A Novel Genus of Actinobacterial Tectiviridae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Purification of Phages Infecting Streptomyces Scabiei
2.2. Production of High-Titres Lysates and Phage Concentration
2.3. Host Range Analysis
2.4. Isolation of Lysogens and Immunity Testing
2.5. Electron Microscopy
2.6. Extraction of Phage DNA
2.7. DNA Sequencing
2.8. Genome Annotation and Analysis
2.9. Mass Spectroscopy
2.10. Ortholog Detection
2.11. Phylogenetic Methods
3. Results
3.1. Isolation, Host Range and Morphological Characterization of Streptomyces Phages WheeHeim and Forthebois
3.2. Genome Sequencing and Annotation
3.3. Virion Stability, Lifestyle and Determination of the Membrane Composition
3.4. Comparative Genomics and Phylogenetic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Saren, A.-M.; Ravantti, J.J.; Benson, S.D.; Burnett, R.M.; Paulin, L.; Bamford, D.H.; Bamford, J.K.H. A snapshot of viral evolution from genome analysis of the tectiviridae family. J. Mol. Biol. 2005, 350, 427–440. [Google Scholar] [CrossRef] [PubMed]
- Mäntynen, S.; Sundberg, L.-R.; Oksanen, H.M.; Poranen, M.M. Half a century of research on membrane-containing bacteriophages: Bringing new concepts to modern virology. Viruses 2019, 11, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sokolova, A.; Malfois, M.; Caldentey, J.; Svergun, D.I.; Koch, M.H.; Bamford, D.H.; Tuma, R. Solution structure of bacteriophage PRD1 vertex complex. J. Biol. Chem. 2001, 276, 46187–46195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peralta, B.; Gil-Carton, D.; Castaño-Díez, D.; Bertin, A.; Boulogne, C.; Oksanen, H.M.; Bamford, D.H.; Abrescia, N.G.A. Mechanism of membranous tunnelling nanotube formation in viral genome delivery. PLoS Biol. 2013, 11, e1001667. [Google Scholar] [CrossRef] [Green Version]
- Santos-Pérez, I.; Oksanen, H.M.; Bamford, D.H.; Goñi, F.M.; Reguera, D.; Abrescia, N.G.A. Membrane-assisted viral DNA ejection. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 664–672. [Google Scholar] [CrossRef] [Green Version]
- Grahn, A.M.; Daugelavičius, R.; Bamford, D.H. Sequential model of phage PRD1 DNA delivery: Active involvement of the viral membrane. Mol. Microbiol. 2002, 46, 1199–1209. [Google Scholar] [CrossRef] [Green Version]
- Kauffman, K.M.; Hussain, F.A.; Yang, J.; Arevalo, P.; Brown, J.M.; Chang, W.K.; VanInsberghe, D.; Elsherbini, J.; Sharma, R.S.; Cutler, M.B.; et al. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature 2018, 554, 118–122. [Google Scholar] [CrossRef]
- Yutin, N.; Bäckström, D.; Ettema, T.J.G.; Krupovic, M.; Koonin, E.V. Vast diversity of prokaryotic virus genomes encoding double jelly-roll major capsid proteins uncovered by genomic and metagenomic sequence analysis. Virol. J. 2018, 15, 67. [Google Scholar] [CrossRef]
- Adriaenssens, E.M.; Wittmann, J.; Kuhn, J.H.; Turner, D.; Sullivan, M.B.; Dutilh, B.E.; Jang, H.B.; van Zyl, L.J.; Klumpp, J.; Lobocka, M.; et al. Taxonomy of prokaryotic viruses: 2017 update from the ICTV Bacterial and Archaeal Viruses Subcommittee. Arch. Virol. 2018, 163, 1125–1129. [Google Scholar] [CrossRef] [Green Version]
- Coetzee, W.F.; Bekker, P.J. Pilus-specific, lipid-containing bacteriophages PR4 and PR772: Comparison of physical characteristics of genomes. J. Gen. Virol. 1979, 45, 195–200. [Google Scholar] [CrossRef]
- Bamford, D.H.; Ziedaite, G. Tectivirus, Tectiviridae. In The Springer Index of Viruses; Tidona, C., Darai, G., Eds.; Springer: New York, NY, USA, 2011; pp. 1841–1846. [Google Scholar]
