Macrophage Tropism in Pathogenic HIV-1 and SIV Infections
Abstract
:1. Introduction
2. Primate Lentiviruses Primarily Replicate in CD4+ T-Cells
2.1. SIVs and HIV-1 Primarily Replicate in CD4+ T-Cells
2.2. Most Myloid Lineage Cells Are Largely Resistant to HIV-1 and SIV Infection
2.3. Restriction Factors Limiting Viral Infection in Myeloid Lineage Cells
3. HIV-1 Infection of Macrophage
3.1. HIV-1 Primarily Infects Macrophages When CD4+ T-Cells Are Limited
3.2. Macrophage-Tropic HIV-1 Has an Enhanced Ability to Infect Cells Expressing a Low Surface Density of CD4
4. Infection of Macrophages in Pathogenic SIV Infections of Non-Natural Hosts (Asian NHPs)
Macrophage-Tropic SIVs often Have the Ability to Infect Cells Lacking CD4
5. Infection of Macrophages in Nonpathogenic SIV Infections of Natural Hosts (African NHPs)
5.1. CD4-Dependence of SIV in Natural Hosts
5.2. There are Substantial Blocks to SIV Infection of Macrophage in Their Natural Hosts
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Worobey, M.; Telfer, P.; Souquiere, S.; Hunter, M.; Coleman, C.A.; Metzger, M.J.; Reed, P.; Makuwa, M.; Hearn, G.; Honarvar, S.; et al. Island biogeography reveals the deep history of SIV. Science 2010, 329, 1487. [Google Scholar] [CrossRef] [Green Version]
- Peeters, M.; Ma, D.Z.; Liegeois, F.; Apetrei, C. Simian Immunodeficiency Virus Infections in the Wild; Elsevier Academic Press Inc.: San Diego, CA, USA, 2014; pp. 37–67. [Google Scholar]
- Hahn, B.H.; Shaw, G.M.; De Cock, K.M.; Sharp, P.M. AIDS as a zoonosis: Scientific and public health implications. Science 2000, 287, 607–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Worobey, M.; Gemmel, M.; Teuwen, D.E.; Haselkorn, T.; Kunstman, K.; Bunce, M.; Muyembe, J.J.; Kabongo, J.M.M.; Kalengayi, R.M.; Van Marck, E.; et al. Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature 2008, 455, 661–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemey, P.; Pybus, O.G.; Wang, B.; Saksena, N.K.; Salemi, M.; Vandamme, A.M. Tracing the origin and history of the HIV-2 epidemic. Proc. Natl. Acad. Sci. USA 2003, 100, 6588–6592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klatt, N.R.; Silvestri, G.; Hirsch, V. Nonpathogenic Simian Immunodeficiency Virus Infections. Cold Spring Harb. Perspect. Med. 2012, 2, a007153. [Google Scholar] [CrossRef] [Green Version]
- Gardner, M.B. The history of simian AIDS. J. Med. Primatol. 1996, 25, 148–157. [Google Scholar] [CrossRef]
- Gorry, P.R.; Bristol, G.; Zack, J.A.; Ritola, K.; Swanstrom, R.; Birch, C.J.; Bell, J.E.; Bannert, N.; Crawford, K.; Wang, H.; et al. Macrophage tropism of human immunodeficiency virus type 1 isolates from brain and lymphoid tissues predicts neurotropism independent of coreceptor specificity. J. Virol. 2001, 75, 10073–10089. [Google Scholar] [CrossRef] [Green Version]
- Gorry, P.R.; Taylor, J.; Holm, G.H.; Mehle, A.; Morgan, T.; Cayabyab, M.; Farzan, M.; Wang, H.; Bell, J.E.; Kunstman, K.; et al. Increased CCR5 affinity and reduced CCR5/CD4 dependence of a neurovirulent primary human immunodeficiency virus type 1 isolate. J. Virol. 2002, 76, 6277–6292. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Juarez, J.; Alali, M.; Dwyer, D.; Collman, R.; Cunningham, A.; Naif, H.M. Persistent CCR5 utilization and enhanced macrophage tropism by primary blood human immunodeficiency virus type 1 isolates from advanced stages of disease and comparison to tissue-derived isolates. J. Virol. 1999, 73, 9741–9755. [Google Scholar] [CrossRef] [Green Version]
- Peters, P.J.; Bhattacharya, J.; Hibbitts, S.; Dittmar, M.T.; Simmons, G.; Bell, J.; Simmonds, P.; Clapham, P.R. Biological analysis of human immunodeficiency virus type 1 R5 envelopes amplified from brain and lymph node tissues of AIDS patients with neuropathology reveals two distinct tropism phenotypes and identifies envelopes in the brain that confer an enhanced tropism and fusigenicity for macrophages. J. Virol. 2004, 78, 6915–6926. [Google Scholar]
- Schnell, G.; Joseph, S.; Spudich, S.; Price, R.W.; Swanstrom, R. HIV-1 replication in the central nervous system occurs in two distinct cell types. PLoS Pathog. 2011, 7, e1002286. [Google Scholar] [CrossRef] [Green Version]
- Koyanagi, Y.; Miles, S.; Mitsuyasu, R.T.; Merrill, J.E.; Vinters, H.V.; Chen, I.S.Y. Dual infection of the central nervous system by AIDS viruses with distinct cellular tropisms. Science 1987, 236, 819–822. [Google Scholar] [CrossRef]
- Bannert, N.; Schenten, D.; Craig, S.; Sodroski, J. The level of CD4 expression limits infection of primary rhesus monkey macrophages by a T-tropic simian immunodeficiency virus and macrophagetropic human immunodeficiency viruses. J. Virol. 2000, 74, 10984–10993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edinger, A.L.; Mankowski, J.L.; Doranz, B.J.; Margulies, B.J.; Lee, B.; Rucker, J.; Sharron, M.; Hoffman, T.L.; Berson, J.F.; Zink, M.C.; et al. CD4-independent, CCR5-dependent infection of brain capillary endothelial cells by a neurovirulent simian immunodeficiency virus strain. Proc. Natl. Acad. Sci. USA 1997, 94, 14742–14747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mankowski, J.L.; Spelman, J.P.; Ressetar, H.G.; Strandberg, J.D.; Laterra, J.; Carter, D.L.; Clements, J.E.; Zink, M.C. Neurovirulent simian immunodeficiency virus replicates productively in endothelial cells of the central nervous system in vivo and in vitro. J. Virol. 1994, 68, 8202–8208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Overholser, E.D.; Babas, T.; Zink, M.C.; Barber, S.A.; Clements, J.E. CD4-independent entry and replication of simian immunodeficiency virus in primary rhesus macaque astrocytes are regulated by the transmembrane protein. J. Virol. 2005, 79, 4944–4951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puffer, B.A.; Pohlmann, S.; Edinger, A.L.; Carlin, D.; Sanchez, M.D.; Reitter, J.; Watry, D.D.; Fox, H.S.; Desrosiers, R.C.; Doms, R.W. CD4 independence of simian immunodeficiency virus Envs is associated with macrophage tropism, neutralization sensitivity, and attenuated pathogenicity. J. Virol. 2002, 76, 2595–2605. [Google Scholar] [CrossRef] [Green Version]
