Envelope-Specific IgG3 and IgG1 Responses Are Associated with Clearance of Acute Hepatitis C Virus Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Samples
2.2. Ethics Statement
2.3. Virologic Assessments
2.4. Construction and Expression of Recombinant E2
2.5. Enzyme-Linked Immunoassays
2.6. Statistical Analysis
3. Results
3.1. Patient Description
3.2. The Timing and Magnitude of Anti-E2 IgA and IgM Are Not Associated with Clearance, Whereas an Early Anti-E2 IgG Response Is
3.3. An Early Anti-E2 IgG1 Response Is Associated with Clearance
3.4. The Initial Decline in HCV RNA Is Associated with Anti-E2 IgG1 and IgG3 Responses in Subjects Who Clear
3.5. Co-Occurrence of IgM/IgG Occurs in Samples with nAb Activity in Subjects Who Clear
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lanini, S.; Easterbrook, P.J.; Zumla, A.; Ippolito, G. Hepatitis c: Global epidemiology and strategies for control. Clin. Microbiol. Infect. 2016, 22, 833–838. [Google Scholar] [CrossRef]
- The Polaris Observatory HCV Collaborators. Global prevalence and genotype distribution of hepatitis c virus infection in 2015: A modelling study. Lancet Gastroenterol. Hepatol. 2017, 2, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Crofts, N.; Hopper, J.L.; Milner, R.; Breschkin, A.M.; Bowden, D.S.; Locarnini, S.A. Blood-borne virus infections among australian injecting drug users: Implications for spread of hiv. Eur. J. Epidemiol. 1994, 10, 687–694. [Google Scholar] [CrossRef]
- Law, M.G.; Dore, G.J.; Bath, N.; Thompson, S.; Crofts, N.; Dolan, K.; Giles, W.; Gow, P.; Kaldor, J.; Loveday, S.; et al. Modelling hepatitis c virus incidence, prevalence and long-term sequelae in australia, 2001. Int. J. Epidemiol. 2003, 32, 717–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esmaeili, A.; Mirzazadeh, A.; Morris, M.D.; Hajarizadeh, B.; Sacks, H.S.; Maher, L.; Grebely, J.; Kim, A.Y.; Lauer, G.; Cox, A.L.; et al. The effect of female sex on hepatitis c incidence among people who inject drugs: Results from the international multicohort inc3 collaborative. Clin. Infect. Dis. 2018, 66, 20–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seeff, L.B. Natural history of chronic hepatitis c. Hepatology 2002, 36, S35–S46. [Google Scholar] [PubMed]
- Micallef, J.M.; Kaldor, J.M.; Dore, G.J. Spontaneous viral clearance following acute hepatitis c infection: A systematic review of longitudinal studies. J. Viral Hepat. 2006, 13, 34–41. [Google Scholar] [CrossRef] [PubMed]
- White, P.A.; Zhai, X.; Carter, I.; Zhao, Y.; Rawlinson, W.D. Simplified hepatitis c virus genotyping by heteroduplex mobility analysis. J. Clin. Microbiol. 2000, 38, 477–482. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; McGuinness, P.H.; Koorey, D.J.; Rickard, K.; Wylie, B.; McCaughan, G.W. Hepatitis c virus genotypes in a cohort of australian blood donors and haemophiliac and liver transplant patients. J. Gastroenterol. Hepatol. 1997, 12, 182–187. [Google Scholar] [CrossRef]
- McCaw, R.; Moaven, L.; Locarnini, S.A.; Bowden, D.S. Hepatitis c virus genotypes in australia. J. Viral Hepat. 1997, 4, 351–357. [Google Scholar] [CrossRef]