- Verheust, C.; Fornelos, N.; Mahillon, J. GIL16, a new Gram-positive tectiviral phage related to the Bacillus thuringiensis GIL01 and the Bacillus cereus pBClin15 elements. J. Bacteriol. 2005, 187, 1966–1973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sozhamannan, S.; McKinstry, M.; Lentz, S.M.; Jalasvuori, M.; McAfee, F.; Smith, A.; Dabbs, J.; Ackermann, H.-W.; Bamford, J.K.H.; Mateczun, A.; et al. Molecular characterization of a variant of Bacillus anthracis-specific phage AP50 with improved bacteriolytic activity. Appl. Environ. Microbiol. 2008, 74, 6792–6796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuch, R.; Fischetti, V.A. The secret life of the anthrax agent Bacillus anthracis: Bacteriophage-mediated ecological adaptations. PLoS ONE 2009, 4, e6532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalasvuori, M.; Koskinen, K. Extending the hosts of Tectiviridae into four additional genera of Gram-positive bacteria and more diverse Bacillus species. Virology 2018, 518, 136–142. [Google Scholar] [CrossRef]
- Philippe, C.; Krupovic, M.; Jaomanjaka, F.; Claisse, O.; Petrel, M.; le Marrec, C. Bacteriophage GC1, a novel tectivirus infecting Gluconobacter cerinus, an acetic acid bacterium associated with wine-making. Viruses 2018, 10, 39. [Google Scholar] [CrossRef] [Green Version]
- Gill, J.J.; Wang, B.; Sestak, E.; Young, R.; Chu, K.-H. Characterization of a novel tectivirus Phage Toil and its potential as an agent for biolipid extraction. Sci. Rep. 2018, 8, 1062. [Google Scholar] [CrossRef] [Green Version]
- Jordan, T.C.; Burnett, S.H.; Carson, S.; Caruso, S.M.; Clase, K.; DeJong, R.J.; Dennehy, J.J.; Denver, D.R.; Dunbar, D.; Elgin, S.C.R.; et al. A broadly implementable research course in phage discovery and genomics for first-year undergraduate students. MBio 2014, 5, e01051-13. [Google Scholar] [CrossRef] [Green Version]
- Hanauer, D.I.; Graham, M.J.; SEA-PHAGES; Betancur, L.; Bobrownicki, A.; Cresawn, S.G.; Garlena, R.A.; Jacobs-Sera, D.; Kaufmann, N.; Pope, W.H.; et al. An inclusive Research Education Community (iREC): Impact of the SEA-PHAGES program on research outcomes and student learning. Proc. Natl. Acad. Sci. USA 2017, 114, 13531–13536. [Google Scholar] [CrossRef] [Green Version]
- LaCourse, W.R.; Sutphin, K.L.; Ott, L.E.; Maton, K.I.; McDermott, P.; Bieberich, C.; Farabaugh, P.; Rous, P. Think 500, not 50! A scalable approach to student success in STEM. BMC Proc. 2017, 11, 24. [Google Scholar] [CrossRef] [Green Version]
- Blocker, D.; Koert, M.; Mattson, C.; Patel, H.; Patel, P.; Patel, R.; Paudel, H.; 2017 UMBC Phage Hunters; Erill, I.; Caruso, S.M. Complete genome sequences of six BI cluster Streptomyces bacteriophages, HotFries, Moozy, Rainydai, RavenPuff, Scap1, and SenditCS. Microbiol. Resour. Announc. 2018, 7, e00993-18. [Google Scholar] [CrossRef] [Green Version]
- Loria, R.; Kers, J.; Joshi, M. Evolution of plant pathogenicity in Streptomyces. Annu. Rev. Phytopathol. 2006, 44, 469–487. [Google Scholar] [CrossRef] [PubMed]
- Waterer, D. Impact of high soil pH on potato yields and grade losses to common scab. Can. J. Plant Sci. 2002, 82, 583–586. [Google Scholar] [CrossRef] [Green Version]
- Bischoff, V.; Cookson, S.J.; Wu, S.; Scheible, W.-R. Thaxtomin A affects CESA-complex density, expression of cell wall genes, cell wall composition, and causes ectopic lignification in Arabidopsis thaliana seedlings. J. Exp. Bot. 2009, 60, 955–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKenna, F.; El-Tarabily, K.; Hardy, G.S.J.; Dell, B. Novel in vivo use of a polyvalent Streptomyces phage to disinfest Streptomyces scabies-infected seed potatoes. Plant pathol. 2001, 50, 666–675. [Google Scholar] [CrossRef]
