Nucleocapsid Assembly of Baculoviruses
Abstract
:1. Introduction
2. Assembly of Nucleocapsids in Viruses
3. Replication and Processing of Baculovirus Genomes
4. Expression and Transport of Structural Proteins of Baculovirus Nucleocapsid
5. Formation of the Preformed Capsid
6. DNA Packaging and Nucleocapsid Formation
7. Outstanding Question and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liang, C.; Li, M.; Dai, X.; Zhao, S.; Hou, Y.; Zhang, Y.; Lan, D.; Wang, Y.; Chen, X. Autographa californica multiple nucleopolyhedrovirus PK-1 is essential for nucleocapsid assembly. Virology 2013, 443, 349–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Z.; Pan, M.; Zhu, S.; Zhang, H.; Wu, W.; Yuan, M.; Yang, K. The Autographa californica multiple nucleopolyhedrovirus ac83 gene contains a cis-acting element that is essential for nucleocapsid assembly. J. Virol. 2017, 91, e02110-16. [Google Scholar] [CrossRef] [PubMed]
- Qin, F.; Xu, C.; Lei, C.; Hu, J.; Sun, X. Autographa californica multiple nucleopolyhedrovirus enters host cells via clathrin-mediated endocytosis and direct fusion with the plasma membrane. Viruses 2018, 10, 632. [Google Scholar] [CrossRef] [PubMed]
- Kadlec, J.; Loureiro, S.; Abrescia, N.G.; Stuart, D.I.; Jones, I.M. The postfusion structure of baculovirus gp64 supports a unified view of viral fusion machines. Nat. Struct. Mol. Biol. 2008, 15, 1024–1030. [Google Scholar] [CrossRef] [PubMed]
- Blissard, G.W.; Theilmann, D.A. Baculovirus entry and egress from insect cells. Annu. Rev. Virol. 2018, 5, 113–139. [Google Scholar] [CrossRef] [PubMed]
- Rohrmann, G.F. Baculovirus Molecular Biology, 3rd ed.; National Library of Medicine (US), National Center for Biotechnology Information: Bethesda, MD, USA, 2013. [Google Scholar]
- Ben-nun-Shaul, O.; Bronfeld, H.; Reshef, D.; Schueler-Furman, O.; Oppenheim, A. The SV40 capsid is stabilized by a conserved pentapeptide hinge of the major capsid protein VP1. J. Mol. Biol. 2009, 386, 1382–1391. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.; Brown, A.D.; Culver, J.N.; Ghodssi, R. Tobacco mosaic virus as a versatile platform for molecular assembly and device fabrication. Biotechnol. J. 2018, 13, e1800147. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Maluf, N.K.; Catalano, C.E. Packaging of a unit-length viral genome: The role of nucleotides and the gpD decoration protein in stable nucleocapsid assembly in bacteriophage lambda. J. Mol. Biol. 2008, 383, 1037–1048. [Google Scholar] [CrossRef] [PubMed]
- Dohner, K.; Ramos-Nascimento, A.; Bialy, D.; Anderson, F.; Hickford-Martinez, A.; Rother, F.; Koithan, T.; Rudolph, K.; Buch, A.; Prank, U.; et al. Importin alpha1 is required for nuclear import of herpes simplex virus proteins and capsid assembly in fibroblasts and neurons. PLoS Pathog. 2018, 14, e1006823. [Google Scholar] [CrossRef] [PubMed]
- Leisy, D.J.; Rohrmann, G.F. Characterization of the replication of plasmids containing hr sequences in baculovirus-infected Spodoptera frugiperda cells. Virology 1993, 196, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Oppenheimer, D.I.; Volkman, L.E. Evidence for rolling circle replication of Autographa californica M nucleopolyhedrovirus genomic DNA. Arch. Virol. 1997, 142, 2107–2113. [Google Scholar] [CrossRef] [PubMed]
- Kamita, S.G.; Maeda, S.; Hammock, B.D. High-frequency homologous recombination between baculoviruses involves DNA replication. J. Virol. 2003, 77, 13053–13061. [Google Scholar] [CrossRef] [PubMed]
- Crouch, E.A.; Passarelli, A.L. Genetic requirements for homologous recombination in Autographa californica nucleopolyhedrovirus. J. Virol. 2002, 76, 9323–9334. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.W.; Weber, P.C. Replication of simian virus 40 origin-containing DNA during infection with a recombinant Autographa californica multiple nuclear polyhedrosis virus expressing large T antigen. J. Virol. 1997, 71, 501–506. [Google Scholar] [PubMed]