- Reu, P.; Khosravi, A.; Bernard, S.; Mold, J.E.; Salehpour, M.; Alkass, K.; Perl, S.; Tisdale, J.; Possnert, G.; Druid, H.; et al. The lifespan and turnover of microglia in the human brain. Cell Rep. 2017, 20, 779–784. [Google Scholar] [CrossRef] [Green Version]
- Mir, K.D.; Mavigner, M.; Wang, C.; Paiardini, M.; Sodora, D.L.; Chahroudi, A.M.; Bosinger, S.E.; Silvestri, G. Reduced Simian Immunodeficiency Virus replication in macrophages of sooty mangabeys is associated with increased expression of host restriction factors. J. Virol. 2015, 89, 10136–10144. [Google Scholar] [CrossRef] [Green Version]
- Josefsson, L.; King, M.S.; Makitalo, B.; Brannstrom, J.; Shao, W.; Maldarelli, F.; Kearney, M.F.; Hu, W.S.; Chen, J.B.; Gaines, H.; et al. Majority of CD4(+) T cells from peripheral blood of HIV-1-infected individuals contain only one HIV DNA molecule. Proc. Natl. Acad. Sci. USA 2011, 108, 11199–11204. [Google Scholar] [CrossRef] [Green Version]
- Massanella, M.; Bakeman, W.; Sithinamsuwan, P.; Fletcher, J.L.K.; Chomchey, N.; Tipsuk, S.; Chalermchai, T.; Routy, J.P.; Ananworanich, J.; Valcour, V.G.; et al. Infrequent HIV Infection of Circulating Monocytes during Antiretroviral Therapy. J. Virol. 2020, 94, 14. [Google Scholar] [CrossRef]
- Wu, L.; KewalRamani, V.N. Dendritic-cell interactions with HIV: Infection and viral dissemination. Nat. Rev. Immunol. 2006, 6, 859–868. [Google Scholar] [CrossRef]
- Zhou, L.; Rua, R.; Ng, T.; Vongrad, V.; Ho, Y.S.; Geczy, C.; Hsu, K.; Brew, B.J.; Saksena, N.K. Evidence for predilection of macrophage infiltration patterns in the deeper midline and mesial temporal structures of the brain uniquely in patients with HIV-associated dementia. BMC Infect. Dis. 2009, 9, 192. [Google Scholar] [CrossRef] [Green Version]
- Chen, B. Molecular Mechanism of HIV-1 Entry. Trends. Microbiol. 2019, 27, 878–891. [Google Scholar] [CrossRef] [PubMed]
- Dalgleish, A.G.; Beverley, P.C.L.; Clapham, P.R.; Crawford, D.H.; Greaves, M.F.; Weiss, R.A. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 1984, 312, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, J.M.; Lowy, I.; Fletcher, C.V.; O’Neill, T.J.; Tran, D.N.H.; Ketas, T.J.; Trkola, A.; Klotman, M.E.; Maddon, P.J.; Olson, W.C.; et al. Single-dose safety, pharmacology, and antiviral activity of the human immunodeficiency virus (HIV) type 1 entry inhibitor PRO 542 in HIV-infected adults. J. Infect. Dis. 2000, 182, 326–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuritzkes, D.R.; Jacobson, J.; Powderly, W.G.; Godofsky, E.; DeJesus, E.; Haas, F.; Reimann, K.A.; Larson, J.L.; Yarbough, P.O.; Curt, V.; et al. Antiretroviral activity of the anti-CD4 monoclonal antibody TNX-355 in patients infected with HIV type 1. J. Infect. Dis. 2004, 189, 286–291. [Google Scholar] [CrossRef]
- Reimann, K.A.; Lin, W.Y.; Bixler, S.; Browning, B.; Ehrenfels, B.N.; Lucci, J.; Miatkowski, K.; Olson, D.; Parish, T.H.; Rosa, M.D.; et al. A humanized form of a CD4-specific monoclonal antibody exhibits decreased antigenicity and prolonged plasma half-life in rhesus monkeys while retaining its unique biological and antiviral properties. AIDS Res. Hum. Retrovir. 1997, 13, 933–943. [Google Scholar] [CrossRef]
- Klatzmann, D.; Champagne, E.; Chamaret, S.; Gruest, J.; Guetard, D.; Hercend, T.; Gluckman, J.C.; Montagnier, L. T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 1984, 312, 767–768. [Google Scholar] [CrossRef]
- Lee, B.; Sharron, M.; Montaner, L.J.; Weissman, D.; Doms, R.W. Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc. Natl. Acad. Sci. USA 1999, 96, 5215–5220. [Google Scholar] [CrossRef] [Green Version]
- Ellmeier, W.; Sawada, S.; Littman, D.R. The regulation of CD4 and CD8 coreceptor gene expression during T cell development. Annu. Rev. Immunol. 1999, 17, 523–554. [Google Scholar] [CrossRef] [PubMed]
- Kazazi, F.; Mathijs, J.M.; Foley, P.; Cunningham, A.L. Variations in CD4 Expression by Human Monocytes and Macrophages and Their Relationships to Infection With the Human Immunodeficiency Virus. J. Gen. Virol. 1989, 70, 2661–2672. [Google Scholar] [CrossRef] [PubMed]
- Wood, G.S.; Warner, N.L.; Warnke, R.A. Anti-Leu-3/T4 antibodies react with cells of monocyte/macrophage and Langerhans lineage. J. Immunol. 1983, 131, 212–216. [Google Scholar] [PubMed]
- Cenker, J.J.; Stultz, R.D.; McDonald, D. Brain microglial cells are highly susceptible to HIV-1 infection and spread. AIDS Res. Hum. Retrovir. 2017, 33, 1155–1165. [Google Scholar] [CrossRef]
- Albright, A.V.; Shieh, J.T.C.; Itoh, T.; Lee, B.; Pleasure, D.; O’Connor, M.J.; Doms, R.W.; Gonzalez-Scarano, F. Microglia express CCR5, CXCR4, and CCR3, but of these, CCR5 is the principal coreceptor for human immunodeficiency virus type 1 dementia isolates. J. Virol. 1999, 73, 205–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dick, A.D.; Pell, M.; Brew, B.J.; Foulcher, E.; Sedgwick, J.D. Direct ex vivo flow cytometric analysis of human microglial cell CD4 expression: Examination of central nervous system biopsy specimens from HIV-seropositive patients and patients with other neurological disease. AIDS 1997, 11, 1699–1708. [Google Scholar] [CrossRef]