- el-Sayed, e.A.; el-Didamony, G.; Mansour, K. Isolation and characterization of two types of actinophage infecting Streptomyces scabies. Folia Microbiol. 2001, 46, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Ashfield-Crook, N.R.; Woodward, Z.; Soust, M.; Kurtböke, D.İ. Assessment of the detrimental impact of polyvalent streptophages intended to be used as biological control agents on beneficial soil streptoflora. Curr. Microbiol. 2018, 75, 1589–1601. [Google Scholar] [CrossRef] [PubMed]
- Goyer, C. Isolation and characterization of phages Stsc1 and Stsc3 infecting Streptomyces scabiei and their potential as biocontrol agents. Can. J. Plant Pathol. 2005, 27, 210–216. [Google Scholar] [CrossRef]
- Kieser, T.; Bibb, M.J.; Buttner, M.J.; Chater, K.F.; Hopwood, D.A. Practical Streptomyces Genetics; The John Innes Foundation: Norwich, UK, 2000; ISBN 978-0-7084-0623-6. [Google Scholar]
- Sarkis, G.J.; Hatfull, G.F. Mycobacteriophages. Methods Mol. Biol. 1998, 101, 145–173. [Google Scholar]
- Jacobs-Sera, D.; Marinelli, L.J.; Bowman, C.; Broussard, G.W.; Guerrero Bustamante, C.; Boyle, M.M.; Petrova, Z.O.; Dedrick, R.M.; Pope, W.H.; Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) Program; et al. On the nature of mycobacteriophage diversity and host preference. Virology 2012, 434, 187–201. [Google Scholar] [CrossRef]
- Pope, W.H.; Jacobs-Sera, D. Annotation of bacteriophage genome sequences using DNA Master: An overview. Methods Mol. Biol. 2018, 1681, 217–229. [Google Scholar]
- Laslett, D.; Canback, B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004, 32, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Besemer, J.; Lomsadze, A.; Borodovsky, M. GeneMarkS: A self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001, 29, 2607–2618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, P.P.; Lowe, T.M. tRNAscan-SE: Searching for tRNA genes in genomic sequences. Methods Mol. Biol. 2019, 1962, 1–14. [Google Scholar] [PubMed]
- Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Söding, J.; Biegert, A.; Lupas, A.N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 2005, 33, W244–W248. [Google Scholar] [CrossRef] [Green Version]
- Pope, W.H.; Jacobs-Sera, D.; Russell, D.A.; Rubin, D.H.F.; Kajee, A.; Msibi, Z.N.P.; Larsen, M.H.; Jacobs, W.R.; Lawrence, J.G.; Hendrix, R.W.; et al. Genomics and proteomics of Mycobacteriophage Patience, an accidental tourist in the Mycobacterium neighborhood. MBio 2014, 5, e02145-14. [Google Scholar] [CrossRef] [Green Version]
- Kiliç, S.; White, E.R.; Sagitova, D.M.; Cornish, J.P.; Erill, I. CollecTF: A database of experimentally validated transcription factor-binding sites in Bacteria. Nucleic Acids Res. 2014, 42, D156–D160. [Google Scholar] [CrossRef]
- Bhargava, N.; Erill, I. xFITOM: A generic GUI tool to search for transcription factor binding sites. Bioinformation 2010, 5, 49–51. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-R, L.M.; Konstantinidis, K.T. Bypassing cultivation to identify bacterial species. Microbe 2014, 9, 111–118. [Google Scholar] [CrossRef]
- Pedulla, M.L.; Ford, M.E.; Houtz, J.M.; Karthikeyan, T.; Wadsworth, C.; Lewis, J.A.; Jacobs-Sera, D.; Falbo, J.; Gross, J.; Pannunzio, N.R.; et al. Origins of highly mosaic mycobacteriophage genomes. Cell 2003, 113, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Vitale, R.; Roine, E.; Bamford, D.H.; Corcelli, A. Lipid fingerprints of intact viruses by MALDI-TOF/mass spectrometry. Biochim. Biophys. Acta 2013, 1831, 872–879. [Google Scholar] [CrossRef] [PubMed]
- Galperin, M.Y.; Makarova, K.S.; Wolf, Y.I.; Koonin, E.V. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 2015, 43, D261–D269. [Google Scholar] [CrossRef] [PubMed]
- Dibrova, D.V.; Konovalov, K.A.; Perekhvatov, V.V.; Skulachev, K.V.; Mulkidjanian, A.Y. COGcollator: A web server for analysis of distant relationships between homologous protein families. Biol. Direct 2017, 12, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finn, R.D.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Mistry, J.; Mitchell, A.L.; Potter, S.C.; Punta, M.; Qureshi, M.; Sangrador-Vegas, A.; et al. The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Res. 2016, 44, D279–D285. [Google Scholar] [CrossRef]
- Huerta-Cepas, J.; Szklarczyk, D.; Forslund, K.; Cook, H.; Heller, D.; Walter, M.C.; Rattei, T.; Mende, D.R.; Sunagawa, S.; Kuhn, M.; et al. eggNOG 4.5: A hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016, 44, D286–D293. [Google Scholar] [CrossRef] [Green Version]
- Eddy, S.R. Accelerated Profile HMM Searches. PLoS Comput. Biol 2011, 7, e1002195. [Google Scholar] [CrossRef] [Green Version]
- NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2017, 45, D12–D17. [Google Scholar] [CrossRef] [Green Version]
- Moretti, S.; Armougom, F.; Wallace, I.M.; Higgins, D.G.; Jongeneel, C.V.; Notredame, C. The M-Coffee web server: A meta-method for computing multiple sequence alignments by combining alternative alignment methods. Nucleic Acids Res. 2007, 35, W645–W648. [Google Scholar] [CrossRef] [Green Version]
- Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef] [Green Version]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [Green Version]
- Huson, D.H.; Richter, D.C.; Rausch, C.; Dezulian, T.; Franz, M.; Rupp, R. Dendroscope: An interactive viewer for large phylogenetic trees. BMC Bioinform. 2007, 8, 460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier-Kolthoff, J.P.; Göker, M. VICTOR: Genome-based phylogeny and classification of prokaryotic viruses. Bioinformatics 2017, 33, 3396–3404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.-P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefort, V.; Desper, R.; Gascuel, O. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 2015, 32, 2798–2800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, D.; Loria, R. Streptomyces scabies sp. nov., nom. rev. Int. J. Syst. Evol. Microbiol. 1989, 39, 387–392. [Google Scholar] [CrossRef] [Green Version]
- Russell, D.A.; Hatfull, G.F. PhagesDB: The actinobacteriophage database. Bioinformatics 2017, 33, 784–786. [Google Scholar] [CrossRef] [Green Version]
- Bouchek-Mechiche, K.; Gardan, L.; Andrivon, D.; Normand, P. Streptomyces turgidiscabies and Streptomyces reticuliscabiei: One genomic species, two pathogenic groups. Int. J. Syst. Evol. Microbiol. 2006, 56, 2771–2776. [Google Scholar] [CrossRef] [Green Version]
- Laurinmäki, P.A.; Huiskonen, J.T.; Bamford, D.H.; Butcher, S.J. Membrane proteins modulate the bilayer curvature in the bacterial virus Bam35. Structure 2005, 13, 1819–1828. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.X.; Slater, M.R.; Ackermann, H.-W. Isolation and characterization of Thermus bacteriophages. Arch. Virol. 2006, 151, 663–679. [Google Scholar] [CrossRef]
- Jalasvuori, M.; Palmu, S.; Gillis, A.; Kokko, H.; Mahillon, J.; Bamford, J.K.H.; Fornelos, N. Identification of five novel tectiviruses in Bacillus strains: Analysis of a highly variable region generating genetic diversity. Res. Microbiol. 2013, 164, 118–126. [Google Scholar] [CrossRef]
- Vegge, C.S.; Brøndsted, L.; Neve, H.; Mc Grath, S.; van Sinderen, D.; Vogensen, F.K. Structural Characterization and assembly of the distal tail structure of the temperate lactococcal Bacteriophage TP901-1. J. Bacteriol. 2005, 187, 4187–4197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fokine, A.; Zhang, Z.; Kanamaru, S.; Bowman, V.D.; Aksyuk, A.A.; Arisaka, F.; Rao, V.B.; Rossmann, M.G. The molecular architecture of the bacteriophage T4 neck. J. Mol. Biol. 2013, 425, 1731–1744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Wang, D.; Gui, M.; Xiang, Y. Structural assembly of the tailed bacteriophage ϕ29. Nat. Commun. 2019, 10, 2366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, J. Bacteriophage phi29 terminal protein: Its association with the 5′ termini of the phi29 genome. J. Virol. 1978, 28, 895–904. [Google Scholar] [PubMed]
- Yoon, S.-H.; Ha, S.-M.; Lim, J.; Kwon, S.; Chun, J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017, 110, 1281–1286. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Inouye, M. MazG, a nucleoside triphosphate pyrophosphohydrolase, interacts with Era, an essential GTPase in Escherichia coli. J. Bacteriol. 2002, 184, 5323–5329. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, H.; Melo, L.D.R.; Santos, S.B.; Nóbrega, F.L.; Ferreira, E.C.; Cerca, N.; Azeredo, J.; Kluskens, L.D. Molecular aspects and comparative genomics of bacteriophage endolysins. J. Virol. 2013, 87, 4558–4570. [Google Scholar] [CrossRef] [Green Version]
- Davis, T.N.; Muller, E.D.; Cronan, J.E. The virion of the lipid-containing bacteriophage PR4. Virology 1982, 120, 287–306. [Google Scholar] [CrossRef]
- Laurinavicius, S.; Käkelä, R.; Somerharju, P.; Bamford, D.H. Phospholipid molecular species profiles of tectiviruses infecting Gram-negative and Gram-positive hosts. Virology 2004, 322, 328–336. [Google Scholar] [CrossRef] [Green Version]
- Laurinavicius, S.; Bamford, D.H.; Somerharju, P. Transbilayer distribution of phospholipids in bacteriophage membranes. Biochim. Biophys. Acta 2007, 1768, 2568–2577. [Google Scholar] [CrossRef] [Green Version]
- Gillis, A.; Mahillon, J. Prevalence, genetic diversity, and host range of tectiviruses among members of the Bacillus cereus group. Appl. Environ. Microbiol. 2014, 80, 4138–4152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fornelos, N.; Bamford, J.K.H.; Mahillon, J. Phage-borne factors and host LexA regulate the lytic switch in Phage GIL01. J. Bacteriol. 2011, 193, 6008–6019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Zhong, L.; Shen, M.; Fang, P.; Qin, Z. Characterization of Streptomyces plasmid-phage pFP4 and its evolutionary implications. Plasmid 2012, 68, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Pourcel, C.; Midoux, C.; Vergnaud, G.; Latino, L. A carrier state is established in Pseudomonas aeruginosa by phage LeviOr01, a newly isolated ssRNA levivirus. J. Gen. Virol. 2017, 98, 2181–2189. [Google Scholar] [CrossRef] [PubMed]
- Rydman, P.S.; Bamford, D.H. Bacteriophage PRD1 DNA entry uses a viral membrane-associated transglycosylase activity. Mol. Microbiol. 2000, 37, 356–363. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Pendón, J.A.; Cañizares, M.C.; Moriones, E.; Bejarano, E.R.; Czosnek, H.; Navas-Castillo, J. Tomato yellow leaf curl viruses: Ménage à trois between the virus complex, the plant and the whitefly vector. Mol. Plant. Pathol. 2010, 11, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Fauquet, C.; Fargette, D. International Committee on Taxonomy of Viruses and the 3142 unassigned species. Virol. J. 2005, 2, 64. [Google Scholar] [CrossRef]
- Sheridan, P.P.; Freeman, K.H.; Brenchley, J.E. Estimated minimal divergence times of the major bacterial and archaeal phyla. Geomicrobiol. J. 2003, 20, 1–14. [Google Scholar] [CrossRef]
- Battistuzzi, F.U.; Feijao, A.; Hedges, S.B. A genomic timescale of prokaryote evolution: Insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol. Biol. 2004, 4, 44. [Google Scholar] [CrossRef] [Green Version]
Locus Tag | Locus Tag | Product 1 |
---|---|---|
SEA_WHEEHEIM_3 | SEA_FORTHEBOIS_3 | MazG-like nucleotide pyrophosphohydrolase |
SEA_WHEEHEIM_4 | SEA_FORTHEBOIS_4 | membrane protein |
SEA_WHEEHEIM_7 | SEA_FORTHEBOIS_7 | tRNA-Asn |
SEA_WHEEHEIM_11 | SEA_FORTHEBOIS_11 | DNA polymerase |
SEA_WHEEHEIM_13 | SEA_FORTHEBOIS_13 | ssDNA binding protein |
SEA_WHEEHEIM_16 | SEA_FORTHEBOIS_16 | hydrolase |
SEA_WHEEHEIM_18 | SEA_FORTHEBOIS_18 | major capsid protein |
SEA_WHEEHEIM_19 | SEA_FORTHEBOIS_19 | membrane protein |
SEA_WHEEHEIM_20 | SEA_FORTHEBOIS_20 | membrane protein |
SEA_WHEEHEIM_21 | SEA_FORTHEBOIS_21 | membrane protein |
SEA_WHEEHEIM_22 | SEA_FORTHEBOIS_22 | membrane DNA delivery protein |
SEA_WHEEHEIM_26 | SEA_FORTHEBOIS_26 | glycosyltransferase |
SEA_WHEEHEIM_27 | SEA_FORTHEBOIS_27 | membrane protein |
SEA_WHEEHEIM_28 | SEA_FORTHEBOIS_28 | membrane DNA delivery protein |
SEA_WHEEHEIM_31 | SEA_FORTHEBOIS_30 | peptidase |
SEA_WHEEHEIM_32 | SEA_FORTHEBOIS_31 | membrane protein |
SEA_WHEEHEIM_36 | SEA_FORTHEBOIS_35 | LysM-like endolysin |
Inferred Function | Model | SEA_WHEEHEIM | SEA_FORTHEBOIS | Toil | Bam35 | GC1 [FDJ08] | PRD1 |
---|---|---|---|---|---|---|---|
DNA polymerase | ENOG4108SKE | 11 | 11 | gp07 | cp05 | gp02 | 02 |
PF03175.13 | |||||||
DNAp | |||||||
ENOG411ENY2 | |||||||
COG0417 | |||||||
ENOG4105CQ2 | |||||||
hydrolase | ENOG4108JJ8 | 16 | 16 | gp12 | cp14 | gp09 | 09 |
COG3451 | |||||||
COG0433 | |||||||
ENOG411EP64 | |||||||
STIV_ATP | |||||||
ENOG4105SBY | |||||||
ENOG4107MA1 | |||||||
major capsid protein | Bam_MCP | 18 | 18 | gp14 | cp18 | gp12 | 12 |
MCP | |||||||
PF09018.11 | |||||||
membrane DNA delivery | PF11087.8 | 22 | 22 | gp18 | - | gp17 | 16 |
PF11087.8 | 28 | 28 | gp18 | - | gp18 | 16 | |
glycosyltransferase | ENOG4107N29 | 26 | 26 | gp23 | - | gp22 | 20 |
ENOG41065RS | |||||||
COG0741 | |||||||
PF01464.20 | |||||||
STIV_lysozyme | |||||||
ENOG41090WR | |||||||
ENOG4105E4C | |||||||
ENOG411EP35 | |||||||
hypothetical protein | PF01476.20 | 24 | 24 | gp20 | - | - | - |
ENOG4108I7Y | |||||||
COG1652 | |||||||
hypothetical protein | - | 15 | 15 | gp11 | - | - | - |
ssDNA binding protein | ENOG4107YH6 | 13 | 13 | - | - | - | - |
COG0629 | |||||||
PF00436.25 | |||||||
peptidase | ENOG4105DR5 | 31 | 30 | - | - | - | - |
COG0739 | |||||||
PF01551.22 | |||||||
peptidase_M23 | |||||||
MazG-like nucleotide pyrophosphohydrolase | ENOG4106A27 | 3 | 3 | - | - | - | - |
COG1694 | |||||||
LysM-like endolysin | ENOG4105RG6 | 36 | 35 | - | - | - | - |
COG3023 | |||||||
PF01510.25 | |||||||
membrane protein | ENOG4106BPY | 4 | 4 | - | - | - | - |
NlpC family hydrolase | ENOG4105K4H | - | - | gp26 | - | - | - |
COG0791 | |||||||
PF00877.19 | |||||||
endolysin | ENOG4105SQZ | - | - | gp31 | - | - | - |
PF13539.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caruso, S.M.; deCarvalho, T.N.; Huynh, A.; Morcos, G.; Kuo, N.; Parsa, S.; Erill, I. A Novel Genus of Actinobacterial Tectiviridae. Viruses 2019, 11, 1134. https://doi.org/10.3390/v11121134
Caruso SM, deCarvalho TN, