Antiviral Agents as Therapeutic Strategies Against Cytomegalovirus Infections
Abstract
1. Introduction
1.1. Cytomegalovirus Overview
1.2. CMV Molecular Biology
1.3. CMV Life Cycle
2. CMV Infection
2.1. Signs, Symptoms and Complications
2.2. Congenital Infection and Sequelae
3. CMV Anti-Viral Drugs
3.1. Letermovir
3.2. Maribavir
4. CMV Inhibition by Nucleic Acid-Based Therapeutic Approaches
4.1. EGS-RNase
4.2. CRISPR/Cas9
4.3. TALENs
5. HCMV Vaccines
6. Adoptive Cell Therapy for CMV Infections
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CMV | cytomegalovirus |
EGSs | external guide sequences |
CRISPRs | clustered regularly interspaced short palindromic repeats |
TALENs | transcription activator-like effector nucleases |
ACT | adoptive T cell therapy |
HHV | herpesvirus |
AIDS | acquired immunodeficiency syndromes |
HIV | human immunodeficiency virus |
SOT | solid organ transplant |
CNS | central nervous system |
SNHL | sensorineural hearing loss |
mCSP | mRNA sequence which codes for capsid scaffolding proteins |
sgRNA | single-guiding RNA |
PAM | protospacer adjacent motif |
GPCMV | guinea pig cytomegalovirus |
HSCT | hematopoietic stem cell transplantation |
PSPA | peptide specific proliferation assay |
TCM | specific central memory T cells |
GMP | good manufacturing practice |
References
- Adams, M.J.; Carstens, E.B. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses. Arch. Virol. 2012, 157, 1411–1422. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.R.; Rosenthal, K.S.; Pfaller, M.A. Medical Microbiology, 5th ed.; Elsevier Mosby: Maryland Heights, MO, USA, 2005; ISBN 978-0-323-03303-9. [Google Scholar]
- Zhan, X.; Lee, M.; Xiao, J.; Liu, F. Construction and characterization of murine cytomegaloviruses that contain transposon insertions at open reading frames m09 and M83. J. Virol. 2000, 74, 7411–7421. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lee, M.; Abenes, G.; Zhan, X.; Dunn, W.; Haghjoo, E.; Tong, T.; Tam, A.; Chan, K.; Liu, F. Genetic analyses of gene function and pathogenesis of murine cytomegalovirus by transposon-mediated mutagenesis. J. Clin Virol. 2002, 25 (Suppl. 2), S111–S122. [Google Scholar] [CrossRef]
- Dunn, W.; Chou, C.; Li, H.; Hai, R.; Patterson, D.; Stolc, V.; Zhu, H.; Liu, F. Functional profiling of a human cytomegalovirus genome. Proc. Natl. Acad. Sci. USA 2003, 100, 14223–14228. [Google Scholar] [CrossRef]
- Scholz, M.; Doerr, H.W.; Cinatl, J. Inhibition of cytomegalovirus immediate early gene expression: A therapeutic option? Antivir. Res. 2001, 49, 129–145. [Google Scholar] [CrossRef]
- Marschall, M.; Freitag, M.; Weiler, S.; Sorg, G.; Stamminger, T. Recombinant green fluorescent protein-expressing human cytomegalovirus as a tool for screening antiviral agents. Antimicrob. Agents Chemother. 2000, 44, 1588–1597. [Google Scholar] [CrossRef]
- La, Y.; Kwon, D.E.; Yoo, S.G.; Lee, K.H.; Han, S.H.; Song, Y.G. Human cytomegalovirus seroprevalence and titers in solid organ transplant recipients and transplant donors in Seoul, South Korea. BMC Infect. Dis. 2019, 19, 948. [Google Scholar] [CrossRef]
- Melnick, M.; Sedghizadeh, P.P.; Allen, C.M.; Jaskoll, T. Human cytomegalovirus and mucoepidermoid carcinoma of salivary glands: Cell-specific localization of active viral and oncogenic signaling proteins is confirmatory of a causal relationship. Exp. Mol. Pathol. 2012, 92, 118–125. [Google Scholar] [CrossRef]
