Antiviral Agents as Therapeutic Strategies Against Cytomegalovirus Infections
Abstract
:1. Introduction
1.1. Cytomegalovirus Overview
1.2. CMV Molecular Biology
1.3. CMV Life Cycle
2. CMV Infection
2.1. Signs, Symptoms and Complications
2.2. Congenital Infection and Sequelae
3. CMV Anti-Viral Drugs
3.1. Letermovir
3.2. Maribavir
4. CMV Inhibition by Nucleic Acid-Based Therapeutic Approaches
4.1. EGS-RNase
4.2. CRISPR/Cas9
4.3. TALENs
5. HCMV Vaccines
6. Adoptive Cell Therapy for CMV Infections
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CMV | cytomegalovirus |
EGSs | external guide sequences |
CRISPRs | clustered regularly interspaced short palindromic repeats |
TALENs | transcription activator-like effector nucleases |
ACT | adoptive T cell therapy |
HHV | herpesvirus |
AIDS | acquired immunodeficiency syndromes |
HIV | human immunodeficiency virus |
SOT | solid organ transplant |
CNS | central nervous system |
SNHL | sensorineural hearing loss |
mCSP | mRNA sequence which codes for capsid scaffolding proteins |
sgRNA | single-guiding RNA |
PAM | protospacer adjacent motif |
GPCMV | guinea pig cytomegalovirus |
HSCT | hematopoietic stem cell transplantation |
PSPA | peptide specific proliferation assay |
TCM | specific central memory T cells |
GMP | good manufacturing practice |
References
- Adams, M.J.; Carstens, E.B. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses. Arch. Virol. 2012, 157, 1411–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, P.R.; Rosenthal, K.S.; Pfaller, M.A. Medical Microbiology, 5th ed.; Elsevier Mosby: Maryland Heights, MO, USA, 2005; ISBN 978-0-323-03303-9. [Google Scholar]
- Zhan, X.; Lee, M.; Xiao, J.; Liu, F. Construction and characterization of murine cytomegaloviruses that contain transposon insertions at open reading frames m09 and M83. J. Virol. 2000, 74, 7411–7421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.; Abenes, G.; Zhan, X.; Dunn, W.; Haghjoo, E.; Tong, T.; Tam, A.; Chan, K.; Liu, F. Genetic analyses of gene function and pathogenesis of murine cytomegalovirus by transposon-mediated mutagenesis. J. Clin Virol. 2002, 25 (Suppl. 2), S111–S122. [Google Scholar] [CrossRef]
- Dunn, W.; Chou, C.; Li, H.; Hai, R.; Patterson, D.; Stolc, V.; Zhu, H.; Liu, F. Functional profiling of a human cytomegalovirus genome. Proc. Natl. Acad. Sci. USA 2003, 100, 14223–14228. [Google Scholar] [CrossRef] [Green Version]
- Scholz, M.; Doerr, H.W.; Cinatl, J. Inhibition of cytomegalovirus immediate early gene expression: A therapeutic option? Antivir. Res. 2001, 49, 129–145. [Google Scholar] [CrossRef]
- Marschall, M.; Freitag, M.; Weiler, S.; Sorg, G.; Stamminger, T. Recombinant green fluorescent protein-expressing human cytomegalovirus as a tool for screening antiviral agents. Antimicrob. Agents Chemother. 2000, 44, 1588–1597. [Google Scholar] [CrossRef] [Green Version]
- La, Y.; Kwon, D.E.; Yoo, S.G.; Lee, K.H.; Han, S.H.; Song, Y.G. Human cytomegalovirus seroprevalence and titers in solid organ transplant recipients and transplant donors in Seoul, South Korea. BMC Infect. Dis. 2019, 19, 948. [Google Scholar] [CrossRef] [Green Version]
- Melnick, M.; Sedghizadeh, P.P.; Allen, C.M.; Jaskoll, T. Human cytomegalovirus and mucoepidermoid carcinoma of salivary glands: Cell-specific localization of active viral and oncogenic signaling proteins is confirmatory of a causal relationship. Exp. Mol. Pathol. 2012, 92, 118–125. [Google Scholar] [CrossRef]