- Kaba, S.; Dutta, U.; Byth, K.; Crewe, E.B.; Khan, M.H.; Coverdale, S.A.; Lin, R.; Liddle, C.; Farrell, G.C. Molecular epidemiology of hepatitis c in australia. J. Gastroenterol. Hepatol. 1998, 13, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Pham, S.T.; Bull, R.A.; Bennett, J.M.; Rawlinson, W.D.; Dore, G.J.; Lloyd, A.R.; White, P.A. Frequent multiple hepatitis c virus infections among injection drug users in a prison setting. Hepatology 2010, 52, 1564–1572. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.R.; Li, H.; Teutsch, S.; Betz-Stablein, B.; Luciani, F.; Lloyd, A.R.; Bull, R.A. Incident hepatitis c virus genotype distribution and multiple infection in australian prisons. J. Clin. Microbiol. 2016, 54, 1855–1861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grebely, J.; Petoumenos, K.; Hellard, M.; Matthews, G.V.; Suppiah, V.; Applegate, T.; Yeung, B.; Marks, P.; Rawlinson, W.; Lloyd, A.R.; et al. Potential role for interleukin-28b genotype in treatment decision-making in recent hepatitis c virus infection. Hepatology 2010, 52, 1216–1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osburn, W.O.; Fisher, B.E.; Dowd, K.A.; Urban, G.; Liu, L.; Ray, S.C.; Thomas, D.L.; Cox, A.L. Spontaneous control of primary hepatitis c virus infection and immunity against persistent reinfection. Gastroenterology 2010, 138, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Osburn, W.O.; Snider, A.E.; Wells, B.L.; Latanich, R.; Bailey, J.R.; Thomas, D.L.; Cox, A.L.; Ray, S.C. Clearance of hepatitis c infection is associated with the early appearance of broad neutralizing antibody responses. Hepatology 2014, 59, 2140–2151. [Google Scholar] [CrossRef]
- Pestka, J.M.; Zeisel, M.B.; Blaser, E.; Schurmann, P.; Bartosch, B.; Cosset, F.L.; Patel, A.H.; Meisel, H.; Baumert, J.; Viazov, S.; et al. Rapid induction of virus-neutralizing antibodies and viral clearance in a single-source outbreak of hepatitis c. Proc. Natl. Acad. Sci. USA 2007, 104, 6025–6030. [Google Scholar] [CrossRef] [Green Version]
- Dowd, K.A.; Netski, D.M.; Wang, X.H.; Cox, A.L.; Ray, S.C. Selection pressure from neutralizing antibodies drives sequence evolution during acute infection with hepatitis c virus. Gastroenterology 2009, 136, 2377–2386. [Google Scholar] [CrossRef] [Green Version]
- Walker, M.R.; Leung, P.; Eltahla, A.A.; Underwood, A.; Abayasingam, A.; Brasher, N.A.; Li, H.; Wu, B.R.; Maher, L.; Luciani, F.; et al. Clearance of hepatitis c virus is associated with early and potent but narrowly-directed, envelope-specific antibodies. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef]
- Schroeder, H.W., Jr.; Cavacini, L. Structure and function of immunoglobulins. J. Allergy Clin. Immunol. 2010, 125, S41–S52. [Google Scholar] [CrossRef] [Green Version]
- van Riet, E.; Retra, K.; Adegnika, A.A.; Jol-van der Zijde, C.M.; Uh, H.W.; Lell, B.; Issifou, S.; Kremsner, P.G.; Yazdanbakhsh, M.; van Tol, M.J.; et al. Cellular and humoral responses to tetanus vaccination in gabonese children. Vaccine 2008, 26, 3690–3695. [Google Scholar] [CrossRef] [PubMed]