- Maresca, M.; Erler, A.; Fu, J.; Friedrich, A.; Zhang, Y.; Stewart, A.F. Single-stranded heteroduplex intermediates in lambda Red homologous recombination. BMC Mol. Biol. 2010, 11, 54. [Google Scholar] [CrossRef] [PubMed]
- Mikhailov, V.S.; Okano, K.; Rohrmann, G.F. Baculovirus alkaline nuclease possesses a 5′-->3′ exonuclease activity and associates with the DNA-binding protein LEF-3. J. Virol. 2003, 77, 2436–2444. [Google Scholar] [CrossRef] [PubMed]
- Mikhailov, V.S.; Okano, K.; Rohrmann, G.F. Specificity of the endonuclease activity of the baculovirus alkaline nuclease for single-stranded DNA. J. Biol. Chem. 2004, 279, 14734–14745. [Google Scholar] [CrossRef] [PubMed]
- McLachlin, J.R.; Miller, L.K. Identification and characterization of vlf-1, a baculovirus gene involved in very late gene expression. J. Virol. 1994, 68, 7746–7756. [Google Scholar] [PubMed]
- Mikhailov, V.S.; Rohrmann, G.F. Binding of the baculovirus very late expression factor 1 (VLF-1) to different DNA structures. BMC Mol. Biol. 2002, 3, 14. [Google Scholar] [CrossRef]
- Poteete, A.R. What makes the bacteriophage lambda Red system useful for genetic engineering: Molecular mechanism and biological function. FEMS Microbiol. Lett. 2001, 201, 9–14. [Google Scholar] [PubMed]
- Zhang, J.; Feng, M.; Fan, Y.; Xu, W.; Zheng, Q.; Wu, X. Networks of protein-protein interactions among structural proteins of budded virus of Bombyx mori nucleopolyhedrovirus. Virology 2018, 518, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Katsuma, S.; Kokusho, R. A Conserved Glycine Residue Is Required for Proper Functioning of a Baculovirus VP39 Protein. J. Virol. 2017, 91, JVI-02253. [Google Scholar] [CrossRef] [PubMed]
- Singh, C.P.; Singh, J.; Nagaraju, J. bmnpv-miR-3 facilitates BmNPV infection by modulating the expression of viral P6.9 and other late genes in Bombyx mori. Insect Biochem. Mol. Biol. 2014, 49, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.; Zhang, L.; Deng, F.; Fang, W.; Wang, R.; Liu, X.; Guo, L.; Rayner, S.; Chen, X.; Wang, H.; et al. Comparative proteomics reveal fundamental structural and functional differences between the two progeny phenotypes of a baculovirus. J. Virol. 2013, 87, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Deng, F.; Hou, D.; Zhao, Y.; Guo, L.; Wang, H.; Hu, Z. Proteomics of the Autographa californica nucleopolyhedrovirus budded virions. J. Virol. 2010, 84, 7233–7242. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Lin, T.; Pan, L.; Yu, M.; Li, Z.; Pang, Y.; Yang, K. Autographa californica multiple nucleopolyhedrovirus nucleocapsid assembly is interrupted upon deletion of the 38K gene. J. Virol. 2006, 80, 11475–11485. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.; Zhong, L.; Li, C.; Wu, W.; Yuan, M.; Yang, K. The Autographa californica multiple nucleopolyhedrovirus ac54 gene is crucial for localization of the major capsid protein VP39 at the site of nucleocapsid assembly. J. Virol. 2016, 90, 4115–4126. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, Z.; Wu, W.; Li, L.; Yuan, M.; Pan, L.; Yang, K.; Pang, Y. Autographa californica multiple nucleopolyhedrovirus ac53 plays a role in nucleocapsid assembly. Virology 2008, 382, 59–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, S.; Wang, W.; Wang, Y.; Yuan, M.; Yang, K. The baculovirus core gene ac83 is required for nucleocapsid assembly and per os infectivity of Autographa californica nucleopolyhedrovirus. J. Virol. 2013, 87, 10573–10586. [Google Scholar] [CrossRef] [PubMed]
- Vanarsdall, A.L.; Pearson, M.N.; Rohrmann, G.F. Characterization of baculovirus constructs lacking either the Ac 101, Ac 142, or the Ac 144 open reading frame. Virology 2007, 367, 187–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, X.D.; Xu, Y.P.; Yu, L.L.; Lang, G.J.; Tian, C.H.; Zhao, J.F.; Zhang, C.X. Characterization of a Bombyx mori nucleopolyhedrovirus with Bmvp80 disruption. Virus Res. 2008, 138, 81–88. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Liang, C.; Song, J.; Li, N.; Shi, H.; Chen, X. Autographa californica multiple nucleopolyhedrovirus nucleocapsid protein BV/ODV-C42 mediates the nuclear entry of P78/83. J. Virol. 2008, 82, 4554–4561. [Google Scholar] [CrossRef]
