2 | |
Drug-resistant epilepsy (n = 91) e | 0.290 | ||||
No | 19 | 50.0 | 19 | 50.0 | |
Yes | 21 | 38.9 | 33 | 61.1 | |
Assessment of motor development with GMFCS d,f (n = 89) | 0.200 | ||||
I to III | 1 | 16.7 | 5 | 83.3 | |
IV and V | 36 | 56.6 | 47 | 43.4 |
Z-score of Head Circumference d | PRNT90 a Positive b | PRNT90 a Negative c | p-Value | ||
---|---|---|---|---|---|
N | Mean | N | Mean | ||
At birth | 33 | −3.15 | 46 | −2.43 | 0.043 |
6 months | 24 | −6.10 | 24 | −5.16 | 0.169 |
12 months | 28 | −5.86 | 37 | −4.98 | 0.113 |
24 months | 33 | −5.71 | 45 | −4.77 | 0.031 |
36 months | 15 | −6.17 | 22 | −4.72 | 0.061 |
Changes in Cranial Tomography | PRNT90 a Positive b | PRNT90 a Negative c | p-Value | ||
---|---|---|---|---|---|
F | % | f | % | ||
Degree of parenchyma volume reduction d (n = 81) | 0.022 | ||||
No reduction | 3 | 20.0 | 12 | 80.0 | |
Mild/moderate | 11 | 34.4 | 21 | 65.6 | |
Severe | 20 | 58.8 | 14 | 41.2 | |
Brain calcifications d (n = 92) | 0.591 | ||||
No calcifications | 1 | 16.7 | 5 | 83.3 | |
Subcortical | 27 | 42.9 | 36 | 57.1 | |
Other sites | 10 | 43.5 | 13 | 56.5 | |
Degree of ventriculomegaly d (n = 85) | 0.136 | ||||
No ventriculomegaly | 3 | 25.0 | 9 | 75.0 | |
Mild/moderate | 15 | 35.7 | 27 | 64.3 | |
Severe | 17 | 54.8 | 14 | 45.2 | |
Type of ventriculomegaly d (n = 86) | 0.556 | ||||
No ventriculomegaly | 3 | 25.0 | 9 | 75.0 | |
Ex vacuo | 27 | 39.7 | 41 | 60.3 | |
Hypertensive | 3 | 50.0 | 3 | 50.0 | |
Malformation of cortical development e (n = 90) | 0.322 | ||||
No | 5 | 29.4 | 12 | 70.6 | |
Yes | 31 | 42.5 | 42 | 57.5 | |
Cerebellum malformation e (n = 91) | 0.739 | ||||
No | 29 | 40.9 | 42 | 59.1 | |
Yes | 9 | 45.0 | 11 | 55.0 | |
Brainstem malformation e (n = 89) | 0.311 | ||||
No | 29 | 39.2 | 45 | 60.8 | |
Yes | 8 | 55.3 | 7 | 46.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, M.R.C.; Khouri, R.; Sousa, P.S.; Branco, M.R.F.C.; Batista, R.F.L.; Costa, E.P.F.; Alves, M.T.S.S.B.; Amaral, G.A.; Borges, M.C.R.; Takahasi, E.H.M.; et al. Plaque Reduction Neutralization Test (PRNT) in the Congenital Zika Syndrome: Positivity and Associations with Laboratory, Clinical, and Imaging Characteristics. Viruses 2020, 12, 1244. https://doi.org/10.3390/v12111244
Ribeiro MRC, Khouri R, Sousa PS, Branco MRFC, Batista RFL, Costa EPF, Alves MTSSB, Amaral GA, Borges MCR, Takahasi EHM, et al. Plaque Reduction Neutralization Test (PRNT) in the Congenital Zika Syndrome: Positivity and Associations with Laboratory, Clinical, and Imaging Characteristics. Viruses. 2020; 12(11):1244. https://doi.org/10.3390/v12111244
Chicago/Turabian StyleRibeiro, Marizélia R. C., Ricardo Khouri, Patrícia S. Sousa, Maria R. F. C. Branco, Rosângela F. L. Batista, Elaine P. F. Costa, Maria T. S. S. B. Alves, Gláucio A. Amaral, Marcella C. R. Borges, Eliana H. M. Takahasi, and et al. 2020. "Plaque Reduction Neutralization Test (PRNT) in the Congenital Zika Syndrome: Positivity and Associations with Laboratory, Clinical, and Imaging Characteristics" Viruses 12, no. 11: 1244. https://doi.org/10.3390/v12111244