- Scharf, O.; Golding, H.; King, L.R.; Eller, N.; Frazier, D.; Golding, B.; Scott, D.E. Immunoglobulin g3 from polyclonal human immunodeficiency virus (hiv) immune globulin is more potent than other subclasses in neutralizing hiv type 1. J. Virol. 2001, 75, 6558–6565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Sallberg, M.; Sonnerborg, A.; Weiland, O.; Mattsson, L.; Jin, L.; Birkett, A.; Peterson, D.; Milich, D.R. Limited humoral immunity in hepatitis c virus infection. Gastroenterology 1999, 116, 135–143. [Google Scholar] [CrossRef]
- Sallberg, M.; Ruden, U.; Wahren, B.; Magnius, L.O. Antigenic regions within the hepatitis c virus envelope 1 and non-structural proteins: Identification of an igg3-restricted recognition site with the envelope 1 protein. Clin. Exp. Immunol. 1993, 91, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Netski, D.M.; Mosbruger, T.; Depla, E.; Maertens, G.; Ray, S.C.; Hamilton, R.G.; Roundtree, S.; Thomas, D.L.; McKeating, J.; Cox, A. Humoral immune response in acute hepatitis c virus infection. Clin. Infect. Dis. 2005, 41, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Sagnelli, E.; Coppola, N.; Marrocco, C.; Coviello, G.; Rossi, G.; Battaglia, M.; Sagnelli, C.; Messina, V.; Tonziello, A.; Scolastico, C.; et al. Diagnosis of hcv related acute hepatitis by serial determination of igm to hcv: A preliminary observation. J. Biol. Regul. Homeost. Agents 2003, 17, 207–210. [Google Scholar]
- Li, H.C.; Lo, S.Y. Hepatitis c virus: Virology, diagnosis and treatment. World J. Hepatol. 2015, 7, 1377–1389. [Google Scholar] [CrossRef]
- Chen, P.J.; Wang, J.T.; Hwang, L.H.; Yang, Y.H.; Hsieh, C.L.; Kao, J.H.; Sheu, J.C.; Lai, M.Y.; Wang, T.H.; Chen, D.S. Transient immunoglobulin m antibody response to hepatitis c virus capsid antigen in posttransfusion hepatitis c: Putative serological marker for acute viral infection. Proc. Natl. Acad. Sci. USA 1992, 89, 5971–5975. [Google Scholar] [CrossRef] [Green Version]
- Lau, G.K.; Lesniewski, R.; Johnson, R.G.; Davis, G.L.; Lau, J.Y. Immunoglobulin m and a antibodies to hepatitis c core antigen in chronic hepatitis c virus infection. J. Med. Virol. 1994, 44, 1–4. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Tokushige, K.; Yamauchi, K.; Hayashi, N. Humoral immune response in japanese acute hepatitis patients with hepatitis c virus infection. Can. J. Gastroenterol. 2000, 14, 593–598. [Google Scholar] [CrossRef] [Green Version]
- Nikolaeva, L.I.; Blokhina, N.P.; Tsurikova, N.N.; Voronkova, N.V.; Miminoshvili, M.I.; Braginsky, D.M.; Yastrebova, O.N.; Booynitskaya, O.B.; Isaeva, O.V.; Michailov, M.I.; et al. Virus-specific antibody titres in different phases of hepatitis c virus infection. J. Viral Hepat. 2002, 9, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Ilan, Y.; Shouval, D.; Ashur, Y.; Manns, M.; Naparstek, Y. Iga deficiency associated with chronic hepatitis c virus infection. A cause or an effect? Arch. Intern. Med. 1993, 153, 1588–1592. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Sato, S.; Fujiyama, S.; Kawano, S.; Taura, Y.; Chikazawa, H.; Honda, Y.; Shibata, J.; Sato, T. Clinical study of iga antibody against hepatitis c virus core antigen in patients with type c chronic liver disease. Dig. Dis. Sci. 1995, 40, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Fujiyama, S.; Tanaka, M.; Goto, M.; Taura, Y.; Kawano, S.; Sato, T.; Yasuo, H. Igm and iga antibodies generated against hepatitis c virus core antigen in patients with acute and chronic hcv infection. Dig. Dis. Sci. 1994, 39, 2022–2031. [Google Scholar] [CrossRef] [PubMed]