- Griffiths, P.D.; Grundy, J.E. Molecular biology and immunology of cytomegalovirus. Biochem. J. 1987, 241, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Crough, T.; Khanna, R. Immunobiology of human cytomegalovirus: From bench to bedside. Clin. Microbiol. Rev. 2009, 76–98. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Sheng, J.; Trang, P.; Liu, F. Potential application of the CRISPR/Cas9 system against herpesvirus infections. Viruses 2018, 10, 291. [Google Scholar] [CrossRef] [PubMed]
- Porter, K.R.; Starnes, D.M.; Hamilton, J.D. Reactivation of latent murine cytomegalovirus from kidney. Kidney Int. 1985, 28, 922–925. [Google Scholar] [CrossRef] [PubMed]
- Dupont, L.; Reeves, M.B. Cytomegalovirus latency and reactivation: Recent insights into an old age problem. Rev. Med. Virol. 2016, 26, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Fowler, K.B.; Stagno, S.; Pass, R.F. Maternal immunity and prevention of congenital cytomegalovirus infection. JAMA 2003, 289, 1008–1011. [Google Scholar] [CrossRef]
- Yamamoto, A.Y.; Mussi-Pinhata, M.M.; Boppana, S.B.; Novak, Z.; Wagatsuma, V.M.; de Frizzo Oliveira, P.; Duarte, G.; Britt, W.J. Human cytomegalovirus reinfection is associated with intrauterine transmission in a highly cytomegalovirus-immune maternal population. Am. J. Obstet. Gynecol. 2010, 202, 297-e1. [Google Scholar] [CrossRef]
- Dollard, S.C.; Grosse, S.D.; Ross, D.S. New estimates of the prevalence of neurological and sensory sequelae and mortality associated with congenital cytomegalovirus infection. Rev. Med. Virol. 2007, 17, 355–363. [Google Scholar] [CrossRef]
- Kenneson, A.; Cannon, M.J. Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev. Med. Virol. 2007, 17, 253–276. [Google Scholar] [CrossRef]
- Nyholm, J.L.; Schleiss, M.R. Prevention of maternal cytomegalovirus infection: Current status and future prospects. Int. J. Women’s Health 2010, 2, 23. [Google Scholar] [CrossRef][Green Version]
- Leung, A.K.; Sauve, R.S.; Davies, H.D. Congenital cytomegalovirus infection. J. Natl. Med. Assoc. 2003, 95, 213. [Google Scholar]
- Dreher, A.M.; Arora, N.; Fowler, K.B.; Novak, Z.; Britt, W.J.; Boppana, S.B.; Ross, S.A. Spectrum of disease and outcome in children with symptomatic congenital cytomegalovirus infection. J. Pediatrics 2014, 164, 855–859. [Google Scholar] [CrossRef]
- Swanson, E.C.; Schleiss, M.R. Congenital cytomegalovirus infection: New prospects for prevention and therapy. Pediatric Clin. 2013, 60, 335–349. [Google Scholar] [CrossRef]
- Yamamoto, A.Y.; Mussi-Pinhata, M.M.; Isaac, M.d.L.; Amaral, F.R.; CARVALHEIRO, C.G.; Aragon, D.C.; MANFREDI, A.K.D.S.; Boppana, S.B.; Britt, W.J. Congenital cytomegalovirus infection as a cause of sensorineural hearing loss in a highly immune population. Pediatric Infect. Dis. J. 2011, 30, 1043. [Google Scholar] [CrossRef] [PubMed]
- Fowler, K.B.; Boppana, S.B. Congenital cytomegalovirus (CMV) infection and hearing deficit. J. Clin. Virol. 2006, 35, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Boppana, S.B.; Ross, S.A.; Fowler, K.B. Congenital cytomegalovirus infection: Clinical outcome. Clin. Infect. Dis. 2013, 57, S178–S181. [Google Scholar] [CrossRef] [PubMed]
