In Vitro Combinations of Baloxavir Acid and Other Inhibitors against Seasonal Influenza A Viruses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells, Viruses and Compounds
2.2. In Vitro Studies of Antiviral Combinations
2.3. Evaluation of Antiviral Combinations in HAE
2.4. Statistical Analysis
3. Results
3.1. Antiviral Activity of Single Drugs against Two Influenza A Strains
3.2. In Vitro Two-Drug Combination Activity against Two Influenza A Strains
3.3. Two-Drug Combination Activity in Influenza A-Infected HAE
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Ziegler, T.; Mamahit, A.; Cox, N.J. 65 years of influenza surveillance by a World Health Organization-coordinated global network. Influenza Other Respir. Viruses 2018, 12, 558–565. [Google Scholar] [CrossRef]
- Paget, J.; Spreeuwenberg, P.; Charu, V.; Taylor, R.J.; Iuliano, A.D.; Bresee, J.; Simonsen, L.; Viboud, C. Global Seasonal Influenza-associated Mortality Collaborator Network and GLaMOR Collaborating Teams Global mortality associated with seasonal influenza epidemics: New burden estimates and predictors from the GLaMOR Project. J. Glob. Health 2019, 9, 020421. [Google Scholar] [CrossRef]
- Bosaeed, M.; Kumar, D. Seasonal influenza vaccine in immunocompromised persons. Hum. Vaccines Immunother. 2018, 14, 1311–1322. [Google Scholar] [CrossRef]
- Blanco-Lobo, P.; Nogales, A.; Rodríguez, L.; Martínez-Sobrido, L. Novel Approaches for the Development of Live Attenuated Influenza Vaccines. Viruses 2019, 11, 190. [Google Scholar] [CrossRef] [Green Version]
- CDC Flu Vaccines Benefits. Available online: https://www.cdc.gov/flu/prevent/vaccine-benefits.htm (accessed on 12 May 2020).
- Vemula, S.V.; Sayedahmed, E.E.; Sambhara, S.; Mittal, S.K. Vaccine approaches conferring cross-protection against influenza viruses. Expert Rev. Vaccines 2017, 16, 1141–1154. [Google Scholar] [CrossRef]
- Grohskopf, L.A.; Alyanak, E.; Broder, K.R.; Walter, E.B.; Fry, A.M.; Jernigan, D.B. Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices—United States, 2019–2020 Influenza Season. MMWR Recomm. Rep. 2019, 68, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Hsu, J.; Santesso, N.; Mustafa, R.; Brozek, J.; Chen, Y.L.; Hopkins, J.P.; Cheung, A.; Hovhannisyan, G.; Ivanova, L.; Flottorp, S.A.; et al. Antivirals for Treatment of Influenza. Ann. Intern. Med. 2012, 156, 512–524. [Google Scholar] [CrossRef] [Green Version]
- Beard, K.R.; Brendish, N.J.; Clark, T.W. Treatment of influenza with neuraminidase inhibitors. Curr. Opin. Infect. Dis. 2018, 31, 514–519. [Google Scholar] [CrossRef]
- Samson, M.; Pizzorno, A.; Abed, Y.; Boivin, G. Influenza virus resistance to neuraminidase inhibitors. Antiviral Res. 2013, 98, 174–185. [Google Scholar] [CrossRef]
- Lackenby, A.; Besselaar, T.G.; Daniels, R.S.; Fry, A.; Gregory, V.; Gubareva, L.V.; Huang, W.; Hurt, A.C.; Leang, S.K.; Lee, R.T.C.; et al. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors and status of novel antivirals, 2016–2017. Antiviral Res. 2018, 157, 38–46. [Google Scholar] [CrossRef]
- Laborda, P.; Wang, S.Y.; Voglmeir, J. Influenza Neuraminidase Inhibitors: Synthetic Approaches, Derivatives and Biological Activity. Molecules 2016, 21, 1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baz, M.; Carbonneau, J.; Rhéaume, C.; Cavanagh, M.H.; Boivin, G. Combination Therapy with Oseltamivir and Favipiravir Delays Mortality but Does Not Prevent Oseltamivir Resistance in Immunodeficient Mice Infected with Pandemic A(H1N1) Influenza Virus. Viruses 2018, 10, 610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mifsud, E.J.; Hayden, F.G.; Hurt, A.C. Antivirals targeting the polymerase complex of influenza viruses. Antiviral Res. 2019, 169, 104545. [Google Scholar] [CrossRef] [PubMed]
- Trebbien, R.; Pedersen, S.S.; Vorborg, K.; Franck, K.T.; Fischer, T.K. Development of oseltamivir and zanamivir resistance in influenza A(H1N1)pdm09 virus, Denmark, 2014. Eurosurveillance 2017, 22. [Google Scholar] [CrossRef] [Green Version]
- Tu, V.; Abed, Y.; Barbeau, X.; Carbonneau, J.; Fage, C.; Lagüe, P.; Boivin, G. The I427T neuraminidase (NA) substitution, located outside the NA active site of an influenza A(H1N1)pdm09 variant with reduced susceptibility to NA inhibitors, alters NA properties and impairs viral fitness. Antiviral Res. 2017, 137, 6–13. [Google Scholar] [CrossRef]
- Abed, Y.; Boivin, G. A Review of Clinical Influenza A and B Infections with Reduced Susceptibility to Both Oseltamivir and Zanamivir. Open Forum Infect. Dis. 2017, 4. [Google Scholar] [CrossRef]
- Jones, J.C.; Kumar, G.; Barman, S.; Najera, I.; White, S.W.; Webby, R.J.; Govorkova, E.A. Identification of the I38T PA Substitution as a Resistance Marker for Next-Generation Influenza Virus Endonuclease Inhibitors. mBio 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Koszalka, P.; Tilmanis, D.; Roe, M.; Vijaykrishna, D.; Hurt, A.C. Baloxavir marboxil susceptibility of influenza viruses from the Asia-Pacific, 2012–2018. Antiviral Res. 2019, 164, 91–96. [Google Scholar] [CrossRef]
- Omoto, S.; Speranzini, V.; Hashimoto, T.; Noshi, T.; Yamaguchi, H.; Kawai, M.; Kawaguchi, K.; Uehara, T.; Shishido, T.; Naito, A.; et al. Characterization of influenza virus variants induced by treatment with the endonuclease inhibitor baloxavir marboxil. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef]
- Hayden, F.G.; Sugaya, N.; Hirotsu, N.; Lee, N.; de Jong, M.D.; Hurt, A.C.; Ishida, T.; Sekino, H.; Yamada, K.; Portsmouth, S.; et al. Baloxavir Marboxil for Uncomplicated Influenza in Adults and Adolescents. N. Engl. J. Med. 2018, 379, 913–923. [Google Scholar] [CrossRef]
- Goldhill, D.H.; te Velthuis, A.J.W.; Fletcher, R.A.; Langat, P.; Zambon, M.; Lackenby, A.; Barclay, W.S. The mechanism of resistance to favipiravir in influenza. Proc. Natl. Acad. Sci. USA 2018, 115, 11613–11618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smee, D.F.; Tarbet, E.B.; Furuta, Y.; Morrey, J.D.; Barnard, D.L. Synergistic combinations of favipiravir and oseltamivir against wild-type pandemic and oseltamivir-resistant influenza A virus infections in mice. Future Virol. 2013, 8, 1085–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beigel, J.H.; Bao, Y.; Beeler, J.; Manosuthi, W.; Slandzicki, A.; Dar, S.M.; Panuto, J.; Beasley, R.L.; Perez-Patrigeon, S.; Suwanpimolkul, G.; et al. A Randomized Double-Blind Phase 2 Study of Combination Antivirals for the Treatment of Influenza. Lancet Infect. Dis. 2017, 17, 1255–1265. [Google Scholar] [CrossRef]
- Bi, Y.; Wong, G.; Liu, Y.; Liu, L.; Gao, G.F.; Shi, Y. Ribavirin is effective against drug-resistant H7N9 influenza virus infections. Protein Cell 2016, 7, 611–614. [Google Scholar] [CrossRef] [Green Version]
- Fukao, K.; Noshi, T.; Yamamoto, A.; Kitano, M.; Ando, Y.; Noda, T.; Baba, K.; Matsumoto, K.; Higuchi, N.; Ikeda, M.; et al. Combination treatment with the cap-dependent endonuclease inhibitor baloxavir marboxil and a neuraminidase inhibitor in a mouse model of influenza A virus infection. J. Antimicrob. Chemother. 2019, 74, 654–662. [Google Scholar] [CrossRef] [Green Version]
- Hatakeyama, S.; Sakai-Tagawa, Y.; Kiso, M.; Goto, H.; Kawakami, C.; Mitamura, K.; Sugaya, N.; Suzuki, Y.; Kawaoka, Y. Enhanced Expression of an α2,6-Linked Sialic Acid on MDCK Cells Improves Isolation of Human Influenza Viruses and Evaluation of Their Sensitivity to a Neuraminidase Inhibitor. J. Clin. Microbiol. 2005, 43, 4139–4146. [Google Scholar] [CrossRef] [Green Version]
- Bantia, S.; Ghate, A.A.; Ananth, S.L.; Babu, Y.S.; Air, G.M.; Walsh, G.M. Generation and Characterization of a Mutant of Influenza A Virus Selected with the Neuraminidase Inhibitor BCX-140. Antimicrob. Agents Chemother. 1998, 42, 801–807. [Google Scholar] [CrossRef] [Green Version]
- Abed, Y.; Bourgault, A.M.; Fenton, R.J.; Morley, P.J.; Gower, D.; Owens, I.J.; Tisdale, M.; Boivin, G. Characterization of 2 Influenza A(H3N2) Clinical Isolates with Reduced Susceptibility to Neuraminidase Inhibitors Due to Mutations in the Hemagglutinin Gene. J. Infect. Dis. 2002, 186, 1074–1080. [Google Scholar] [CrossRef]
- Chou, T.C. Theoretical Basis, Experimental Design, and Computerized Simulation of Synergism and Antagonism in Drug Combination Studies. Pharmacol. Rev. 2006, 58, 621–681. [Google Scholar] [CrossRef]
- Drouot, E.; Piret, J.; Boivin, G. Artesunate demonstrates in vitro synergism with several antiviral agents against human cytomegalovirus. Antivir. Ther. 2016, 21, 535–539. [Google Scholar] [CrossRef] [Green Version]
- Pizzorno, A.; Terrier, O.; Nicolas de Lamballerie, C.; Julien, T.; Padey, B.; Traversier, A.; Roche, M.; Hamelin, M.E.; Rhéaume, C.; Croze, S.; et al. Repurposing of Drugs as Novel Influenza Inhibitors From Clinical Gene Expression Infection Signatures. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pizzorno, A.; Padey, B.; Terrier, O.; Rosa-Calatrava, M. Drug Repurposing Approaches for the Treatment of Influenza Viral Infection: Reviving Old Drugs to Fight against a Long-Lived Enemy. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Spilovska, K.; Zemek, F.; Korabecny, J.; Nepovimova, E.; Soukup, O.; Windisch, M.; Kuca, K. Adamantane—A Lead Structure for Drugs in Clinical Practice. Curr. Med. Chem. 2016, 23, 3245–3266. [Google Scholar] [CrossRef] [PubMed]
- Jefferson, T.; Jones, M.A.; Doshi, P.; Mar, C.B.D.; Hama, R.; Thompson, M.J.; Spencer, E.A.; Onakpoya, I.J.; Mahtani, K.R.; Nunan, D.; et al. Neuraminidase inhibitors for preventing and treating influenza in adults and children. Cochrane Database Syst. Rev. 2014. [Google Scholar] [CrossRef]
- McKimm-Breschkin, J.L. Influenza neuraminidase inhibitors: Antiviral action and mechanisms of resistance. Influenza Other Respir. Viruses 2013, 7, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.; Galvin, H.D.; Haw, T.Y.; Nutsford, A.N.; Husain, M. Drug resistance in influenza a virus: The epidemiology and management. Infect. Drug Resist. 2017, 10, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Melville, K.; Rodriguez, T.; Dobrovolny, H.M. Investigating Different Mechanisms of Action in Combination Therapy for Influenza. Front. Pharmacol. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Cokol-Cakmak, M.; Bakan, F.; Cetiner, S.; Cokol, M. Diagonal Method to Measure Synergy among Any Number of Drugs. J. Vis. Exp. JoVE 2018. [Google Scholar] [CrossRef] [Green Version]
- Johnson, S.C. Antiretroviral Therapy for HIV Infection: When to Initiate Therapy, Which Regimen to Use, and How to Monitor Patients on Therapy. Top. Antivir. Med. 2016, 23, 161–167. [Google Scholar]
- Pau, A.K.; George, J.M. Antiretroviral Therapy: Current Drugs. Infect. Dis. Clin. N. Am. 2014, 28, 371–402. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.L.; Gao, M.; Lin, K.; Liu, Q.; Villareal, V.A. Anti-HCV drugs in the pipeline. Curr. Opin. Virol. 2011, 1, 607–616. [Google Scholar] [CrossRef] [Green Version]
- Ferenci, P. New anti-HCV drug combinations: Who will benefit? Lancet Infect. Dis. 2017, 17, 1008–1009. [Google Scholar] [CrossRef]
- Noshi, T.; Kitano, M.; Taniguchi, K.; Yamamoto, A.; Omoto, S.; Baba, K.; Hashimoto, T.; Ishida, K.; Kushima, Y.; Hattori, K.; et al. In vitro characterization of baloxavir acid, a first-in-class cap-dependent endonuclease inhibitor of the influenza virus polymerase PA subunit. Antiviral Res. 2018, 160, 109–117. [Google Scholar] [CrossRef]
- Ormond, L.; Liu, P.; Matuszewski, S.; Renzette, N.; Bank, C.; Zeldovich, K.; Bolon, D.N.; Kowalik, T.F.; Finberg, R.W.; Jensen, J.D.; et al. The Combined Effect of Oseltamivir and Favipiravir on Influenza A Virus Evolution. Genome Biol. Evol. 2017, 9, 1913–1924. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, J.I.; Lee, I.; Lee, S.; Hwang, M.W.; Bae, J.Y.; Heo, J.; Kim, D.; Jang, S.I.; Kim, H.; et al. Combination Effects of Peramivir and Favipiravir against Oseltamivir-Resistant 2009 Pandemic Influenza A(H1N1) Infection in Mice. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- Stein, D.S.; Creticos, C.M.; Jackson, G.G.; Bernstein, J.M.; Hayden, F.G.; Schiff, G.M.; Bernstein, D.I. Oral ribavirin treatment of influenza A and B. Antimicrob. Agents Chemother. 1987, 31, 1285–1287. [Google Scholar] [CrossRef] [Green Version]
- Hayden, F.G.; Shindo, N. Influenza virus polymerase inhibitors in clinical development. Curr. Opin. Infect. Dis. 2019, 32, 176–186. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Y.; Musharrafieh, R.; Yin, H.; Wang, J. Focusing on the Influenza Virus Polymerase Complex: Recent Progress in Drug Discovery and Assay Development. Curr. Med. Chem. 2019, 26, 2243–2263. [Google Scholar] [CrossRef]
- Yin, N.; Ma, W.; Pei, J.; Ouyang, Q.; Tang, C.; Lai, L. Synergistic and Antagonistic Drug Combinations Depend on Network Topology. PLoS ONE 2014, 9. [Google Scholar] [CrossRef]
- Carrat, F.; Duval, X.; Tubach, F.; Mosnier, A.; Van der Werf, S.; Tibi, A.; Blanchon, T.; Leport, C.; Flahault, A.; Mentré, F.; et al. Effect of oseltamivir, zanamivir or oseltamivir-zanamivir combination treatments on transmission of influenza in households. Antivir. Ther. 2012, 17, 1085–1090. [Google Scholar] [CrossRef] [Green Version]
- Pizzorno, A.; Abed, Y.; Rhéaume, C.; Boivin, G. Oseltamivir–zanamivir combination therapy is not superior to zanamivir monotherapy in mice infected with influenza A(H3N2) and A(H1N1)pdm09 viruses. Antiviral Res. 2014, 105, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Deng, Z.; Zhao, W.; Cao, Z. Searching Synergistic Dose Combinations for Anticancer Drugs. Front. Pharmacol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Tallarida, R.J.; Raffa, R.B. The application of drug dose equivalence in the quantitative analysis of receptor occupation and drug combinations. Pharmacol. Ther. 2010, 127, 165–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pires de Mello, C.P.; Drusano, G.L.; Adams, J.R.; Shudt, M.; Kulawy, R.; Brown, A.N. Oseltamivir-zanamivir combination therapy suppresses drug-resistant H1N1 influenza A viruses in the hollow fiber infection model (HFIM) system. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2018, 111, 443–449. [Google Scholar] [CrossRef] [PubMed]