- Gong, S.; Tomusange, K.; Kulkarni, V.; Adeniji, O.S.; Lakhashe, S.K.; Hariraju, D.; Strickland, A.; Plake, E.; Frost, P.A.; Ratcliffe, S.J.; et al. Anti-hiv igm protects against mucosal shiv transmission. Aids 2018, 32, F5–F13. [Google Scholar] [CrossRef]
- Diamond, M.S.; Sitati, E.M.; Friend, L.D.; Higgs, S.; Shrestha, B.; Engle, M. A critical role for induced igm in the protection against west nile virus infection. J. Exp. Med. 2003, 198, 1853–1862. [Google Scholar] [CrossRef]
- Krishnamurty, A.T.; Thouvenel, C.D.; Portugal, S.; Keitany, G.J.; Kim, K.S.; Holder, A.; Crompton, P.D.; Rawlings, D.J.; Pepper, M. Somatically hypermutated plasmodium-specific igm(+) memory b cells are rapid, plastic, early responders upon malaria rechallenge. Immunity 2016, 45, 402–414. [Google Scholar] [CrossRef] [Green Version]
- Chua, C.L.; Sam, I.C.; Chiam, C.W.; Chan, Y.F. The neutralizing role of igm during early chikungunya virus infection. PLoS ONE 2017, 12, e0171989. [Google Scholar] [CrossRef] [Green Version]
- Skountzou, I.; Satyabhama, L.; Stavropoulou, A.; Ashraf, Z.; Esser, E.S.; Vassilieva, E.; Koutsonanos, D.; Compans, R.; Jacob, J. Influenza virus-specific neutralizing igm antibodies persist for a lifetime. Clin. Vaccine Immunol. 2014, 21, 1481–1489. [Google Scholar] [CrossRef] [Green Version]
- Kubagawa, H.; Honjo, K.; Ohkura, N.; Sakaguchi, S.; Radbruch, A.; Melchers, F.; Jani, P.K. Functional roles of the igm fc receptor in the immune system. Front. Immunol. 2019, 10, 945. [Google Scholar] [CrossRef]
- Moyron-Quiroz, J.E.; McCausland, M.M.; Kageyama, R.; Sette, A.; Crotty, S. The smallpox vaccine induces an early neutralizing igm response. Vaccine 2009, 28, 140–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavacini, L.A.; Kuhrt, D.; Duval, M.; Mayer, K.; Posner, M.R. Binding and neutralization activity of human igg1 and igg3 from serum of hiv-infected individuals. Aids Res. Hum. Retrovir. 2003, 19, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Haynes, B.F.; Gilbert, P.B.; McElrath, M.J.; Zolla-Pazner, S.; Tomaras, G.D.; Alam, S.M.; Evans, D.T.; Montefiori, D.C.; Karnasuta, C.; Sutthent, R.; et al. Immune-correlates analysis of an hiv-1 vaccine efficacy trial. N. Engl. J. Med. 2012, 366, 1275–1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ackerman, M.E.; Mikhailova, A.; Brown, E.P.; Dowell, K.G.; Walker, B.D.; Bailey-Kellogg, C.; Suscovich, T.J.; Alter, G. Polyfunctional hiv-specific antibody responses are associated with spontaneous hiv control. PLoS Pathog. 2016, 12, e1005315. [Google Scholar] [CrossRef]
- Ljunggren, K.; Moschese, V.; Broliden, P.A.; Giaquinto, C.; Quinti, I.; Fenyo, E.M.; Wahren, B.; Rossi, P.; Jondal, M. Antibodies mediating cellular cytotoxicity and neutralization correlate with a better clinical stage in children born to human immunodeficiency virus-infected mothers. J. Infect. Dis. 1990, 161, 198–202. [Google Scholar] [CrossRef]
