Bovine Viral Diarrhoea Virus Infection Disrupts Uterine Interferon Stimulated Gene Regulatory Pathways During Pregnancy Recognition in Cows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Cell Isolation and Culture
2.2. Experimental Protocols
2.3. Assessment of BVDV Cell Infection and Cell Viability
2.4. Primer Design and PCR
2.5. Microarray Hybridization and Analysis
2.6. Ingenuity Pathway Analysis
2.7. qPCR Analysis for Gene Expression
2.8. STAT2 Protein Assay
2.9. Statistical Data Analysis
3. Results
3.1. Validation of Cell Culture and BVDV Infection
3.2. Identification of Upstream Regulatory Pathways
3.3. Determination of Reference Genes for Normalization
3.4. Effect of IFNT Alone on Candidate Gene Expression
3.5. Effect of BVDV Alone on Candidate Gene Expression
3.6. Effect of BVDV on IFNT-Treated Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Diskin, M.G.; Parr, M.H.; Morris, D.G. Embryo death in cattle: An update. Reprod. Fertil. Dev. 2011, 24, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Rani, P.; Dutt, R.; Singh, G.; Chandolia, R.K. Embryonic mortality in cattle—A review. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1501–1516. [Google Scholar] [CrossRef]
- Hudson, C. Understanding the factors affecting dairy cow fertility. Vet. Rec. 2011, 168, 299–300. [Google Scholar] [CrossRef] [PubMed]
- Hudson, C.D.; Breen, J.E.; Bradley, A.J.; Green, M.J. Fertility in UK dairy herds: Preliminary findings of a large-scale study. Cattle Pract. 2010, 18, 89–94. [Google Scholar]
- Walsh, S.W.; Williams, E.J.; Evans, A.C. A review of the causes of poor fertility in high milk producing dairy cows. Anim. Reprod. Sci. 2011, 123, 127–138. [Google Scholar] [CrossRef]
- Wathes, D.C. Mechanisms linking metabolic status and disease with reproductive outcome in the dairy cow. Reprod. Domest. Anim. 2012, 47 (Suppl. S4), 304–312. [Google Scholar] [CrossRef]
- De Vries, A. Economic value of pregnancy in dairy cattle. J. Dairy Sci. 2006, 89, 3876–3885. [Google Scholar] [CrossRef] [Green Version]
- Forde, N.; Carter, F.; Spencer, T.E.; Bazer, F.W.; Sandra, O.; Mansouri-Attia, N.; Okumu, L.A.; McGettigan, P.A.; Mehta, J.P.; McBride, R.; et al. Conceptus-induced changes in the endometrial transcriptome: How soon does the cow know she is pregnant? Biol. Reprod. 2011, 85, 144–156. [Google Scholar] [CrossRef] [Green Version]
- Diskin, M.G.; Waters, S.M.; Parr, M.H.; Kenny, D.A. Pregnancy losses in cattle: Potential for improvement. Reprod. Fertil. Dev. 2016, 28, 83–93. [Google Scholar] [CrossRef]
- Lonergan, P.; Forde, N. Maternal-embryo interaction leading up to the initiation of implantation of pregnancy in cattle. Animal 2014, 8 (Suppl. S1), 64–69. [Google Scholar] [CrossRef] [Green Version]
- Bazer, F.W. Pregnancy recognition signaling mechanisms in ruminants and pigs. J. Anim. Sci. Biotechnol. 2013, 4, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorniak, P.; Bazer, F.W.; Wu, G.; Spencer, T.E. Conceptus-derived prostaglandins regulate endometrial function in sheep. Biol. Reprod. 2012, 87, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Spencer, T.E.; Forde, N.; Dorniak, P.; Hansen, T.R.; Romero, J.J.; Lonergan, P. Conceptus-derived prostaglandins regulate gene expression in the endometrium prior to pregnancy recognition in ruminants. Reproduction 2013, 146, 377–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, P.J. The immunology of early pregnancy in farm animals. Reprod. Domest. Anim. 2011, 46 (Suppl. S3), 18–30. [Google Scholar] [CrossRef] [PubMed]