- Fraser, M.J. Ultrastructural observations of virion maturation in Autographa californica nuclear polyhedrosis virus infected Spodoptera frugiperda cell cultures. J. Ultrastruct. Mol. Struct. Res. 1986, 95, 189–195. [Google Scholar] [CrossRef]
- Liang, C.; Su, X.; Xu, G.; Dai, X.; Zhao, S. Autographa californica multiple nucleopolyhedrovirus PK1 is a factor that regulates high-level expression of very late genes in viral infection. Virology 2017, 512, 56–65. [Google Scholar] [CrossRef]
- Marek, M.; Romier, C.; Galibert, L.; Merten, O.W.; van Oers, M.M. Baculovirus VP1054 is an acquired cellular PURalpha, a nucleic acid-binding protein specific for GGN repeats. J. Virol. 2013, 87, 8465–8480. [Google Scholar] [CrossRef]
- Vanarsdall, A.L.; Okano, K.; Rohrmann, G.F. Characterization of the role of very late expression factor 1 in baculovirus capsid structure and DNA processing. J. Virol. 2006, 80, 1724–1733. [Google Scholar] [CrossRef]
- Vanarsdall, A.L.; Okano, K.; Rohrmann, G.F. Characterization of a baculovirus with a deletion of vlf-1. Virology 2004, 326, 191–201. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Deng, R.; Zhang, Q.; Yang, K.; Wang, X. vlf-1 deletion brought AcMNPV to defect in nucleocapsid formation. Virus Genes 2005, 31, 275–284. [Google Scholar] [CrossRef]
- Russell, R.L.; Funk, C.J.; Rohrmann, G.F. Association of a baculovirus-encoded protein with the capsid basal region. Virology 1997, 227, 142–152. [Google Scholar] [CrossRef]
- Braunagel, S.C.; Guidry, P.A.; Rosas-Acosta, G.; Engelking, L.; Summers, M.D. Identification of BV/ODV-C42, an Autographa californica nucleopolyhedrovirus orf101-encoded structural protein detected in infected-cell complexes with ODV-EC27 and p78/83. J. Virol. 2001, 75, 12331–12338. [Google Scholar] [CrossRef]
- Yang, S.; Miller, L.K. Expression and mutational analysis of the baculovirus very late factor 1 (vlf-1) gene. Virology 1998, 245, 99–109. [Google Scholar] [CrossRef]
- Goley, E.D.; Ohkawa, T.; Mancuso, J.; Woodruff, J.B.; D’Alessio, J.A.; Cande, W.Z.; Volkman, L.E.; Welch, M.D. Dynamic nuclear actin assembly by Arp2/3 complex and a baculovirus WASP-like protein. Science 2006, 314, 464–467. [Google Scholar] [CrossRef]
- Ohkawa, T.; Volkman, L.E.; Welch, M.D. Actin-based motility drives baculovirus transit to the nucleus and cell surface. J. Cell Biol. 2010, 190, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Wang, Y.; Bai, H.; Wang, Q.; Song, J.; Zhou, Y.; Wu, C.; Chen, X. The putative pocket protein binding site of Autographa californica nucleopolyhedrovirus BV/ODV-C42 is required for virus-induced nuclear actin polymerization. J. Virol. 2010, 84, 7857–7868. [Google Scholar] [CrossRef]
- McCarthy, C.B.; Dai, X.; Donly, C.; Theilmann, D.A. Autographa californica multiple nucleopolyhedrovirus ac142, a core gene that is essential for BV production and ODV envelopment. Virology 2008, 372, 325–339. [Google Scholar] [CrossRef] [Green Version]
- Rao, G.; Fu, Y.; Li, N.; Yin, J.; Zhang, J.; Wang, M.; Hu, Z.; Cao, S. Controllable assembly of flexible protein nanotubes for loading multifunctional modules. ACS Appl. Mater. Interfaces 2018, 10, 25135–25145. [Google Scholar] [CrossRef]
- Burley, S.K.; Miller, A.; Harrap, K.A.; Kelly, D.C. Structure of the baculovirus nucleocapsid. Virology 1982, 120, 433–440. [Google Scholar] [CrossRef]
- Vanarsdall, A.L.; Mikhailov, V.S.; Rohrmann, G.F. Characterization of a baculovirus lacking the DBP (DNA-binding protein) gene. Virology 2007, 364, 475–485. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Tuladhar, E.; Shen, S.; Wang, H.; van Oers, M.M.; Vlak, J.M.; Westenberg, M. Specificity of baculovirus P6.9 basic DNA-binding proteins and critical role of the C terminus in virion formation. J. Virol. 2010, 84, 8821–8828. [Google Scholar] [CrossRef]
- Wilson, M.E.; Mainprize, T.H.; Friesen, P.D.; Miller, L.K. Location, transcription, and sequence of a baculovirus gene encoding a small arginine-rich polypeptide. J. Virol. 1987, 61, 661–666. [Google Scholar] [Green Version]