- Damasceno, D.; Andres, M.P.; van den Bossche, W.B.L.; Flores-Montero, J.; de Bruin, S.; Teodosio, C.; van Dongen, J.J.M.; Orfao, A.; Almeida, J. Expression profile of novel cell surface molecules on different subsets of human peripheral blood antigen-presenting cells. Clin. Transl. Immunol. 2016, 5, e100. [Google Scholar] [CrossRef]
- Jardine, L.; Barge, D.; Ames-Draycott, A.; Pagan, S.; Cookson, S.; Spickett, G.; Haniffa, M.; Collin, M.; Bigley, V. Rapid detection of dendritic cell and monocyte disorders using CD4 as a lineage marker of the human peripheral blood antigen-presenting cell compartment. Front. Immunol. 2013, 4, 495. [Google Scholar] [CrossRef] [Green Version]
- Stahmer, I.; Zimmer, J.P.; Ernst, M.; Fenner, T.; Finnern, R.; Schmitz, H.; Flad, H.D.; Gerdes, J. Isolation of normal human follicular dendritic cells and CD4-independent in vitro infection by human immunodeficiency virus (HIV-1). Eur. J. Immunol. 1991, 21, 1873–1878. [Google Scholar] [CrossRef]
- Sellheyer, K.; Schwarting, R.; Stein, H. Isolation and antigenic profile of follicular dendritic cells. Clin. Exp. Immunol. 1989, 78, 431–436. [Google Scholar]
- Schriever, F.; Freeman, G.; Nadler, L.M. Follicular dendritic cells contain a unique gene repertoire demonstrated by single-cell polymerase chain reaction. Blood 1991, 77, 787–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westmoreland, S.V.; Alvarez, X.; de Bakker, C.; Aye, P.; Wilson, M.L.; Williams, K.C.; Lackner, A.A. Developmental expression patterns of CCR5 and CXCR4 in the rhesus macaque brain. J. Neuroimmunol. 2002, 122, 146–158. [Google Scholar] [CrossRef]
- Mori, K.; Rosenzweig, M.; Desrosiers, R.C. Mechanisms for adaptation of simian immunodeficiency virus to replication in alveolar macrophages. J. Virol. 2000, 74, 10852–10859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, H.J.; Ma, J.P.; Zhang, G.H.; Han, J.B.; Wang, J.H.; Zheng, Y.T. Effect of Plasma Viremia on Apoptosis and Immunophenotype of Dendritic Cells Subsets in Acute SIVmac239 Infection of Chinese Rhesus Macaques. PLoS ONE 2011, 6, e29036. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, Y.; Igarashi, T.; Donau, O.K.; Buckler-White, A.; Buckler, C.; Lafont, B.A.P.; Goeken, R.M.; Goldstein, S.; Hirsch, V.M.; Martin, M.A. Highly pathogenic SHIVs and SIVs target different CD4+ T cell subsets in rhesus monkeys, explaining their divergent clinical courses. Proc. Natl. Acad. Sci. USA 2004, 101, 12324–12329. [Google Scholar] [CrossRef] [Green Version]
- Bissel, S.J.; Wang, G.; Trichel, A.M.; Murphey-Corb, M.; Wiley, C.A. Longitudinal analysis of activation markers on monocyte subsets during the development of simian immunodeficiency virus encephalitis. J. Neuroimmunol. 2006, 177, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Calantone, N.; Wu, F.; Klase, Z.; Deleage, C.; Perkins, M.; Matsuda, K.; Thompson, E.A.; Ortiz, A.M.; Vinton, C.L.; Ourmanov, I.; et al. Tissue myeloid cells in SIV-infected primates acquire viral DNA through phagocytosis of infected T cells. Immunity 2014, 41, 493–502. [Google Scholar] [CrossRef] [Green Version]
- Deleage, C.; Wietgrefe, S.W.; Del Prete, G.; Morcock, D.R.; Hao, X.P.; Piatak, M.J.; Bess, J.; Anderson, J.L.; Perkey, K.E.; Reilly, C.; et al. Defining HIV and SIV Reservoirs in Lymphoid Tissues. Pathog. Immun. 2016, 1, 68–106. [Google Scholar] [CrossRef] [Green Version]
- McIlroy, D.; Autran, B.; Cheynier, R.; Wainhobson, S.; Clauvel, J.P.; Oksenhendler, E.; Debre, P.; Hosmalin, A. Infection frequency of dendritic cells and CD4+ T lymphocytes in spleens of human immunodeficiency virus-positive patients. J. Virol. 1995, 69, 4737–4745. [Google Scholar] [CrossRef] [Green Version]
- Ochsenbauer, C.; Edmonds, T.G.; Ding, H.T.; Keele, B.F.; Decker, J.; Salazar, M.G.; Salazar-Gonzalez, J.F.; Shattock, R.; Haynes, B.F.; Shaw, G.M.; et al. Generation of transmitted/founder HIV-1 infectious molecular clones and characterization of their replication capacity in CD4 T lymphocytes and monocyte-derived macrophages. J. Virol. 2012, 86, 2715–2728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, D.P.; Zink, M.C.; Anderson, M.; Adams, R.; Clements, J.E.; Joag, S.V.; Narayan, O. Derivation of neurotropic simian immunodeficiency virus from exclusively lymphocytetropic parental virus: Pathogenesis of infection in macaques. J. Virol. 1992, 66, 3550–3556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenchley, J.M.; Schacker, T.W.; Ruff, L.E.; Price, D.A.; Taylor, J.H.; Beilman, G.J.; Nguyen, P.L.; Khoruts, A.; Larson, M.; Haase, A.T.; et al. CD4(+) T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J. Exp. Med. 2004, 200, 749–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guadalupe, M.; Reay, E.; Sankaran, S.; Prindiville, T.; Flamm, J.; McNeil, A.; Dandekar, S. Severe CD4(+) T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J. Virol. 2003, 77, 11708–11717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehandru, S.; Poles, M.A.; Tenner-Racz, K.; Horowitz, A.; Hurley, A.; Hogan, C.; Boden, D.; Racz, P.; Markowitz, M. Primary HIV-1 infection is associated with preferential depletion of CD4(+) T lymphocytes from effector sites in the gastrointestinal tract. J. Exp. Med. 2004, 200, 761–770. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.S.; Duan, L.J.; Estes, J.D.; Ma, Z.M.; Rourke, T.; Wang, Y.C.; Reilly, C.; Carlis, J.; Miller, C.J.; Haase, A.T. Peak SIV replication in resting memory CD4(+) T cells depletes gut lamina propria CD4(+) T cells. Nature 2005, 434, 1148–1152. [Google Scholar] [CrossRef]