- Griffiths, P.D.; Grundy, J.E. Molecular biology and immunology of cytomegalovirus. Biochem. J. 1987, 241, 313–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crough, T.; Khanna, R. Immunobiology of human cytomegalovirus: From bench to bedside. Clin. Microbiol. Rev. 2009, 76–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.-C.; Sheng, J.; Trang, P.; Liu, F. Potential application of the CRISPR/Cas9 system against herpesvirus infections. Viruses 2018, 10, 291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porter, K.R.; Starnes, D.M.; Hamilton, J.D. Reactivation of latent murine cytomegalovirus from kidney. Kidney Int. 1985, 28, 922–925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupont, L.; Reeves, M.B. Cytomegalovirus latency and reactivation: Recent insights into an old age problem. Rev. Med. Virol. 2016, 26, 75–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowler, K.B.; Stagno, S.; Pass, R.F. Maternal immunity and prevention of congenital cytomegalovirus infection. JAMA 2003, 289, 1008–1011. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, A.Y.; Mussi-Pinhata, M.M.; Boppana, S.B.; Novak, Z.; Wagatsuma, V.M.; de Frizzo Oliveira, P.; Duarte, G.; Britt, W.J. Human cytomegalovirus reinfection is associated with intrauterine transmission in a highly cytomegalovirus-immune maternal population. Am. J. Obstet. Gynecol. 2010, 202, 297-e1. [Google Scholar] [CrossRef]
- Dollard, S.C.; Grosse, S.D.; Ross, D.S. New estimates of the prevalence of neurological and sensory sequelae and mortality associated with congenital cytomegalovirus infection. Rev. Med. Virol. 2007, 17, 355–363. [Google Scholar] [CrossRef]
- Kenneson, A.; Cannon, M.J. Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev. Med. Virol. 2007, 17, 253–276. [Google Scholar] [CrossRef]
- Nyholm, J.L.; Schleiss, M.R. Prevention of maternal cytomegalovirus infection: Current status and future prospects. Int. J. Women’s Health 2010, 2, 23. [Google Scholar] [CrossRef] [Green Version]
- Leung, A.K.; Sauve, R.S.; Davies, H.D. Congenital cytomegalovirus infection. J. Natl. Med. Assoc. 2003, 95, 213. [Google Scholar]
- Dreher, A.M.; Arora, N.; Fowler, K.B.; Novak, Z.; Britt, W.J.; Boppana, S.B.; Ross, S.A. Spectrum of disease and outcome in children with symptomatic congenital cytomegalovirus infection. J. Pediatrics 2014, 164, 855–859. [Google Scholar] [CrossRef] [Green Version]
- Swanson, E.C.; Schleiss, M.R. Congenital cytomegalovirus infection: New prospects for prevention and therapy. Pediatric Clin. 2013, 60, 335–349. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, A.Y.; Mussi-Pinhata, M.M.; Isaac, M.d.L.; Amaral, F.R.; CARVALHEIRO, C.G.; Aragon, D.C.; MANFREDI, A.K.D.S.; Boppana, S.B.; Britt, W.J. Congenital cytomegalovirus infection as a cause of sensorineural hearing loss in a highly immune population. Pediatric Infect. Dis. J. 2011, 30, 1043. [Google Scholar] [CrossRef] [PubMed]
- Fowler, K.B.; Boppana, S.B. Congenital cytomegalovirus (CMV) infection and hearing deficit. J. Clin. Virol. 2006, 35, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Boppana, S.B.; Ross, S.A.; Fowler, K.B. Congenital cytomegalovirus infection: Clinical outcome. Clin. Infect. Dis. 2013, 57, S178–S181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mussi-Pinhata, M.M.; Yamamoto, A.Y.; Brito, R.M.M.; Isaac, M.d.L.; de Carvalhoe Oliveira, P.F.; Boppana, S.; Britt, W.J. Birth prevalence and natural history of congenital cytomegalovirus infection in a highly seroimmune population. Clin. Infect. Dis. 2009, 49, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Pass, R.F.; Fowler, K.B.; Boppana, S.B.; Britt, W.J.; Stagno, S. Congenital cytomegalovirus infection following first trimester maternal infection: Symptoms at birth and outcome. J. Clin. Virol. 2006, 35, 216–220. [Google Scholar] [CrossRef]