- Yates, N.L.; Liao, H.X.; Fong, Y.; deCamp, A.; Vandergrift, N.A.; Williams, W.T.; Alam, S.M.; Ferrari, G.; Yang, Z.Y.; Seaton, K.E.; et al. Vaccine-induced env v1-v2 igg3 correlates with lower hiv-1 infection risk and declines soon after vaccination. Sci. Transl. Med. 2014, 6, 228ra239. [Google Scholar] [CrossRef] [Green Version]
- Rerks-Ngarm, S.; Pitisuttithum, P.; Nitayaphan, S.; Kaewkungwal, J.; Chiu, J.; Paris, R.; Premsri, N.; Namwat, C.; de Souza, M.; Adams, E.; et al. Vaccination with alvac and aidsvax to prevent hiv-1 infection in thailand. N. Engl. J. Med. 2009, 361, 2209–2220. [Google Scholar] [CrossRef]
- Tomaras, G.D.; Ferrari, G.; Shen, X.; Alam, S.M.; Liao, H.X.; Pollara, J.; Bonsignori, M.; Moody, M.A.; Fong, Y.; Chen, X.; et al. Vaccine-induced plasma iga specific for the c1 region of the hiv-1 envelope blocks binding and effector function of igg. Proc. Natl. Acad. Sci. USA 2013, 110, 9019–9024. [Google Scholar] [CrossRef] [Green Version]
- Teutsch, S.; Luciani, F.; Scheuer, N.; McCredie, L.; Hosseiny, P.; Rawlinson, W.; Kaldor, J.; Dore, G.J.; Dolan, K.; Ffrench, R.; et al. Incidence of primary hepatitis c infection and risk factors for transmission in an australian prisoner cohort. BMC Public Health 2010, 10, 633. [Google Scholar] [CrossRef] [Green Version]
- Luciani, F.; Bretana, N.A.; Teutsch, S.; Amin, J.; Topp, L.; Dore, G.J.; Maher, L.; Dolan, K.; Lloyd, A.R.; HITS-p investigators. A prospective study of hepatitis c incidence in australian prisoners. Addiction 2014, 109, 1695–1706. [Google Scholar] [CrossRef]
- Dolan, K.; Teutsch, S.; Scheuer, N.; Levy, M.; Rawlinson, W.; Kaldor, J.; Lloyd, A.; Haber, P. Incidence and risk for acute hepatitis c infection during imprisonment in australia. Eur. J. Epidemiol. 2010, 25, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Busch, M.P. Insights into the epidemiology, natural history and pathogenesis of hepatitis c virus infection from studies of infected donors and blood product recipients. Transfus Clin. Biol. 2001, 8, 200–206. [Google Scholar] [CrossRef]
- Glynn, S.A.; Wright, D.J.; Kleinman, S.H.; Hirschkorn, D.; Tu, Y.; Heldebrant, C.; Smith, R.; Giachetti, C.; Gallarda, J.; Busch, M.P. Dynamics of viremia in early hepatitis c virus infection. Transfusion 2005, 45, 994–1002. [Google Scholar] [CrossRef] [PubMed]
- Page-Shafer, K.; Pappalardo, B.L.; Tobler, L.H.; Phelps, B.H.; Edlin, B.R.; Moss, A.R.; Wright, T.L.; Wright, D.J.; O’Brien, T.R.; Caglioti, S.; et al. Testing strategy to identify cases of acute hepatitis c virus (hcv) infection and to project hcv incidence rates. J. Clin. Microbiol. 2008, 46, 499–506. [Google Scholar] [CrossRef] [Green Version]
- Bull, R.A.; Luciani, F.; McElroy, K.; Gaudieri, S.; Pham, S.T.; Chopra, A.; Cameron, B.; Maher, L.; Dore, G.J.; White, P.A.; et al. Sequential bottlenecks drive viral evolution in early acute hepatitis c virus infection. PLoS Pathog. 2011, 7, e1002243. [Google Scholar] [CrossRef] [Green Version]
- Al Olaby, R.R.; Azzazy, H.M. Hepatitis c virus rna assays: Current and emerging technologies and their clinical applications. Expert Rev. Mol. Diagn. 2011, 11, 53–64. [Google Scholar] [CrossRef]