- Fray, M.D.; Paton, D.J.; Alenius, S. The effects of bovine viral diarrhoea virus on cattle reproduction in relation to disease control. Anim. Reprod. Sci. 2000, 60, 615–627. [Google Scholar] [CrossRef]
- Ridpath, J.F. Bovine viral diarrhea virus: Global status. Vet. Clin. N. Am. Food Anim. Pract. 2010, 26, 105–121. [Google Scholar] [CrossRef]
- Richter, V.; Kattwinkel, E.; Firth, C.L.; Marschik, T.; Dangelmaier, M.; Trauffler, M.; Obritzhauser, W.; Baumgartner, W.; Kasbohrer, A.; Pinior, B. Mapping the global prevalence of bovine viral diarrhoea virus infection and its associated mitigation programmes. Vet. Rec. 2019, 184, 711. [Google Scholar] [CrossRef] [Green Version]
- Scharnbock, B.; Roch, F.F.; Richter, V.; Funke, C.; Firth, C.L.; Obritzhauser, W.; Baumgartner, W.; Kasbohrer, A.; Pinior, B. A meta-analysis of bovine viral diarrhoea virus (BVDV) prevalences in the global cattle population. Sci. Rep. 2018, 8, 14420. [Google Scholar] [CrossRef] [Green Version]
- Richter, V.; Lebl, K.; Baumgartner, W.; Obritzhauser, W.; Kasbohrer, A.; Pinior, B. A systematic worldwide review of the direct monetary losses in cattle due to bovine viral diarrhoea virus infection. Vet. J. 2017, 220, 80–87. [Google Scholar] [CrossRef]
- Grooms, D.L. Reproductive consequences of infection with bovine viral diarrhea virus. Vet. Clin. N. Am. Food Anim. Pract. 2004, 20, 5–19. [Google Scholar] [CrossRef]
- Wathes, D.C.; Oguejiofor, C.F.; Thomas, C.; Cheng, Z. Importance of viral disease in dairy cow fertility. Engineering 2019. [Google Scholar] [CrossRef]
- Lanyon, S.R.; Hill, F.I.; Reichel, M.P.; Brownlie, J. Bovine viral diarrhoea: Pathogenesis and diagnosis. Vet. J. 2014, 199, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Abudureyimu, A.; Oguejiofor, C.F.; Ellis, R.; Barry, A.T.; Chen, X.; Anstaett, O.L.; Brownlie, J.; Wathes, D.C. BVDV alters uterine prostaglandin production during pregnancy recognition in cows. Reproduction 2016, 151, 605–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Z.; Chauhan, L.; Barry, A.T.; Abudureyimu, A.; Oguejiofor, C.F.; Chen, X.; Wathes, D.C. Acute bovine viral diarrhea virus infection inhibits expression of interferon tau-stimulated genes in bovine endometrium. Biol. Reprod. 2017, 96, 1142–1153. [Google Scholar] [CrossRef] [PubMed]
- Darnell, J.E., Jr.; Kerr, I.M.; Stark, G.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994, 264, 1415–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pestka, S. The interferon receptors. Semin. Oncol. 1997, 24, S9–S18. [Google Scholar]
- Bazer, F.W.; Ying, W.; Wang, X.; Dunlap, K.A.; Zhou, B.; Johnson, G.A.; Wu, G. The many faces of interferon tau. Amino Acids 2015, 47, 449–460. [Google Scholar] [CrossRef]
- Vilcek, S.; Herring, A.J.; Herring, J.A.; Nettleton, P.F.; Lowings, J.P.; Paton, D.J. Pestiviruses isolated from pigs, cattle and sheep can be allocated into at least three genogroups using polymerase chain reaction and restriction endonuclease analysis. Arch. Virol. 1994, 136, 309–323. [Google Scholar] [CrossRef]
- Oguejiofor, C.F.; Cheng, Z.; Abudureyimu, A.; Fouladi-Nashta, A.A.; Wathes, D.C. Global transcriptomic profiling of bovine endometrial immune response in vitro. I. Effect of lipopolysaccharide on innate immunity. Biol. Reprod. 2015, 93, 100. [Google Scholar] [CrossRef] [Green Version]
- Oguejiofor, C.F.; Cheng, Z.; Abudureyimu, A.; Anstaett, O.L.; Brownlie, J.; Fouladi-Nashta, A.A.; Wathes, D.C. Global transcriptomic profiling of bovine endometrial immune response in vitro. II. Effect of bovine viral diarrhea virus on the endometrial response to lipopolysaccharide. Biol. Reprod. 2015, 93, 101. [Google Scholar] [CrossRef]
- Hansen, T.R.; Sinedino, L.D.P.; Spencer, T.E. Paracrine and endocrine actions of interferon tau (IFNT). Reproduction 2017, 154, F45–F59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aaronson, D.S.; Horvath, C.M. A road map for those who don’t know JAK-STAT. Science 2002, 296, 1653–1655. [Google Scholar] [CrossRef] [PubMed]
- Chill, J.H.; Quadt, S.R.; Levy, R.; Schreiber, G.; Anglister, J. The human type I interferon receptor: NMR structure reveals the molecular basis of ligand binding. Structure 2003, 11, 791–802. [Google Scholar] [CrossRef] [Green Version]
- Antonczyk, A.; Krist, B.; Sajek, M.; Michalska, A.; Piaszyk-Borychowska, A.; Plens-Galaska, M.; Wesoly, J.; Bluyssen, H.A.R. Direct inhibition of IRF-dependent transcriptional regulatory mechanisms associated with disease. Front. Immunol. 2019, 10, 1176. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, R.O. The effects of endometritis on the establishment of pregnancy in cattle. Reprod. Fertil. Dev. 2011, 24, 252–257. [Google Scholar] [CrossRef]
- Zhang, Y.; Mao, D.; Roswit, W.T.; Jin, X.; Patel, A.C.; Patel, D.A.; Agapov, E.; Wang, Z.; Tidwell, R.M.; Atkinson, J.J.; et al. PARP9-DTX3L ubiquitin ligase targets host histone H2BJ and viral 3C protease to enhance interferon signaling and control viral infection. Nat. Immunol. 2015, 16, 1215–1227. [Google Scholar] [CrossRef]
- Shuai, K.; Liu, B. Regulation of gene-activation pathways by PIAS proteins in the immune system. Nat. Rev. Immunol. 2005, 5, 593–605. [Google Scholar] [CrossRef]
- Sharrocks, A.D. PIAS proteins and transcriptional regulation-more than just SUMO E3 ligases? Genes Dev. 2006, 20, 754–758. [Google Scholar] [CrossRef] [Green Version]
- Kouchaki, E.; Nikoueinejad, H.; Akbari, H.; Azimi, S.; Behnam, M. The investigation of relevancy between PIAS1 and PIAS2 gene expression and disease severity of multiple sclerosis. J. Immunoass. Immunochem. 2019, 40, 396–406. [Google Scholar] [CrossRef]
- Sadler, A.J.; Williams, B.R. Interferon-inducible antiviral effectors. Nat. Rev. Immunol. 2008, 8, 559–568. [Google Scholar] [CrossRef]
- Sheldon, I.M.; Cronin, J.; Goetze, L.; Donofrio, G.; Schuberth, H.J. Defining postpartum uterine disease and the mechanisms of infection and immunity in the female reproductive tract in cattle. Biol. Reprod. 2009, 81, 1025–1032. [Google Scholar] [CrossRef] [PubMed]