- Nassetta, L.; Kimberlin, D.; Whitley, R. Treatment of congenital cytomegalovirus infection: Implications for future therapeutic strategies. J. Antimicrob. Chemother. 2009, 63, 862–867. [Google Scholar] [CrossRef] [Green Version]
- Barbi, M.; Binda, S.; Caroppo, S.; Calvario, A.; Germinario, C.; Bozzi, A.; Tanzi, M.L.; Veronesi, L.; Mura, I.; Piana, A. Multicity Italian study of congenital cytomegalovirus infection. Pediatric Infect. Dis. J. 2006, 25, 156–159. [Google Scholar] [CrossRef] [Green Version]
- Coll, O.; Benoist, G.; Ville, Y.; Weisman, L.E.; Botet, F.; Greenough, A.; Gibbs, R.S.; Carbonell-Estrany, X. Guidelines on CMV congenital infection. J. Perinat. Med. 2009, 37, 433–445. [Google Scholar] [CrossRef]
- Schleiss, M.R. Congenital cytomegalovirus infection: Update on management strategies. Curr. Treat. Options Neurol. 2008, 10, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Nance, W.E.; Lim, B.G.; Dodson, K.M. Importance of congenital cytomegalovirus infections as a cause for pre-lingual hearing loss. J. Clin. Virol. 2006, 35, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Babić, M.; Krmpotić, A.; Jonjić, S. All is fair in virus–host interactions: NK cells and cytomegalovirus. Trends Mol. Med. 2011, 17, 677–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkinson, G.; Aicheler, R.J.; Wang, E.C. Natural killer cells and human cytomegalovirus. In Cytomegaloviruses: From Molecular Biology to Intervention; Caister Academic Press: Wymondham, UK, 2013; Volume 2, pp. 173–191. [Google Scholar]
- Vidal, S.; Krmpotic, A.; Pyzik, M.; Jonjic, S. Innate immunity to cytomegalovirus in the murine model. In Cytomegaloviruses from Molecular Pathogenesis to Intervention; Reddehase, M.J., Ed.; Caister Academic Press: Norfolk, UK, 2013; pp. 192–214. [Google Scholar] [CrossRef] [Green Version]
- Krishna, B.A.; Wills, M.R.; Sinclair, J.H. Advances in the treatment of cytomegalovirus. Br. Med. Bull. 2019, ldz031. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, P. New vaccines and antiviral drugs for cytomegalovirus. J. Clin Virol. 2019, 116, 58–61. [Google Scholar] [CrossRef]
- Ornaghi, S.; Hsieh, L.S.; Bordey, A.; Vergani, P.; Paidas, M.J.; van den Pol, A.N. Valnoctamide Inhibits Cytomegalovirus Infection in Developing Brain and Attenuates Neurobehavioral Dysfunctions and Brain Abnormalities. J. Neurosci. 2017, 37, 6877–6893. [Google Scholar] [CrossRef] [Green Version]
- Popping, S.; Dalm, V.A.S.H.; Lübke, N.; Cristanziano, V.D.; Kaiser, R.; Boucher, C.A.B.; Van Kampen, J.J.A. Emergence and persistence of letermovir-resistant cytomegalovirus in a patient with primary immunodeficiency. In Open Forum Infectious Diseases; Oxford University Press: Oxford, UK, 2019; Volume 6, no. 9; p. ofz375. [Google Scholar] [CrossRef]
- Lin, A.; Maloy, M.; Su, Y.; Bhatt, V.; DeRespiris, L.; Griffin, M.; Lau, C.; Proli, A.; Barker, J.; Shaffer, B.; et al. Letermovir for primary and secondary cytomegalovirus prevention in allogeneic hematopoietic cell transplant recipients: Real-world experience. Transpl. Infect. Dis 2019, e13187. [Google Scholar] [CrossRef]
- Aryal, S.; Katugaha, S.B.; Cochrane, A.; Brown, A.W.; Nathan, S.D.; Shlobin, O.A.; Ahmad, K.; Marinak, L.; Chun, J.; Fregoso, M.; et al. Single-center experience with use of letermovir for CMV prophylaxis or treatment in thoracic organ transplant recipients. Transpl Infect. Dis. 2019, e13166. [Google Scholar] [CrossRef]
- Veit, T.; Munker, D.; Kauke, T.; Zoller, M.; Michel, S.; Ceelen, F.; Schiopu, S.; Barton, J.; Arnold, P.; Milger, K.; et al. Letermovir for difficult to treat cytomegalovirus infection in lung transplant recipients. Transplantation 2019. [CrossRef]
- Chemaly, R.F.; Ullmann, A.J.; Stoelben, S.; Richard, M.P.; Bornhäuser, M.; Groth, C.; Einsele, H.; Silverman, M.; Mullane, K.M.; Brown, J.; et al. Letermovir for cytomegalovirus prophylaxis in hematopoietic-cell transplantation. N. Engl. J. Med. 2014, 370, 1781–1789. [Google Scholar] [CrossRef]
- Marty, F.M.; Ljungman, P.; Chemaly, R.F.; Maertens, J.; Dadwal, S.S.; Duarte, R.F.; Haider, S.; Ullmann, A.J.; Katayama, Y.; Brown, J.; et al. Letermovir prophylaxis for cytomegalovirus in hematopoietic-cell transplantation. N. Engl. J. Med. 2017, 377, 2433–2444. [Google Scholar] [CrossRef]
- Herling, M.; Schröder, L.; Awerkiew, S.; Chakupurakal, G.; Holtick, U.; Kaiser, R.; Pfister, H.; Scheid, C.; Di Cristanziano, V. Persistent CMV infection after allogeneic hematopoietic stem cell transplantation in a CMV-seronegative donorto-positive recipient constellation: Development of multidrug resistance in the absence of anti-viral cellular immunity. J. Clin Virol. 2016, 74, 57–60. [Google Scholar] [CrossRef]
- Maertens, J.; Cordonnier, C.; Jaksch, P.; Poiré, X.; Uknis, M.; Wu, J.; Wijatyk, A.; Saliba, F.; Witzke, O.; Villano, S. Maribavir for preemptive treatment of cytomegalovirus reactivation. N. Engl. J. Med. 2019, 381, 1136–1147. [Google Scholar] [CrossRef]
- Papanicolaou, G.A.; Silveira, F.P.; Langston, A.A.; Pereira, M.R.; Avery, R.K.; Uknis, M.; Wijatyk, A.; Wu, J.; Boeckh, M.; Marty, F.M.; et al. Maribavir for refractory or resistant cytomegalovirus infections in hematopoietic-cell or solid-organ transplant recipients: A randomized, dose-ranging, double-blind, phase 2 Study. Clin. Infect. Dis. 2019, 68, 1255–1264. [Google Scholar] [CrossRef] [Green Version]
- Deng, Q.; Liu, Y.; Li, X.; Yan, B.; Sun, X.; Tang, W.; Trang, P.; Yang, Z.; Gong, H.; Wang, Y.; et al. Inhibition of human cytomegalovirus major capsid protein expression and replication by ribonuclease P-associated external guide sequences. RNA 2019, 25, 645–655. [Google Scholar] [CrossRef]
- Li, W.; Sheng, J.; Xu, M.; Vu, G.P.; Yang, Z.; Liu, Y.; Sun, X.; Trang, P.; Lu, S.; Liu, F. Inhibition of murine cytomegalovirus infection in animals by RNase P-associated external guide sequences. Mol. Nucleic Acids 2017, 9, 322–332. [Google Scholar] [CrossRef] [Green Version]
- King, M.W.; Munger, J. Editing the human cytomegalovirus genome with the CRISPR/Cas9 system. Virology 2019, 529, 186–194. [Google Scholar] [CrossRef]
- Gergen, J.; Coulon, F.; Creneguy, A.; Elain-Duret, N.; Gutierrez, A.; Pinkenburg, O.; Verhoeyen, E.; Anegon, I.; Nguyen, T.H.; Halary, F.A.; et al. Multiplex CRISPR/Cas9 system impairs HCMV replication by excising an essential viral gene. PLoS ONE 2018, 13, e0192602. [Google Scholar] [CrossRef] [Green Version]
- van Diemen, F.R.; Kruse, E.M.; Hooykaas, M.J.; Bruggeling, C.E.; Schürch, A.C.; van Ham, P.M.; Imhof, S.M.; Nijhuis, M.; Wiertz, E.J.; Lebbink, R.J. CRISPR/Cas9-mediated genome editing of herpesviruses limits productive and latent Infections. PloS Pathog. 2016, 12, e1005701. [Google Scholar] [CrossRef]