- Mussi-Pinhata, M.M.; Yamamoto, A.Y.; Brito, R.M.M.; Isaac, M.d.L.; de Carvalhoe Oliveira, P.F.; Boppana, S.; Britt, W.J. Birth prevalence and natural history of congenital cytomegalovirus infection in a highly seroimmune population. Clin. Infect. Dis. 2009, 49, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Pass, R.F.; Fowler, K.B.; Boppana, S.B.; Britt, W.J.; Stagno, S. Congenital cytomegalovirus infection following first trimester maternal infection: Symptoms at birth and outcome. J. Clin. Virol. 2006, 35, 216–220. [Google Scholar] [CrossRef]
- Nassetta, L.; Kimberlin, D.; Whitley, R. Treatment of congenital cytomegalovirus infection: Implications for future therapeutic strategies. J. Antimicrob. Chemother. 2009, 63, 862–867. [Google Scholar] [CrossRef]
- Barbi, M.; Binda, S.; Caroppo, S.; Calvario, A.; Germinario, C.; Bozzi, A.; Tanzi, M.L.; Veronesi, L.; Mura, I.; Piana, A. Multicity Italian study of congenital cytomegalovirus infection. Pediatric Infect. Dis. J. 2006, 25, 156–159. [Google Scholar] [CrossRef][Green Version]
- Coll, O.; Benoist, G.; Ville, Y.; Weisman, L.E.; Botet, F.; Greenough, A.; Gibbs, R.S.; Carbonell-Estrany, X. Guidelines on CMV congenital infection. J. Perinat. Med. 2009, 37, 433–445. [Google Scholar] [CrossRef]
- Schleiss, M.R. Congenital cytomegalovirus infection: Update on management strategies. Curr. Treat. Options Neurol. 2008, 10, 186–192. [Google Scholar] [CrossRef]
- Nance, W.E.; Lim, B.G.; Dodson, K.M. Importance of congenital cytomegalovirus infections as a cause for pre-lingual hearing loss. J. Clin. Virol. 2006, 35, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Babić, M.; Krmpotić, A.; Jonjić, S. All is fair in virus–host interactions: NK cells and cytomegalovirus. Trends Mol. Med. 2011, 17, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, G.; Aicheler, R.J.; Wang, E.C. Natural killer cells and human cytomegalovirus. In Cytomegaloviruses: From Molecular Biology to Intervention; Caister Academic Press: Wymondham, UK, 2013; Volume 2, pp. 173–191. [Google Scholar]
- Vidal, S.; Krmpotic, A.; Pyzik, M.; Jonjic, S. Innate immunity to cytomegalovirus in the murine model. In Cytomegaloviruses from Molecular Pathogenesis to Intervention; Reddehase, M.J., Ed.; Caister Academic Press: Norfolk, UK, 2013; pp. 192–214. [Google Scholar] [CrossRef]
- Krishna, B.A.; Wills, M.R.; Sinclair, J.H. Advances in the treatment of cytomegalovirus. Br. Med. Bull. 2019, ldz031. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, P. New vaccines and antiviral drugs for cytomegalovirus. J. Clin Virol. 2019, 116, 58–61. [Google Scholar] [CrossRef]
- Ornaghi, S.; Hsieh, L.S.; Bordey, A.; Vergani, P.; Paidas, M.J.; van den Pol, A.N. Valnoctamide Inhibits Cytomegalovirus Infection in Developing Brain and Attenuates Neurobehavioral Dysfunctions and Brain Abnormalities. J. Neurosci. 2017, 37, 6877–6893. [Google Scholar] [CrossRef]
- Popping, S.; Dalm, V.A.S.H.; Lübke, N.; Cristanziano, V.D.; Kaiser, R.; Boucher, C.A.B.; Van Kampen, J.J.A. Emergence and persistence of letermovir-resistant cytomegalovirus in a patient with primary immunodeficiency. In Open Forum Infectious Diseases; Oxford University Press: Oxford, UK, 2019; Volume 6, no. 9; p. ofz375. [Google Scholar] [CrossRef]
- Lin, A.; Maloy, M.; Su, Y.; Bhatt, V.; DeRespiris, L.; Griffin, M.; Lau, C.; Proli, A.; Barker, J.; Shaffer, B.; et al. Letermovir for primary and secondary cytomegalovirus prevention in allogeneic hematopoietic cell transplant recipients: Real-world experience. Transpl. Infect. Dis 2019, e13187. [Google Scholar] [CrossRef]