- Wang, Y.; Keck, Z.Y.; Saha, A.; Xia, J.; Conrad, F.; Lou, J.; Eckart, M.; Marks, J.D.; Foung, S.K. Affinity maturation to improve human monoclonal antibody neutralization potency and breadth against hepatitis c virus. J. Biol. Chem. 2011, 286, 44218–44233. [Google Scholar] [CrossRef] [Green Version]
- McCaffrey, K.; Boo, I.; Owczarek, C.M.; Hardy, M.P.; Perugini, M.A.; Fabri, L.; Scotney, P.; Poumbourios, P.; Drummer, H.E. An optimized hepatitis c virus e2 glycoprotein core adopts a functional homodimer that efficiently blocks virus entry. J. Virol. 2017, 91, e01668-16. [Google Scholar] [CrossRef] [Green Version]
- Giang, E.; Dorner, M.; Prentoe, J.C.; Dreux, M.; Evans, M.J.; Bukh, J.; Rice, C.M.; Ploss, A.; Burton, D.R.; Law, M. Human broadly neutralizing antibodies to the envelope glycoprotein complex of hepatitis c virus. Proc. Natl. Acad. Sci. USA 2012, 109, 6205–6210. [Google Scholar] [CrossRef] [Green Version]
- Alhammad, Y.; Gu, J.; Boo, I.; Harrison, D.; McCaffrey, K.; Vietheer, P.T.; Edwards, S.; Quinn, C.; Coulibaly, F.; Poumbourios, P.; et al. Monoclonal antibodies directed toward the hepatitis c virus glycoprotein e2 detect antigenic differences modulated by the n-terminal hypervariable region 1 (hvr1), hvr2, and intergenotypic variable region. J. Virol. 2015, 89, 12245–12261. [Google Scholar] [CrossRef] [Green Version]
- Hajarizadeh, B.; Grebely, J.; Applegate, T.; Matthews, G.V.; Amin, J.; Petoumenos, K.; Hellard, M.; Rawlinson, W.; Lloyd, A.; Kaldor, J.; et al. Dynamics of hcv rna levels during acute hepatitis c virus infection. J. Med. Virol. 2014, 86, 1722–1729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajarizadeh, B.; Grady, B.; Page, K.; Kim, A.Y.; McGovern, B.H.; Cox, A.L.; Rice, T.M.; Sacks-Davis, R.; Bruneau, J.; Morris, M.; et al. Patterns of hepatitis c virus rna levels during acute infection: The inc3 study. PLoS ONE 2015, 10, e0122232. [Google Scholar] [CrossRef] [PubMed]
- Sarrazin, C.; Dragan, A.; Gartner, B.C.; Forman, M.S.; Traver, S.; Zeuzem, S.; Valsamakis, A. Evaluation of an automated, highly sensitive, real-time pcr-based assay (cobas ampliprep/cobas taqman) for quantification of hcv rna. J. Clin. Virol. 2008, 43, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.S.; Viazov, S.; Sarr, S.; Hoffmann, S.; Kramer, A.; Roggendorf, M. Quantitation of hepatitis c virus rna by third generation branched DNA-based signal amplification assay. J. Virol. Methods 2002, 101, 159–168. [Google Scholar] [CrossRef]
- Cooper, P.J.; Espinel, I.; Wieseman, M.; Paredes, W.; Espinel, M.; Guderian, R.H.; Nutman, T.B. Human onchocerciasis and tetanus vaccination: Impact on the postvaccination antitetanus antibody response. Infect. Immun. 1999, 67, 5951–5957. [Google Scholar] [CrossRef] [Green Version]
- Chung, A.W.; Ghebremichael, M.; Robinson, H.; Brown, E.; Choi, I.; Lane, S.; Dugast, A.S.; Schoen, M.K.; Rolland, M.; Suscovich, T.J.; et al. Polyfunctional fc-effector profiles mediated by igg subclass selection distinguish rv144 and vax003 vaccines. Sci. Transl. Med. 2014, 6, 228ra238. [Google Scholar] [CrossRef]
- Barrett, D.J.; Ayoub, E.M. Igg2 subclass restriction of antibody to pneumococcal polysaccharides. Clin. Exp. Immunol. 1986, 63, 127–134. [Google Scholar]