- Mattapallil, J.J.; Douek, D.C.; Hill, B.; Nishimura, Y.; Martin, M.; Roederer, M. Massive infection and loss of memory CD4(+) T cells in multiple tissues during acute SIV infection. Nature 2005, 434, 1093–1097. [Google Scholar] [CrossRef]
- Veazey, R.S.; DeMaria, M.; Chalifoux, L.V.; Shvetz, D.E.; Pauley, D.R.; Knight, H.L.; Rosenzweig, M.; Johnson, R.P.; Desrosiers, R.C.; Lackner, A.A. Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science 1998, 280, 427–431. [Google Scholar] [CrossRef]
- Doitsh, G.; Greene, W.C. Dissecting how CD4 T cells are lost during HIV infection. Cell Host Microbe 2016, 19, 280–291. [Google Scholar] [CrossRef] [Green Version]
- De Kleer, I.; Willems, F.; Lambrecht, B.; Goriely, S. Ontogeny of myeloid cells. Front. Immunol. 2014, 5, 432. [Google Scholar] [CrossRef] [Green Version]
- Perdiguero, E.G.; Klapproth, K.; Schulz, C.; Busch, K.; Azzoni, E.; Crozet, L.; Garner, H.; Trouillet, C.; de Bruijn, M.F.; Geissmann, F.; et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 2015, 518, 547–551. [Google Scholar] [CrossRef]
- Schulz, C.; Perdiguero, E.G.; Chorro, L.; Szabo-Rogers, H.; Cagnard, N.; Kierdorf, K.; Prinz, M.; Wu, B.S.; Jacobsen, S.E.W.; Pollard, J.W.; et al. A Lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 2012, 336, 86–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haase, A.T.; Henry, K.; Zupancic, M.; Sedgewick, G.; Faust, R.A.; Melroe, H.; Cavert, W.; Gebhard, K.; Staskus, K.; Zhang, Z.Q.; et al. Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science 1996, 274, 985–989. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, J.; Vanlunzen, J.; Tennerracz, K.; Grossschupff, G.; Racz, P.; Schmitz, H.; Dietrich, M.; Hufert, F.T. Follicular dendritic cells retain HIV-1 particles on their plasma membrane, but are not productively infected in asymptomatic patients with follicular hyperplasia. J. Immunol. 1994, 153, 1352–1359. [Google Scholar]
- Cavrois, M.; Neidleman, J.; Kreisberg, J.F.; Greene, W.C. In vitro derived dendritic cells trans-infect CD4 T cells primarily with surface-bound HIV-1 virions. PLoS Pathog. 2007, 3, 38–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naif, H.M.; Li, S.; Alali, M.; Sloane, A.; Wu, L.J.; Kelly, M.; Lynch, G.; Lloyd, A.; Cunningham, A.L. CCR5 expression correlates with susceptibility of maturing monocytes to human immunodeficiency virus type 1 infection. J. Virol. 1998, 72, 830–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldauf, H.M.; Pan, X.Y.; Erikson, E.; Schmidt, S.; Daddacha, W.; Burggraf, M.; Schenkova, K.; Ambiel, I.; Wabnitz, G.; Gramberg, T.; et al. SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells. Nat. Med. 2012, 18, 1682–1688. [Google Scholar] [CrossRef] [Green Version]
- Laguette, N.; Sobhian, B.; Casartelli, N.; Ringeard, M.; Chable-Bessia, C.; Segeral, E.; Yatim, A.; Emiliani, S.; Schwartz, O.; Benkirane, M. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 2011, 474, 654–657. [Google Scholar] [CrossRef]
- Hrecka, K.; Hao, C.L.; Gierszewska, M.; Swanson, S.K.; Kesik-Brodacka, M.; Srivastava, S.; Florens, L.; Washburn, M.P.; Skowronski, J. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 2011, 474, 658–661. [Google Scholar] [CrossRef] [Green Version]
- Fregoso, O.I.; Ahn, J.; Wang, C.P.; Mehrens, J.; Skowronski, J.; Emerman, M. Evolutionary toggling of Vpx/Vpr specificity results in divergent recognition of the restriction factor SAMHD1. PLoS Pathog. 2013, 9, e1003496. [Google Scholar] [CrossRef] [Green Version]
- Westmoreland, S.V.; Converse, A.P.; Hrecka, K.; Hurley, M.; Knight, H.; Piatak, M.; Lifson, J.; Mansfield, K.G.; Skowronski, J.; Desrosiers, R.C. SIV Vpx Is essential for macrophage infection but not for development of AIDS. PLoS ONE 2014, 9, e84463. [Google Scholar] [CrossRef]
- Bloch, N.; O’Brien, M.; Norton, T.D.; Polsky, S.B.; Bhardwaj, N.; Landau, N.R. HIV Type 1 infection of plasmacytoid and myeloid dendritic cells is restricted by high levels of SAMHD1 and cannot be counteracted by Vpx. AIDS Res. Hum. Retrovir. 2014, 30, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Cosenza, M.A.; Zhao, M.L.; Si, Q.S.; Lee, S.C. Human brain parenchymal microglia express CD14 and CD45 and are productively infected by HIV-1 in HIV-1 encephalitis. Brain Pathol. 2002, 12, 442–455. [Google Scholar] [CrossRef] [PubMed]
- Neuenjacob, E.; Arendt, G.; Wendtland, B.; Jacob, B.; Schneeweis, M.; Wechsler, W. Frequency and topographical distribution of CD68-positive macrophages and HIV-1 core proteins in HIV-associated brain lesions. Clin. Neuropathol. 1993, 12, 315–324. [Google Scholar]
- Stoler, M.H.; Eskin, T.A.; Benn, S.; Angerer, R.C.; Angerer, L.M. Human T-cell lymphotropic virus type III infection of the central nervous system. A preliminary in situ analysis. JAMA J. Am. Med. Assoc. 1986, 256, 2360–2364. [Google Scholar] [CrossRef]
- Wiley, C.A.; Schrier, R.D.; Nelson, J.A.; Lampert, P.W.; Oldstone, M.B.A. Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc. Natl. Acad. Sci. USA 1986, 83, 7089–7093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer-Smith, T.; Croul, S.; Sverstiuk, A.E.; Capini, C.; L’Heureux, D.; Regulier, E.G.; Richardson, M.W.; Amini, S.; Morgello, S.; Khalili, K.; et al. CNS invasion by CD14+/CD16+peripheral blood-derived monocytes in HIV dementia: Perivascular accumulation and reservoir of HIV infection. J. Neurovirol. 2001, 7, 528–541. [Google Scholar] [CrossRef]