Effective Concentration That Inhibits Virus Effect by 50% (nM) | ||
---|---|---|
Antiviral | A/California/7/2009 (H1N1)pdm09 | A/Switzerland/9715293/2013 (H3N2) |
Baloxavir acid | 0.48 ± 0.22 | 19.55 ± 5.66 |
Ribavirin | 3872.65 ± 356.54 | 2222.10 ± 1556.82 |
Oseltamivir | 101.67 ± 54.19 | 420.00 ± 287.17 |
Zanamivir | 132.00 ± 74.63 | 2475.00 ± 962.27 |
Favipiravir | 4050.00 ± 880.83 | 10,323.33 ± 1889.19 |
Peramivir | 15.00 ± 5.77 | 48.43 ± 21.83 |
(A) | A/California/7/2009 (H1N1)pdm09 | ||||||
CI values extrapolated at % of virus inhibition b | |||||||
Antiviral combination | EC50 ratio a | 50 | 75 | 90 | 95 | CIwt c | Effect d |
BXA + ZANA | 1:270.27 | 1.00 ± 0.52 | 0.49 ± 0.28 | 0.32 ± 0.16 | 0.26 ± 0.11 | 0.40 | synergism |
BXA + OSELT | 1:212.7 | 0.80 ± 0.56 | 0.53 ± 0.37 | 0.43 ± 0.22 | 0.40 ± 0.17 | 0.48 | synergism |
BXA + PERA | 1:31.06 | 0.86 ± 0.27 | 0.53 ± 0.35 | 0.43 ± 0.41 | 0.40 ± 0.43 | 0.48 | synergism |
BXA + RIBA | 1:10,000 | 1.56 ± 0.39 | 1.63 ± 0.49 | 1.88 ± 0.89 | 2.16 ± 1.27 | 1.91 | antagonism |
BXA + FAVI | 1:8333 | 0.34 ± 0.06 | 0.36 ± 0.23 | 0.51 ± 0.48 | 0.69 ± 0.79 | 0.54 | synergism |
(B) | A/Switzerland/9715293/2013 (H3N2) | ||||||
CI values extrapolated at % of virus inhibition b | |||||||
Antiviral combination | EC50 ratio a | 50 | 75 | 90 | 95 | CIwt c | Effect d |
BXA + ZANA | 1:125 | 0.65 ± 0.42 | 0.36 ± 0.32 | 0.41± 0.60 | 0.52 ± 0.84 | 0.47 | synergism |
BXA + OSELT | 1:21.28 | 0.67 ± 0.48 | 0.53 ± 0.23 | 0.46 ± 0.01 | 0.45 ± 0.13 | 0.49 | synergism |
BXA + PERA | 1:2.46 | 0.28 ± 0.07 | 0.31 ± 0.1 | 0.40 ± 0.27 | 0.51 ± 0.46 | 0.42 | synergism |
BXA + RIBA | 1:111 | 4.11 ± 2.23 | 1.52 ± 0.50 | 0.84 ± 0.82 | 0.65 ± 0.78 | 1.23 | moderate antagonism |
BXA + FAVI | 1:125 | 0.21 ± 0.07 | 0.16 ± 0.04 | 0.15 ± 0.04 | 0.16 ± 0.07 | 0.16 | synergism |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Checkmahomed, L.; Padey, B.; Pizzorno, A.; Terrier, O.; Rosa-Calatrava, M.; Abed, Y.; Baz, M.; Boivin, G. In Vitro Combinations of Baloxavir Acid and Other Inhibitors against Seasonal Influenza A Viruses. Viruses 2020, 12, 1139. https://doi.org/10.3390/v12101139
Checkmahomed L, Padey B, Pizzorno A, Terrier O, Rosa-Calatrava M, Abed Y, Baz M, Boivin G. In Vitro Combinations of Baloxavir Acid and Other Inhibitors against Seasonal Influenza A Viruses. Viruses. 2020; 12(10):1139. https://doi.org/10.3390/v12101139
Chicago/Turabian StyleCheckmahomed, Liva, Blandine Padey, Andrés Pizzorno, Olivier Terrier, Manuel Rosa-Calatrava, Yacine Abed, Mariana Baz, and Guy Boivin. 2020. "In Vitro Combinations of Baloxavir Acid and Other Inhibitors against Seasonal Influenza A Viruses" Viruses 12, no. 10: 1139. https://doi.org/10.3390/v12101139
APA StyleCheckmahomed, L., Padey, B., Pizzorno, A., Terrier, O., Rosa-Calatrava, M., Abed, Y., Baz, M., & Boivin, G. (2020). In Vitro Combinations of Baloxavir Acid and Other Inhibitors against Seasonal Influenza A Viruses. Viruses, 12(10), 1139. https://doi.org/10.3390/v12101139