- Murphy, S.L.; Li, H.; Mingozzi, F.; Sabatino, D.E.; Hui, D.J.; Edmonson, S.A.; High, K.A. Diverse igg subclass responses to adeno-associated virus infection and vector administration. J. Med. Virol. 2009, 81, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Spinsanti, L.I.; Farias, A.A.; Aguilar, J.J.; del Pilar Diaz, M.; Contigiani, M.S. Immunoglobulin g subclasses in antibody responses to st. Louis encephalitis virus infections. Arch. Virol. 2011, 156, 1861–1864. [Google Scholar] [CrossRef]
- Liu, F.; Bergami, P.L.; Duval, M.; Kuhrt, D.; Posner, M.; Cavacini, L. Expression and functional activity of isotype and subclass switched human monoclonal antibody reactive with the base of the v3 loop of hiv-1 gp120. Aids Res. Hum. Retrovir. 2003, 19, 597–607. [Google Scholar] [CrossRef]
- Hofmeister, Y.; Planitzer, C.B.; Farcet, M.R.; Teschner, W.; Butterweck, H.A.; Weber, A.; Holzer, G.W.; Kreil, T.R. Human igg subclasses: In vitro neutralization of and in vivo protection against west nile virus. J. Virol. 2011, 85, 1896–1899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigo, W.W.; Block, O.K.; Lane, C.; Sukupolvi-Petty, S.; Goncalvez, A.P.; Johnson, S.; Diamond, M.S.; Lai, C.J.; Rose, R.C.; Jin, X.; et al. Dengue virus neutralization is modulated by igg antibody subclass and fcgamma receptor subtype. Virology 2009, 394, 175–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abayasingam, A.; Leung, P.; Eltahla, A.; Bull, R.A.; Luciani, F.; Grebely, J.; Dore, G.J.; Applegate, T.; Page, K.; Bruneau, J.; et al. Genomic characterization of hepatitis c virus transmitted founder variants with deep sequencing. Infect. Genet. Evol. 2019, 71, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Abbott, R.K.; Lee, J.H.; Menis, S.; Skog, P.; Rossi, M.; Ota, T.; Kulp, D.W.; Bhullar, D.; Kalyuzhniy, O.; Havenar-Daughton, C.; et al. Precursor frequency and affinity determine b cell competitive fitness in germinal centers, tested with germline-targeting hiv vaccine immunogens. Immunity 2018, 48, 133–146. [Google Scholar] [CrossRef] [Green Version]
- Raziorrouh, B.; Sacher, K.; Tawar, R.G.; Emmerich, F.; Neumann-Haefelin, C.; Baumert, T.F.; Thimme, R.; Boettler, T. Virus-specific cd4+ t cells have functional and phenotypic characteristics of follicular t-helper cells in patients with acute and chronic hcv infections. Gastroenterology 2016, 150, 696–706. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Jiang, B.C.; Liu, X.H.; Zhang, M.X.; Li, Z.S.; Zhu, G.Z. Interleukin-7 regulates t follicular helper cell function in patients with chronic hepatitis c. Viral Immunol. 2018, 31, 417–425. [Google Scholar] [CrossRef]
- Keoshkerian, E.; Hunter, M.; Cameron, B.; Nguyen, N.; Sugden, P.; Bull, R.; Zekry, A.; Maher, L.; Seddiki, N.; Zaunders, J.; et al. Hepatitis c-specific effector and regulatory cd4 t-cell responses are associated with the outcomes of primary infection. J. Viral Hepat. 2016, 23, 985–993. [Google Scholar] [CrossRef]
- Sok, D.; Laserson, U.; Laserson, J.; Liu, Y.; Vigneault, F.; Julien, J.P.; Briney, B.; Ramos, A.; Saye, K.F.; Le, K.; et al. The effects of somatic hypermutation on neutralization and binding in the pgt121 family of broadly neutralizing hiv antibodies. PLoS Pathog. 2013, 9, e1003754. [Google Scholar] [CrossRef]