- Sturdevant, C.B.; Joseph, S.B.; Schnell, G.; Price, R.W.; Swanstrom, R.; Spudich, S. Compartmentalized replication of R5 T cell-tropic HIV-1 in the central nervous system early in the course of infection. PLoS Pathog. 2015, 11, e1004720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duenas-Decamp, M.J.; Peters, P.J.; Burton, D.; Clapham, P.R. Determinants Flanking the CD4 Binding Loop Modulate Macrophage Tropism of Human Immunodeficiency Virus Type 1 R5 Envelopes. J. Virol. 2009, 83, 2575–2583. [Google Scholar] [CrossRef] [Green Version]
- Dunfee, R.L.; Thomas, E.R.; Gorry, P.R.; Wang, J.B.; Taylor, J.; Kunstman, K.; Wolinsky, S.M.; Gabuzda, D. The HIV Env variant N283 enhances macrophage tropism and is associated with brain infection and dementia. Proc. Natl. Acad. Sci. USA 2006, 103, 15160–15165. [Google Scholar] [CrossRef] [Green Version]
- Martin-Garcia, J.; Cao, W.; Varela-Robena, A.; Plassmeyer, M.L.; Gonzalez-Scarano, F. HIV-1 tropism for the central nervous system: Brain-denved envelope glycoproteins with lower CD4 dependence and reduced sensitivity to a fusion inhibitor. Virology 2006, 346, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Peters, P.J.; Sullivan, W.M.; Duenas-Decamp, M.J.; Bhattacharya, J.; Ankghuambom, C.; Brown, R.; Luzuriaga, K.; Bell, J.; Simmonds, P.; Ball, J.; et al. Non-macrophage-tropic human immunodeficiency virus type 1 R5 envelopes predominate in blood, lymph nodes, and semen: Implications for transmission and pathogenesis. J. Virol. 2006, 80, 6324–6332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jambo, K.C.; Banda, D.H.; Kankwatira, A.M.; Sukumar, N.; Allain, T.J.; Heyderman, R.S.; Russell, D.G.; Mwandumba, H.C. Small alveolar macrophages are infected preferentially by HIV and exhibit impaired phagocytic function. Mucosal Immunol. 2014, 7, 1116–1126. [Google Scholar] [CrossRef] [PubMed]
- Ganor, Y.; Real, F.; Sennepin, A.; Dutertre, C.A.; Prevedel, L.; Xu, L.; Tudor, D.; Charmeteau, B.; Couedel-Courteille, A.; Marion, S.; et al. HIV-1 reservoirs in urethral macrophages of patients under suppressive antiretroviral therapy. Nat. Microbiol. 2019, 4, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Kandathil, A.J.; Sugawara, S.; Goyal, A.; Durand, C.M.; Quinn, J.; Sachithanandham, J.; Cameron, A.M.; Bailey, J.R.; Perelson, A.S.; Balagopal, A. No recovery of replication-competent HIV-1 from human liver macrophages. J. Clin. Investig. 2018, 128, 4501–4509. [Google Scholar] [CrossRef] [PubMed]
- Parrish, N.F.; Wilen, C.B.; Banks, L.B.; Iyer, S.S.; Pfaff, J.M.; Salazar-Gonzalez, J.F.; Salazar, M.G.; Decker, J.M.; Parrish, E.H.; Berg, A.; et al. Transmitted/founder and chronic subtype C HIV-1 use CD4 and CCR5 receptors with equal efficiency and are not inhibited by blocking the integrin α4β7. PLoS Pathog. 2012, 8, e1002686. [Google Scholar] [CrossRef]
- Ping, L.H.; Joseph, S.B.; Anderson, J.A.; Abrahams, M.R.; Salazar-Gonzalez, J.F.; Kincer, L.P.; Treurnicht, F.K.; Arney, L.; Ojeda, S.; Zhang, M.; et al. Comparison of viral Env proteins from acute and chronic infections with subtype C human immunodeficiency virus type 1 identifies differences in glycosylation and CCR5 utilization and suggests a new strategy for immunogen design. J. Virol. 2013, 87, 7218–7233. [Google Scholar] [CrossRef] [Green Version]
- Joseph, S.B.; Swanstrom, R. The evolution of HIV-1 entry phenotypes as a guide to changing target cells. J. Leukoc. Biol. 2018, 103, 421–431. [Google Scholar] [CrossRef] [Green Version]
- Joseph, S.B.; Arrildt, K.T.; Swanstrom, A.E.; Schnell, G.; Lee, B.; Hoxie, J.A.; Swanstrom, R. Quantification of entry phenotypes of macrophage-tropic HIV-1 across a wide range of CD4 densities. J. Virol. 2014, 88, 1858–1869. [Google Scholar] [CrossRef] [Green Version]
- Bruggeman, L.A.; Ross, M.D.; Tanji, N.; Cara, A.; Dikman, S.; Gordon, R.E.; Burns, G.C.; D’Agati, V.D.; Winston, J.A.; Klotman, M.E.; et al. Renal epithelium is a previously unrecognized site of HIV-1 infection. J. Am. Soc. Nephrol. 2000, 11, 2079–2087. [Google Scholar]
- Marras, D.; Bruggeman, L.A.; Gao, F.; Tanji, N.; Mansukhani, M.M.; Cara, A.; Ross, M.D.; Gusella, G.L.; Benson, G.; D’Agati, V.D.; et al. Replication and compartmentalization of HIV-1 in kidney epithelium of patients with HIV-associated nephropathy. Nat. Med. 2002, 8, 522–526. [Google Scholar] [CrossRef]
- Bagasra, O.; Lavi, E.; Bobroski, L.; Khalili, K.; Pestaner, J.P.; Tawadros, R.; Pomerantz, R.J. Cellular reservoirs of HIV-1 in the central nervous system of infected individuals: Identification by the combination of in situ polymerase chain reaction and immunohistochemistry. AIDS 1996, 10, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Churchill, M.J.; Wesselingh, S.L.; Cowley, D.; Pardo, C.A.; McArthur, J.C.; Brew, B.J.; Gorry, P.R. Extensive Astrocyte Infection Is Prominent in Human Immunodeficiency Virus-Associated Dementia. Ann. Neurol. 2009, 66, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Nuovo, G.J.; Alfieri, M.L. AIDS dementia is associated with massive, activated HIV-1 infection and concomitant expression of several cytokines. Mol. Med. 1996, 2, 358–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, K.; Wesselingh, S.L.; Griffin, D.E.; McArthur, J.C.; Johnson, R.T.; Glass, J.D. Localization of HIV-1 in human brain using polymerase chain reaction in situ hybridization and immunocytochemistry. Ann. Neurol. 1996, 39, 705–711. [Google Scholar] [CrossRef]
- Kolchinsky, P.; Mirzabekov, T.; Farzan, M.; Kiprilov, E.; Cayabyab, M.; Mooney, L.J.; Choe, H.; Sodroski, J. Adaptation of a CCR5-using, primary human immunodeficiency virus type 1 isolate for CD4-independent replication. J. Virol. 1999, 73, 8120–8126. [Google Scholar] [CrossRef] [Green Version]
- LaBranche, C.C.; Hoffman, T.L.; Romano, J.; Haggarty, B.S.; Edwards, T.G.; Matthews, T.J.; Doms, R.W.; Hoxie, J.A. Determinants of CD4 independence for a human immunodeficiency virus type 1 variant map outside regions required for coreceptor specificity. J. Virol. 1999, 73, 10310–10319. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, T.L.; LaBranche, C.C.; Zhang, W.T.; Canziani, G.; Robinson, J.; Chaiken, I.; Hoxie, J.A.; Doms, R.W. Stable exposure of the coreceptor-binding site in a CD4-independent HIV-1 envelope protein. Proc. Natl. Acad. Sci. USA 1999, 96, 6359–6364. [Google Scholar] [CrossRef] [Green Version]
- Dumonceaux, J.; Nisole, S.; Chanel, C.; Quivet, L.; Amara, A.; Baleux, F.; Briand, P.; Hazan, U. Spontaneous mutations in the env gene of the human immunodeficiency virus type 1 NDK isolate are associated with a CD4-independent entry phenotype. J. Virol. 1998, 72, 512–519. [Google Scholar] [CrossRef] [Green Version]
- Kassa, A.; Madani, N.; Schon, A.; Haim, H.; Finzi, A.; Xiang, S.H.; Wang, L.P.; Princiotto, A.; Pancera, M.; Courter, J.; et al. Transitions to and from the CD4-Bound Conformation Are Modulated by a Single-Residue Change in the Human Immunodeficiency Virus Type 1 gp120 Inner Domain. J. Virol. 2009, 83, 8364–8378. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, N.; Sun, Y.; Li, J.; Hofmann, W.; Sodroski, J. Replicative function and neutralization sensitivity of envelope glycoproteins from primary and T-cell line-passaged human immunodeficiency virus type 1 isolates. J. Virol. 1995, 69, 4413–4422. [Google Scholar] [CrossRef] [Green Version]
- Avalos, C.R.; Abreu, C.M.; Queen, S.E.; Li, M.; Price, S.; Shirk, E.N.; Engle, E.L.; Forsyth, E.; Bullock, B.T.; Mac Gabhann, F.; et al. Brain macrophages in Simian Immunodeficiency Virus-infected, antiretroviral-suppressed macaques: A functional latent reservoir. Mbio 2017, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- Beck, S.E.; Queen, S.E.; Pate, K.A.M.; Mangus, L.M.; Abreu, C.M.; Gama, L.; Witwer, K.W.; Adams, R.J.; Zink, M.C.; Clements, J.E.; et al. An SIV/macaque model targeted to study HIV-associated neurocognitive disorders. J. Neurovirol. 2018, 24, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Clements, J.E.; Gama, L.; Graham, D.R.; Mankowski, J.L.; Zink, M.C. A simian immunodeficiency virus macaque model of highly active antiretroviral treatment: Viral latency in the periphery and the central nervous system. Curr. Opin. HIV AIDS 2011, 6, 37–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gama, L.; Abreu, C.M.; Shirk, E.N.; Price, S.L.; Li, M.; Laird, G.M.; Pate, K.A.M.; Wietgrefe, S.W.; O’Connor, S.L.; Pianowski, L.; et al. Reactivation of simian immunodeficiency virus reservoirs in the brain of virally suppressed macaques. AIDS 2017, 31, 5–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micci, L.; Alvarez, X.; Iriele, R.I.; Ortiz, A.M.; Ryan, E.S.; McGary, C.S.; Deleage, C.; McAtee, B.B.; He, T.Y.; Apetrei, C.; et al. CD4 depletion in SIV-infected macaques results in macrophage and microglia infection with rapid turnover of infected cells. PLoS Pathog. 2014, 10, e1004467. [Google Scholar] [CrossRef] [Green Version]
- Nowlin, B.T.; Burdo, T.H.; Midkiff, C.C.; Salemi, M.; Alvarez, X.; Williams, K.C. SIV encephalitis lesions are composed of CD163(+) macrophages present in the central nervous system during early SIV infection and SIV-positive macrophages recruited terminally with AIDS. Am. J. Pathol. 2015, 185, 1649–1665. [Google Scholar] [CrossRef]
- Daniel, M.D.; Letvin, N.L.; King, N.W.; Kannagi, M.; Sehgal, P.K.; Hunt, R.D.; Kanki, P.J.; Essex, M.; Desrosiers, R.C. Isolation of T-cell tropic HTLV-III-like retrovirus from macaques. Science 1985, 228, 1201–1204. [Google Scholar] [CrossRef]
- Naidu, Y.M.; Kestler, H.W.; Li, Y.; Butler, C.V.; Silva, D.P.; Schmidt, D.K.; Troup, C.D.; Sehgal, P.K.; Sonigo, P.; Daniel, M.D.; et al. Characterization of infectious molecular clones of simian immunodeficiency virus (SIVmac) and human immunodeficiency virus type 2: Persistent infection of rhesus monkeys with molecularly cloned SIVmac. J. Virol. 1988, 62, 4691–4696. [Google Scholar] [CrossRef] [Green Version]
- Miller, C.J.; Marthas, M.; Greenier, J.; Lu, D.; Dailey, P.J.; Lu, Y.C. In vivo replication capacity rather than in vitro macrophage tropism predicts efficiency of vaginal transmission of simian immunodeficiency virus or simian/human immunodeficiency virus in rhesus macaques. J. Virol. 1998, 72, 3248–3258. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, A.M.; Klatt, N.R.; Li, B.; Yi, Y.; Tabb, B.; Hao, X.P.; Sternberg, L.; Lawson, B.; Carnathan, P.M.; Cramer, E.M.; et al. Depletion of CD4(+) T cells abrogates post-peak decline of viremia in SIV-infected rhesus macaques. J. Clin. Investig. 2011, 121, 4433–4445. [Google Scholar] [CrossRef]
- Abreu, C.M.; Veenhuis, R.T.; Avalos, C.R.; Graham, S.; Parrilla, D.R.; Ferreira, E.A.; Queen, S.E.; Shirk, E.N.; Bullock, B.T.; Li, M.; et al. Myeloid and CD4 T Cells Comprise the Latent Reservoir in Antiretroviral Therapy-Suppressed SIVmac251-Infected Macaques. Mbio 2019, 10, e01659-19. [Google Scholar] [CrossRef] [Green Version]
- Kestler, H.; Kodama, T.; Ringler, D.; Marthas, M.; Pedersen, N.; Lackner, A.; Regier, D.; Sehgal, P.; Daniel, M.; King, N.; et al. Induction of AIDS in rhesus monkeys by molecularly cloned simian immunodeficiency virus. Science 1990, 248, 1109–1112. [Google Scholar] [CrossRef] [PubMed]