- Aryal, S.; Katugaha, S.B.; Cochrane, A.; Brown, A.W.; Nathan, S.D.; Shlobin, O.A.; Ahmad, K.; Marinak, L.; Chun, J.; Fregoso, M.; et al. Single-center experience with use of letermovir for CMV prophylaxis or treatment in thoracic organ transplant recipients. Transpl Infect. Dis. 2019, e13166. [Google Scholar] [CrossRef]
- Veit, T.; Munker, D.; Kauke, T.; Zoller, M.; Michel, S.; Ceelen, F.; Schiopu, S.; Barton, J.; Arnold, P.; Milger, K.; et al. Letermovir for difficult to treat cytomegalovirus infection in lung transplant recipients. Transplantation 2019. [CrossRef]
- Chemaly, R.F.; Ullmann, A.J.; Stoelben, S.; Richard, M.P.; Bornhäuser, M.; Groth, C.; Einsele, H.; Silverman, M.; Mullane, K.M.; Brown, J.; et al. Letermovir for cytomegalovirus prophylaxis in hematopoietic-cell transplantation. N. Engl. J. Med. 2014, 370, 1781–1789. [Google Scholar] [CrossRef]
- Marty, F.M.; Ljungman, P.; Chemaly, R.F.; Maertens, J.; Dadwal, S.S.; Duarte, R.F.; Haider, S.; Ullmann, A.J.; Katayama, Y.; Brown, J.; et al. Letermovir prophylaxis for cytomegalovirus in hematopoietic-cell transplantation. N. Engl. J. Med. 2017, 377, 2433–2444. [Google Scholar] [CrossRef]
- Herling, M.; Schröder, L.; Awerkiew, S.; Chakupurakal, G.; Holtick, U.; Kaiser, R.; Pfister, H.; Scheid, C.; Di Cristanziano, V. Persistent CMV infection after allogeneic hematopoietic stem cell transplantation in a CMV-seronegative donorto-positive recipient constellation: Development of multidrug resistance in the absence of anti-viral cellular immunity. J. Clin Virol. 2016, 74, 57–60. [Google Scholar] [CrossRef]
- Maertens, J.; Cordonnier, C.; Jaksch, P.; Poiré, X.; Uknis, M.; Wu, J.; Wijatyk, A.; Saliba, F.; Witzke, O.; Villano, S. Maribavir for preemptive treatment of cytomegalovirus reactivation. N. Engl. J. Med. 2019, 381, 1136–1147. [Google Scholar] [CrossRef]
- Papanicolaou, G.A.; Silveira, F.P.; Langston, A.A.; Pereira, M.R.; Avery, R.K.; Uknis, M.; Wijatyk, A.; Wu, J.; Boeckh, M.; Marty, F.M.; et al. Maribavir for refractory or resistant cytomegalovirus infections in hematopoietic-cell or solid-organ transplant recipients: A randomized, dose-ranging, double-blind, phase 2 Study. Clin. Infect. Dis. 2019, 68, 1255–1264. [Google Scholar] [CrossRef]
- Deng, Q.; Liu, Y.; Li, X.; Yan, B.; Sun, X.; Tang, W.; Trang, P.; Yang, Z.; Gong, H.; Wang, Y.; et al. Inhibition of human cytomegalovirus major capsid protein expression and replication by ribonuclease P-associated external guide sequences. RNA 2019, 25, 645–655. [Google Scholar] [CrossRef]
- Li, W.; Sheng, J.; Xu, M.; Vu, G.P.; Yang, Z.; Liu, Y.; Sun, X.; Trang, P.; Lu, S.; Liu, F. Inhibition of murine cytomegalovirus infection in animals by RNase P-associated external guide sequences. Mol. Nucleic Acids 2017, 9, 322–332. [Google Scholar] [CrossRef]
- King, M.W.; Munger, J. Editing the human cytomegalovirus genome with the CRISPR/Cas9 system. Virology 2019, 529, 186–194. [Google Scholar] [CrossRef]
- Gergen, J.; Coulon, F.; Creneguy, A.; Elain-Duret, N.; Gutierrez, A.; Pinkenburg, O.; Verhoeyen, E.; Anegon, I.; Nguyen, T.H.; Halary, F.A.; et al. Multiplex CRISPR/Cas9 system impairs HCMV replication by excising an essential viral gene. PLoS ONE 2018, 13, e0192602. [Google Scholar] [CrossRef]
- van Diemen, F.R.; Kruse, E.M.; Hooykaas, M.J.; Bruggeling, C.E.; Schürch, A.C.; van Ham, P.M.; Imhof, S.M.; Nijhuis, M.; Wiertz, E.J.; Lebbink, R.J. CRISPR/Cas9-mediated genome editing of herpesviruses limits productive and latent Infections. PloS Pathog. 2016, 12, e1005701. [Google Scholar] [CrossRef]
- Boch, J.; Scholze, H.; Schornack, S.; Landgraf, A.; Hahn, S.; Kay, S.; Lahaye, T.; Nickstadt, A.; Bonas, U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 2009, 326, 1509–1512. [Google Scholar] [CrossRef]
- Chen, S.J.; Chen, Y.C. Potential application of TALENs against murine cytomegalovirus latent infections. Viruses 2019, 11, 414. [Google Scholar] [CrossRef]
- Choi, K.Y.; El-Hamdi, N.S.; McGregor, A. Inclusion of the viral pentamer complex in a vaccine design greatly improves protection against congenital cytomegalovirus in the guinea pig model. J. Virol. 2019, 93, e01442–e014519. [Google Scholar] [CrossRef]
- Liu, Y.; Freed, D.C.; Li, L.; Tang, A.; Li, F.; Murray, E.M.; Adler, S.P.; McVoy, M.A.; Rupp, R.E.; Barrett, D.; et al. A replication defective human cytomegalovirus vaccine elicits humoral immune responses analogous to those with natural infection. J. Virol. 2019, JVI.00747–JVI.00819. [Google Scholar] [CrossRef]
- Fatic, A.; Zhang, N.; Keller, M.D.; Hanley, P.J. The pipeline of antiviral T-cell therapy: What’s in the clinic and undergoing development. Transfusion 2019. [Google Scholar] [CrossRef]
- Faist, B.; Schlott, F.; Stemberger, C.; Dennehy, K.M.; Krackhardt, A.; Verbeek, M.; Grigoleit, G.U.; Schiemann, M.; Hoffmann, D.; Dick, A.; et al. Targeted in-vitro-stimulation reveals highly proliferative multi-virus-specific human central memory T cells as candidates for prophylactic T cell therapy. PLoS ONE 2019, 14, e0223258. [Google Scholar] [CrossRef]
- Smith, C.; Corvino, D.; Beagley, L.; Rehan, S.; Neller, M.A.; Crooks, P.; Matthews, K.K.; Solomon, M.; Le Texier, L.; Campbell, S.; et al. T cell repertoire remodeling following post-transplant T cell therapy coincides with clinical response. J. Clin Invest. 2019, 129, 5020–5032. [Google Scholar] [CrossRef]
Individual | Major Signs and Symptoms | Complications |
---|---|---|
Healthy adult | Fatigue, fever, sore throat, muscle aches | problems with the digestive system, liver, brain and nervous system |
People with weakened immunity | Problems affecting eyes, lungs, liver, esophagus, stomach, intestines, brain | Vision loss due to the retinitis inflammation, digestive system problems including inflammation of the colon, esophagus and liver, nervous system problems including encephalitis and myelitis, pneumonia |
Baby | Premature birth, low birth weight, jaundice (yellow skin and eyes), enlarged and poor liver function, purple skin splotches and/or rashes, microencephaly (abnormally small head), enlarged spleen, pneumonia, seizures | Hearing loss, intellectual disability, vision problems, seizures, lack of coordination, muscle weakness |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-J.; Wang, S.-C.; Chen, Y.-C. Antiviral Agents as Therapeutic Strategies Against Cytomegalovirus Infections. Viruses 2020, 12, 21. https://doi.org/10.3390/v12010021
Chen S-J, Wang S-C, Chen Y-C. Antiviral Agents as Therapeutic Strategies Against Cytomegalovirus Infections. Viruses. 2020; 12(1):21. https://doi.org/10.3390/v12010021
Chicago/Turabian StyleChen, Shiu-Jau, Shao-Cheng Wang, and Yuan-Chuan Chen. 2020. "Antiviral Agents as Therapeutic Strategies Against Cytomegalovirus Infections" Viruses 12, no. 1: 21. https://doi.org/10.3390/v12010021
APA StyleChen, S.-J., Wang, S.-C., & Chen, Y.-C. (2020). Antiviral Agents as Therapeutic Strategies Against Cytomegalovirus Infections. Viruses, 12(1), 21. https://doi.org/10.3390/v12010021