- Ehrenstein, M.R.; O’Keefe, T.L.; Davies, S.L.; Neuberger, M.S. Targeted gene disruption reveals a role for natural secretory igm in the maturation of the primary immune response. Proc. Natl. Acad. Sci. USA 1998, 95, 10089–10093. [Google Scholar] [CrossRef] [Green Version]
- Black, K.P.; Cummins, J.E., Jr.; Jackson, S. Serum and secretory iga from hiv-infected individuals mediate antibody-dependent cellular cytotoxicity. Clin. Immunol. Immunopathol. 1996, 81, 182–190. [Google Scholar] [CrossRef]
- Wang, T.T.; Ravetch, J.V. Immune complexes: Not just an innocent bystander in chronic viral infection. Immunity 2015, 42, 213–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomaras, G.D.; Yates, N.L.; Liu, P.; Qin, L.; Fouda, G.G.; Chavez, L.L.; Decamp, A.C.; Parks, R.J.; Ashley, V.C.; Lucas, J.T.; et al. Initial b-cell responses to transmitted human immunodeficiency virus type 1: Virion-binding immunoglobulin m (igm) and igg antibodies followed by plasma anti-gp41 antibodies with ineffective control of initial viremia. J. Virol. 2008, 82, 12449–12463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Subject ID a | Age at Infection | Sex | Disease Outcome | GT b | First Sampling Point (DPI c) | Time to Clearance | Initial Viral Load | Ethnicity | HIV Co-Infection | HBV Co-Infection |
---|---|---|---|---|---|---|---|---|---|---|
168_Cl d | 24 | M | Clearer | 1b | 4 | 142 | 10,989,916 | Caucasian | N f | Y g |
277_Cl | 25 | M | Clearer | 3a | 39 | 195 | 5,482,503 | Caucasian | N | N |
306_Cl | 24 | F | Clearer | 1a/2b | 5 | 487 | 8,462,679 | Caucasian | N | Y |
360_Cl | 29 | M | Clearer | 3a | 30 | 178 | 5,648,631 | Caucasian | N | Y |
4032_Cl | 22 | M | Clearer | 3a | 44 | 124 | 237,930 | Aboriginal | N | N |
4087_Cl | 32 | F | Clearer | 1b | 45 | 139 | 13,118,082 | Caucasian | N | N |
686_Cl | 23 | F | Clearer | 1a | 33 | 316 | 287,770 | Caucasian | N | N |
023_Ch e | 22 | M | Chronic | 1a | 36 | 19,234,348 | Caucasian | N | N | |
240_Ch | 21 | M | Chronic | 3a | 44 | 54,887 | Caucasian | N | N | |
256_Ch | 31 | M | Chronic | 1a | 44 | 34,149,824 | Aboriginal | N | N | |
4059_Ch | 31 | M | Chronic | 1a/2b | 30 | 3,676,682 | Caucasian | N | N | |
HOK_Ch | 26 | F | Chronic | 1b | 30 | 733,849 | Caucasian | N | N | |
THD_Ch | 25 | M | Chronic | 1a | 16 | 235,662 | Caucasian | N | N | |
THG_Ch | 28 | M | Chronic | 1a | 2 | 140,200 | Caucasian | N | N |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walker, M.R.; Eltahla, A.A.; Mina, M.M.; Li, H.; Lloyd, A.R.; Bull, R.A. Envelope-Specific IgG3 and IgG1 Responses Are Associated with Clearance of Acute Hepatitis C Virus Infection. Viruses 2020, 12, 75. https://doi.org/10.3390/v12010075
Walker MR, Eltahla AA, Mina MM, Li H, Lloyd AR, Bull RA. Envelope-Specific IgG3 and IgG1 Responses Are Associated with Clearance of Acute Hepatitis C Virus Infection. Viruses. 2020; 12(1):75. https://doi.org/10.3390/v12010075
Chicago/Turabian StyleWalker, Melanie R., Auda A. Eltahla, Michael M. Mina, Hui Li, Andrew R. Lloyd, and Rowena A. Bull. 2020. "Envelope-Specific IgG3 and IgG1 Responses Are Associated with Clearance of Acute Hepatitis C Virus Infection" Viruses 12, no. 1: 75. https://doi.org/10.3390/v12010075