- Banapour, B.; Marthas, M.L.; Ramos, R.A.; Lohman, B.L.; Unger, R.E.; Gardner, M.B.; Pedersen, N.C.; Luciw, P.A. Identification of viral determinants of macrophage tropism for simian immunodeficiency virus SIVmac. J. Virol. 1991, 65, 5798–5805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borda, J.T.; Alvarez, X.; Kondova, I.; Aye, P.; Simon, M.A.; Desrosiers, R.C.; Lackner, A.A. Cell tropism of simian immunodeficiency virus in culture is not predictive of in vivo tropism or pathogenesis. Am. J. Pathol. 2004, 165, 2111–2122. [Google Scholar] [CrossRef] [Green Version]
- Ryzhova, E.V.; Crino, P.; Shawver, L.; Westmoreland, S.V.; Lackner, A.A.; Gonzalez-Scarano, F. Simian immunodeficiency virus encephalitis: Analysis of envelope sequences from individual brain multinucleated giant cells and tissue samples. Virology 2002, 297, 57–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desrosiers, R.C.; Hansenmoosa, A.; Mori, K.; Bouvier, D.P.; King, N.W.; Daniel, M.D.; Ringler, D.J. Macrophage-tropic variants of SIV are associated with specific AIDS-related lesions but are not essential for the development of AIDS. Am. J. Pathol. 1991, 139, 29–35. [Google Scholar]
- Mori, K.; Ringler, D.J.; Kodama, T.; Desrosiers, R.C. Complex determinants of macrophage tropism in env of simian immunodeficiency virus. J. Virol. 1992, 66, 2067–2075. [Google Scholar] [CrossRef] [Green Version]
- Zink, M.C.; Amedee, A.M.; Mankowski, J.L.; Craig, L.; Didier, P.; Carter, D.L.; Munoz, A.; MurpheyCorb, M.; Clements, J.E. Pathogenesis of SIV encephalitis-Selection and replication of neurovirulent SIV. Am. J. Pathol. 1997, 151, 793–803. [Google Scholar]
- Flaherty, M.T.; Hauer, D.A.; Mankowski, J.L.; Zink, M.C.; Clements, J.E. Molecular and biological characterization of a neurovirulent molecular clone of simian immunodeficiency virus. J. Virol. 1997, 71, 5790–5798. [Google Scholar] [CrossRef] [Green Version]
- Mankowski, J.L.; Flaherty, M.T.; Spelman, J.P.; Hauer, D.A.; Didier, P.J.; Amedee, A.M.; MurpheyCorb, H.; Kirstein, L.M.; Munoz, A.; Clements, J.E.; et al. Pathogenesis of simian immunodeficiency virus encephalitis: Viral determinants of neurovirulence. J. Virol. 1997, 71, 6055–6060. [Google Scholar] [CrossRef] [Green Version]
- Clements, J.E.; Babas, T.; Mankowski, J.L.; Suryanarayana, K.; Piatak, M.; Tarwater, P.M.; Lifson, J.D.; Zink, M.C. The central nervous system as a reservoir for Simian immunodeficiency virus (SIV): Steady-state levels of SIV DNA in brain from acute through asymptomatic infection. J. Infect. Dis. 2002, 186, 905–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zink, M.C.; Suryanarayana, K.; Mankowski, J.L.; Shen, A.D.; Piatak, M.; Spelman, J.P.; Carter, D.L.; Adams, R.J.; Lifson, J.D.; Clements, J.E. High viral load in the cerebrospinal fluid and brain correlates with severity of simian immunodeficiency virus encephalitis. J. Virol. 1999, 73, 10480–10488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirsch, V.; AdgerJohnson, D.; Campbell, B.; Goldstein, S.; Brown, C.; Elkins, W.R.; Montefiori, D.C. A molecularly cloned, pathogenic, neutralization-resistant simian immunodeficiency virus, SIVsmE543-3. J. Virol. 1997, 71, 1608–1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuda, K.; Dang, Q.; Brown, C.R.; Keele, B.F.; Wu, F.; Ourmanov, I.; Goeken, R.; Whitted, S.; Riddick, N.E.; Buckler-White, A.; et al. Characterization of simian immunodeficiency virus (SIV) that induces SIV encephalitis in rhesus macaques with high frequency: Role of TRIM5 and major histocompatibility complex genotypes and early entry to the brain. J. Virol. 2014, 88, 13201–13211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuda, K.; Riddick, N.E.; Lee, C.A.; Puryear, S.B.; Wu, F.; Lafont, B.A.P.; Whitted, S.; Hirsch, V.M. A SIV molecular clone that targets the CNS and induces neuroAIDS in rhesus macaques. PLoS Pathog. 2017, 13, e1006538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuda, K.; Brown, C.R.; Foley, B.; Goeken, R.; Whitted, S.; Dang, Q.; Wu, F.; Plishka, R.; Buckler-White, A.; Hirscha, V.M. Laser capture microdissection assessment of virus compartmentalization in the central nervous systems of macaques infected with neurovirulent simian immunodeficiency virus. J. Virol. 2013, 87, 8896–8908. [Google Scholar] [CrossRef] [Green Version]
- Means, R.E.; Matthews, T.; Hoxie, J.A.; Malim, M.H.; Kodama, T.; Desrosiers, R.C. Ability of the v3 loop of simian immunodeficiency virus to serve as a target for antibody-mediated neutralization: Correlation of neutralization sensitivity, growth in macrophages, and decreased dependence on CD4. J. Virol. 2001, 75, 3903–3915. [Google Scholar] [CrossRef] [Green Version]
- Arrildt, K.T.; LaBranche, C.C.; Joseph, S.B.; Dukhovlinova, E.N.; Graham, W.D.; Ping, L.-H.; Schnell, G.; Sturdevant, C.B.; Kincer, L.P.; Mallewa, M.; et al. Phenotypic correlates of HIV-1 macrophage tropism. J. Virol. 2015, 89, 11294–11311. [Google Scholar] [CrossRef] [Green Version]
- Francella, N.; Elliott, S.T.C.; Yi, Y.J.; Gwyn, S.E.; Ortiz, A.M.; Li, B.; Silvestri, G.; Paiardini, M.; Derdeyn, C.A.; Collman, R.G. Decreased plasticity of coreceptor use by CD4-independent SIV Envs that emerge in vivo. Retrovirology 2013, 10, 133. [Google Scholar] [CrossRef] [Green Version]
- Decker, J.M.; Bibollet-Ruche, F.; Wei, X.P.; Wang, S.Y.; Levy, D.N.; Wang, W.Q.; Delaporte, E.; Peeters, M.; Derdeyn, C.A.; Allen, S.; et al. Antigenic conservation and immunogenicity of the HIV coreceptor binding site. J. Exp. Med. 2005, 201, 1407–1419. [Google Scholar] [CrossRef]