- Peterhans, E.; Schweizer, M. BVDV: A pestivirus inducing tolerance of the innate immune response. Biologicals 2013, 41, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.; Poole, E.; Goodbourn, S.; McCauley, J.W. Role for bovine viral diarrhea virus Erns glycoprotein in the control of activation of beta interferon by double-stranded RNA. J. Virol. 2004, 78, 136–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Rijnbrand, R.; Jangra, R.K.; Devaraj, S.G.; Qu, L.; Ma, Y.; Lemon, S.M.; Li, K. Ubiquitination and proteasomal degradation of interferon regulatory factor-3 induced by Npro from a cytopathic bovine viral diarrhea virus. Virology 2007, 366, 277–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilton, L.; Moganeradj, K.; Zhang, G.; Chen, Y.H.; Randall, R.E.; McCauley, J.W.; Goodbourn, S. The NPro product of bovine viral diarrhea virus inhibits DNA binding by interferon regulatory factor 3 and targets it for proteasomal degradation. J. Virol. 2006, 80, 11723–11732. [Google Scholar] [CrossRef] [Green Version]
- Schweizer, M.; Matzener, P.; Pfaffen, G.; Stalder, H.; Peterhans, E. “Self” and “nonself” manipulation of interferon defense during persistent infection: Bovine viral diarrhea virus resists alpha/beta interferon without blocking antiviral activity against unrelated viruses replicating in its host cells. J. Virol. 2006, 80, 6926–6935. [Google Scholar] [CrossRef] [Green Version]
- Shoemaker, M.L.; Smirnova, N.P.; Bielefeldt-Ohmann, H.; Austin, K.J.; van Olphen, A.; Clapper, J.A.; Hansen, T.R. Differential expression of the type I interferon pathway during persistent and transient bovine viral diarrhea virus infection. J. Interferon Cytokine Res. 2009, 29, 23–35. [Google Scholar] [CrossRef]
- Smirnova, N.P.; Bielefeldt-Ohmann, H.; Van Campen, H.; Austin, K.J.; Han, H.; Montgomery, D.L.; Shoemaker, M.L.; van Olphen, A.L.; Hansen, T.R. Acute non-cytopathic bovine viral diarrhea virus infection induces pronounced type I interferon response in pregnant cows and fetuses. Virus Res. 2008, 132, 49–58. [Google Scholar] [CrossRef]
- Hansen, T.R.; Smirnova, N.P.; Webb, B.T.; Bielefeldt-Ohmann, H.; Sacco, R.E.; Van Campen, H. Innate and adaptive immune responses to in utero infection with bovine viral diarrhea virus. Anim. Health Res. Rev. 2015, 16, 15–26. [Google Scholar] [CrossRef]
- Xie, P. TRAF molecules in cell signaling and in human diseases. J. Mol. Signal. 2013, 8, 7. [Google Scholar] [CrossRef]
- Wathes, D.C.; Lamming, G.E. The oxytocin receptor, luteolysis and the maintenance of pregnancy. J. Reprod. Fertil. Suppl. 1995, 49, 53–67. [Google Scholar] [CrossRef] [PubMed]
- Dorniak, P.; Bazer, F.W.; Spencer, T.E. Physiology and Endocrinology Symposium: Biological role of interferon tau in endometrial function and conceptus elongation. J. Anim. Sci. 2013, 91, 1627–1638. [Google Scholar] [CrossRef] [PubMed]
Gene | Primer Sequence (5′-3′) | GenBank Accession | Product Length (bp) | Annealing (ᵒC) |
---|---|---|---|---|
ACTB | Forward: GAAATCGTCCGTGACATCAA Reverse: AGGAAGGAAGGCTGGAAGAG | NM_173979.3 | 182 | 62.8 |
GAPDH | Forward: GGTCACCAGGGCTGCTTTTA Reverse: TTCCCGTTCTCTGCCTTGAC | NM_001034034.2 | 147 | 61.4 |
RPL19 | Forward: TCGATGCCGGAAAAACAC Reverse: ATTCTCATCCTCCTCATCCAG | NM 001040516 | 119 | 59 |
18SrRNA | Forward: CGGCGACGACCCATTCGAAC Reverse: GAATCGAACCCTGATTCCCCGTC | AY779625 | 99 | 64.5 |
IFNAR1 | Forward: CATGTCAGTGTTGGTGCTTCAG Reverse: ACACAATACACAGTCAGCGGTT | NM_174552.2 | 173 | 60.2 |
IFNAR2 | Forward: AAAAGTGGCTACCGTGGAAGTC Reverse: TGAAGTGGTGGAAGTTGGACAC | NM_174553.2 | 169 | 60.2 |
IRF7 | Forward: AAGTGCAAAGTCTACTGGGAGG Reverse: CAAGTAGATGGTGTAGTGCGGG | XM_015461322.1 | 180 | 60.2 |
JAK1 | Forward: TGAGAACGAGTGTCTTGGGATG Reverse: GGTGAGAAGGTTCCTCTGTCTG | XM_010803450.2 | 154 | 62.8 |
PIAS2 | Forward: CCGAGAATTGTATAGACGCCGA Reverse: AGAGGACGGAGAATGAGGTGTA | XM_010825599.2 | 178 | 61.4 |