- Boch, J.; Scholze, H.; Schornack, S.; Landgraf, A.; Hahn, S.; Kay, S.; Lahaye, T.; Nickstadt, A.; Bonas, U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 2009, 326, 1509–1512. [Google Scholar] [CrossRef]
- Chen, S.J.; Chen, Y.C. Potential application of TALENs against murine cytomegalovirus latent infections. Viruses 2019, 11, 414. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.Y.; El-Hamdi, N.S.; McGregor, A. Inclusion of the viral pentamer complex in a vaccine design greatly improves protection against congenital cytomegalovirus in the guinea pig model. J. Virol. 2019, 93, e01442–e014519. [Google Scholar] [CrossRef]
- Liu, Y.; Freed, D.C.; Li, L.; Tang, A.; Li, F.; Murray, E.M.; Adler, S.P.; McVoy, M.A.; Rupp, R.E.; Barrett, D.; et al. A replication defective human cytomegalovirus vaccine elicits humoral immune responses analogous to those with natural infection. J. Virol. 2019, JVI.00747–JVI.00819. [Google Scholar] [CrossRef]
- Fatic, A.; Zhang, N.; Keller, M.D.; Hanley, P.J. The pipeline of antiviral T-cell therapy: What’s in the clinic and undergoing development. Transfusion 2019. [Google Scholar] [CrossRef]
- Faist, B.; Schlott, F.; Stemberger, C.; Dennehy, K.M.; Krackhardt, A.; Verbeek, M.; Grigoleit, G.U.; Schiemann, M.; Hoffmann, D.; Dick, A.; et al. Targeted in-vitro-stimulation reveals highly proliferative multi-virus-specific human central memory T cells as candidates for prophylactic T cell therapy. PLoS ONE 2019, 14, e0223258. [Google Scholar] [CrossRef]
- Smith, C.; Corvino, D.; Beagley, L.; Rehan, S.; Neller, M.A.; Crooks, P.; Matthews, K.K.; Solomon, M.; Le Texier, L.; Campbell, S.; et al. T cell repertoire remodeling following post-transplant T cell therapy coincides with clinical response. J. Clin Invest. 2019, 129, 5020–5032. [Google Scholar] [CrossRef]
Individual | Major Signs and Symptoms | Complications |
---|---|---|
Healthy adult | Fatigue, fever, sore throat, muscle aches | problems with the digestive system, liver, brain and nervous system |
People with weakened immunity | Problems affecting eyes, lungs, liver, esophagus, stomach, intestines, brain | Vision loss due to the retinitis inflammation, digestive system problems including inflammation of the colon, esophagus and liver, nervous system problems including encephalitis and myelitis, pneumonia |
Baby | Premature birth, low birth weight, jaundice (yellow skin and eyes), enlarged and poor liver function, purple skin splotches and/or rashes, microencephaly (abnormally small head), enlarged spleen, pneumonia, seizures | Hearing loss, intellectual disability, vision problems, seizures, lack of coordination, muscle weakness |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-J.; Wang, S.-C.; Chen, Y.-C. Antiviral Agents as Therapeutic Strategies Against Cytomegalovirus Infections. Viruses 2020, 12, 21. https://doi.org/10.3390/v12010021
Chen S-J, Wang S-C, Chen Y-C. Antiviral Agents as Therapeutic Strategies Against Cytomegalovirus Infections. Viruses. 2020; 12(1):21. https://doi.org/10.3390/v12010021
Chicago/Turabian StyleChen, Shiu-Jau, Shao-Cheng Wang, and Yuan-Chuan Chen. 2020. "Antiviral Agents as Therapeutic Strategies Against Cytomegalovirus Infections" Viruses 12, no. 1: 21. https://doi.org/10.3390/v12010021
APA StyleChen, S. -J., Wang, S. -C., & Chen, Y. -C. (2020). Antiviral Agents as Therapeutic Strategies Against Cytomegalovirus Infections. Viruses, 12(1), 21. https://doi.org/10.3390/v12010021