- Chahroudi, A.; Bosinger, S.E.; Vanderford, T.H.; Paiardini, M.; Silvestri, G. Natural SIV hosts: Showing AIDS the door. Science 2012, 335, 1188–1193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.W.; Gettie, A.; Ho, D.D.; Marx, P.A. Primary SIVsm isolates use the CCR5 coreceptor from sooty mangabeys naturally infected in west Africa: A comparison of coreceptor usage of primary SIVsm, HIV-2, and SIVmac. Virology 1998, 246, 113–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fomsgaard, A.; Johnson, P.R.; Nielsen, C.; Novembre, F.J.; Hansen, J.; Goldstein, S.; Hirsch, V.M. Receptor function of CD4 structures from African green monkey and pig-tail macaque for simian immunodeficiency virus, SIVsm, SIVagm, and human immunodeficiency virus type-1. Viral Immunol. 1995, 8, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Lou, B.; Lal, R.B.; Gettie, A.; Marx, P.A.; Moore, J.P. Use of inhibitors to evaluate coreceptor usage by simian and simian/human immunodeficiency viruses and human immunodeficiency virus type 2 in primary cells. J. Virol. 2000, 74, 6893–6910. [Google Scholar] [CrossRef] [Green Version]
- Klatt, N.R.; Villinger, F.; Bostik, P.; Gordon, S.N.; Pereira, L.; Engram, J.C.; Mayne, A.; Dunham, R.M.; Lawson, B.; Ratcliffe, S.J.; et al. Availability of activated CD4(+) T cells dictates the level of viremia in naturally SIV-infected sooty mangabeys. J. Clin. Investig. 2008, 118, 2039–2049. [Google Scholar] [CrossRef] [Green Version]
- Kunstman, K.J.; Puffer, B.; Korber, B.T.; Kuiken, C.; Smith, U.R.; Kunstman, J.; Stanton, J.; Agy, M.; Shibata, R.; Yoder, A.D.; et al. Structure and function of CC-chemokine receptor 5 homologues derived from representative primate species and subspecies of the taxonomic suborders Prosimii and Anthropoidea. J. Virol. 2003, 77, 12310–12318. [Google Scholar] [CrossRef] [Green Version]
Species | Potential Target Cells | CD4 | CCR5 | CXCR4 | Citations |
---|---|---|---|---|---|
Humans | Monocyte-derived macrophages (MDM) | Positive (Low) | Positive (High) | Positive (Low) | [31,33] |
Tissue macrophages | Positive (Low) | Positive | Positive | [35,36,37] | |
Monocytes | Positive (Low) | Positive (High) | Positive (High) | [31,33,34] | |
DCs | Positive (Low) | Positive | Positive | [31,38,39] | |
Follicular DCs | Negative | ? | ? | [40,41,42] | |
Memory CD4+ T-cells | Positive (High) | Positive (High) | Positive (Low) | [31] | |
Naïve CD4+ T-cells | Positive (High) | Negative | Positive (High) | [31] | |
Asian NHPs | MDM | Positive | Positive | Positive | [14] |
Tissue macrophages | Positive (Low to undetectable) | Positive | Positive | [43,44] | |
DCs | Positive | Positive | ? | [45] | |
Memory CD4+ T-cells | Positive | Positive | Positive | [46] | |
Naïve CD4+ T-cells | Positive | Negative | Positive | [46] | |
monocytes | ? | Positive | ? | [47] |
Virus | Source | Infect Macaque Macrophage In Vitro | Efficiently Infect Macaque Macrophage In Vivo | Able to Infect Cells Lacking CD4 |
---|---|---|---|---|
SIVmac251 | Spleen cells were collected from an SIV-infected macaque who developed AIDS and then cultured in vitro. SIVmac251 is a viral swarm initially collected from this cell supernatant and amplified in macaque cells [108,109] | Yes, MDM [110] | Conflicting data, but clearly replicates when CD4+ or CD8+ T-cells are depleted [106,107,111,112] | Yes [15] |
SIVmac239 | Tissue from the infected animal used to derive SIVmac251 was in vivo passaged through additional macaques. Plasma from one of these animals was used to infect cells in vitro, and an infectious molecular clone was generated from the culture supernatant [108,109,113] | No, MDM [14,114] | Yes [115,116] | No [14,18] |
SIVmac316 | Alveolar macrophages (AM) were collected from a macaque infected with a SIVmac239-derived isolate. The AM were cultured in vitro and SIVmac316 was isolated from supernatant [117,118] | Yes, alveolar macrophages and MDM [14,117] | No [115] | Yes [14,18] |
SIV/17E-Fr | SIVmac239 was passaged in macaques with brain homogenate from the first animal being used to infect the second. SIV/17E-Br was isolated from the brain of the second animal after it developed neurologic disease. The env, nef, and the 3’ LTR of SIV/17E-Br were cloned into SIVmac239 to generate SIV/17E-Fr [52,119,120] | Yes, MDM [52,120] | Yes [121], but infection is greatly enhanced in animals coinfected with SIV/DeltaB670 [122,123]. | Yes [15,16,17,18] |
SIVsmE543-3 | Uncloned SIVsmF236 was used to inoculate a macaque who developed neurological disease. PBMCs were collected from this animal at the time of necropsy, and cell-associated virus was expanded in CEMx174 cells and then cloned to yield SIVsmE543-3 [124] | Yes, MDM [124,125,126] | Yes [124] | No [15] |
SIVsm804E-CL757 | SIVsmE543-3 was sequentially passaged in 4 rhesus macaques, and virus was isolated from the brain after passage [125,126] | Yes, MDM [125,126] | Yes [127] | ? |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moeser, M.; Nielsen, J.R.; Joseph, S.B. Macrophage Tropism in Pathogenic HIV-1 and SIV Infections. Viruses 2020, 12, 1077. https://doi.org/10.3390/v12101077
Moeser M, Nielsen JR, Joseph SB. Macrophage Tropism in Pathogenic HIV-1 and SIV Infections. Viruses. 2020; 12(10):1077. https://doi.org/10.3390/v12101077
Chicago/Turabian StyleMoeser, Matthew, Joshua R. Nielsen, and Sarah B. Joseph. 2020. "Macrophage Tropism in Pathogenic HIV-1 and SIV Infections" Viruses 12, no. 10: 1077. https://doi.org/10.3390/v12101077