TYK2 | Forward: GAAGTTCCCTATCGAGCTCCAG Reverse: GTGTGACGATGAGGTTGGAGAT | XM_005208739.3 | 185 | 62.8 |
IRF9 | Forward: TACCATCAAAGCGACCCCAC Reverse: AAGTCTAAACGGCCAGCTCC | XM_010808904.2 | 151 | 60.2 |
STAT1 | Forward: GTCTCAATGTGGACCAGATGA Reverse: TCATTCCAGAGAGCAAGCAGG | XM_005202573.3 | 187 | 60.2 |
STAT2 | Forward: TCCTGCTGCGCTTTAGTGAA Reverse: TCCTCCGTGAGCATCTGGTA | XM_005206561.3 | 169 | 62.8 |
IFNG | Forward: ATGCAAGTAGCCCAGATGTAGC Reverse: CTCAGAGCTGCCATTCAAGAAC | NM_174086.1 | 215 | 62.8 |
Upstream Regulator | Predicted Activation State | Activation z-Score | p-Value |
---|---|---|---|
IRF7 | Activated | 5.344 | 7.22 × 10−33 |
IFNA2 | Activated | 4.958 | 8.72 × 10−26 |
IFNL1 | Activated | 4.439 | 2.62 × 10−25 |
IFNAR | Activated | 4.415 | 8.00 × 10−24 |
ACKR2 | Inhibited | −3.742 | 9.89 × 10−22 |
IFNG | Activated | 5.923 | 2.76 × 10−19 |
TRIM24 | Inhibited | −4.186 | 5.34 × 10−19 |
Interferon alpha | Activated | 4.914 | 2.10 × 10−17 |
IFN Beta | Activated | 3.938 | 8.29 × 10−17 |
TLR3 | Activated | 2.959 | 1.29 × 10−16 |
IRF3 | Activated | 4.155 | 8.61 × 10−16 |
IRF1 | Activated | 4.185 | 9.64 × 10−16 |
MAPK1 | Inhibited | −4.482 | 1.15 × 10−15 |
IRF5 | Activated | 3.528 | 4.26 × 10−15 |
EIF2AK2 | Activated | 3.687 | 4.68 × 10−14 |
DDX58 | Activated | 2.481 | 8.59 × 10−14 |
DNASE2 | Inhibited | −2.200 | 4.94 × 10−13 |
NKX2-3 | Inhibited | −4.359 | 5.42 × 10−13 |
STAT2 | Activated | 2.567 | 2.50 × 10−12 |
STAT1 | Activated | 3.970 | 2.91 × 10−12 |
IFNA1/IFNA13 | Activated | 3.258 | 3.40 × 10−12 |
IFN | Activated | 3.397 | 2.84 × 10−11 |
IFNAR1 | Activated | 2.592 | 5.57 × 10−11 |
PAF1 | Activated | 3.000 | 1.78 × 10−10 |
IRF9 | Activated | 1.951 | 4.50 × 10−10 |
STAT3 | Activated | 1.506 | 7.44 × 10−10 |
PARP9 | Activated | 2.425 | 1.51 × 10−9 |
IFN type 1 | Activated | 2.047 | 1.71 × 10−9 |
IFNAR2 | Activated | 2.236 | 2.99 × 10−9 |
UBA7 | Inhibited | −1.992 | 2.33 × 10−8 |
PTGER4 | Inhibited | −2.137 | 1.11 × 10−7 |
TGM2 | Activated | 2.514 | 2.08 × 10−7 |
DOCK8 | Activated | 2.828 | 2.74 × 10−7 |
TICAM1 | Activated | 3.120 | 2.86 × 10−7 |
IRF2 | Inhibited | −1.597 | 1.99 × 10−6 |
IL1B | Activated | 3.057 | 3.16 × 10−6 |
ISGF3 | 6.41 × 10−5 | ||
JAK1 | Activated | 2.219 | 3.71 × 10−5 |
STAT6 | Inhibited | −0.956 | 1.78 × 10−4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Z.; Brown, L.E.; Wathes, D.C. Bovine Viral Diarrhoea Virus Infection Disrupts Uterine Interferon Stimulated Gene Regulatory Pathways During Pregnancy Recognition in Cows. Viruses 2020, 12, 1. https://doi.org/10.3390/v12010001
Cheng Z, Brown LE, Wathes DC. Bovine Viral Diarrhoea Virus Infection Disrupts Uterine Interferon Stimulated Gene Regulatory Pathways During Pregnancy Recognition in Cows. Viruses. 2020; 12(1):1. https://doi.org/10.3390/v12010001
Chicago/Turabian StyleCheng, Zhangrui, Laura E Brown, and D Claire Wathes. 2020. "Bovine Viral Diarrhoea Virus Infection Disrupts Uterine Interferon Stimulated Gene Regulatory Pathways During Pregnancy Recognition in Cows" Viruses 12, no. 1: 1. https://doi.org/10.3390/v12010001
APA StyleCheng, Z., Brown, L. E., & Wathes, D. C. (2020). Bovine Viral Diarrhoea Virus Infection Disrupts Uterine Interferon Stimulated Gene Regulatory Pathways During Pregnancy Recognition in Cows. Viruses, 12(1), 1. https://doi.org/10.3390/v12010001