- Fang, C.Y.; Shen, C.H.; Wang, M.; Chen, P.L.; Chan, M.W.; Hsu, P.H.; Chang, D. Global profiling of histone modifications in the polyomavirus BK virion minichromosome. Virology 2015, 483, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.A.; Kasti, K.; Balakrishnan, L.; Milavetz, B. Directed nucleosome sliding during the formation of the simian virus 40 particle exposes DNA sequences required for early transcription. J. Virol. 2019, 93, e01678-18. [Google Scholar] [CrossRef]
- Gautam, D.; Johnson, B.A.; Mac, M.; Moody, C.A. SETD2-dependent H3K36me3 plays a critical role in epigenetic regulation of the HPV31 life cycle. PLoS Pathog. 2018, 14, e1007367. [Google Scholar] [CrossRef]
- Kelly, D.C.; Lescott, T. Baculovirus replication: Phosphorylation of polypeptides synthesized in Trichoplusia ni nuclear polyhedrosis virus-infected cells. J. Gen. Virol. 1984, 65 Pt 7, 1183–1191. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, H.; Fang, Z.; Yuan, M.; Yang, K.; Pang, Y. Distribution and phosphorylation of the basic protein P6.9 of Autographa californica nucleopolyhedrovirus. J. Virol. 2012, 86, 12217–12227. [Google Scholar] [CrossRef]
- Li, A.; Zhao, H.; Lai, Q.; Huang, Z.; Yuan, M.; Yang, K. Posttranslational modifications of baculovirus protamine-Like protein P6.9 and the significance of its hyperphosphorylation for viral very late gene hyperexpression. J. Virol. 2015, 89, 7646–7659. [Google Scholar] [CrossRef]
- Funk, C.J.; Consigli, R.A. Phosphate cycling on the basic protein of Plodia interpunctella granulosis virus. Virology 1993, 193, 396–402. [Google Scholar] [CrossRef]
- Oppenheimer, D.I.; Volkman, L.E. Proteolysis of p6.9 induced by cytochalasin D in Autographa californica M nuclear polyhedrosis virus-infected cells. Virology 1995, 207, 1–11. [Google Scholar] [CrossRef]
- Lai, Q.; Wu, W.; Li, A.; Wang, W.; Yuan, M.; Yang, K. The 38K-mediated specific dephosphorylation of the viral core protein P6.9 plays an important role in the nucleocapsid assembly of Autographa californica multiple nucleopolyhedrovirus. J. Virol. 2018, 92, JVI-01989. [Google Scholar] [CrossRef]
- Chelikani, V.; Ranjan, T.; Kondabagil, K. Revisiting the genome packaging in viruses with lessons from the “Giants”. Virology 2014, 466–467, 15–26. [Google Scholar] [CrossRef]
- Wu, W.; Liang, H.; Kan, J.; Liu, C.; Yuan, M.; Liang, C.; Yang, K.; Pang, Y. Autographa californica multiple nucleopolyhedrovirus 38K is a novel nucleocapsid protein that interacts with VP1054, VP39, VP80, and itself. J. Virol. 2008, 82, 12356–12364. [Google Scholar] [CrossRef]
- Kikhno, I. Identification of a conserved non-protein-coding genomic element that plays an essential role in Alphabaculovirus pathogenesis. PLoS ONE 2014, 9, e95322. [Google Scholar] [CrossRef]
- Lanier, L.M.; Volkman, L.E. Actin binding and nucleation by Autographa california M nucleopolyhedrovirus. Virology 1998, 243, 167–177. [Google Scholar] [CrossRef]
- Volkman, L.E. Autographa californica MNPV nucleocapsid assembly: Inhibition by cytochalasin D. Virology 1988, 163, 547–553. [Google Scholar] [CrossRef]
- Kool, M.; Voncken, J.W.; van Lier, F.L.; Tramper, J.; Vlak, J.M. Detection and analysis of Autographa californica nuclear polyhedrosis virus mutants with defective interfering properties. Virology 1991, 183, 739–746. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; He, G.; Yang, Y.; Liang, C. Nucleocapsid Assembly of Baculoviruses. Viruses 2019, 11, 595. https://doi.org/10.3390/v11070595
Zhao S, He G, Yang Y, Liang C. Nucleocapsid Assembly of Baculoviruses. Viruses. 2019; 11(7):595. https://doi.org/10.3390/v11070595
Chicago/Turabian StyleZhao, Shuling, Guanghui He, Yiheng Yang, and Changyong Liang. 2019. "Nucleocapsid Assembly of Baculoviruses" Viruses 11, no. 7: 595. https://doi.org/10.3390/v11070595
APA StyleZhao, S., He, G., Yang, Y., & Liang, C. (2019). Nucleocapsid Assembly of Baculoviruses. Viruses, 11(7), 595. https://doi.org/10.3390/v11070595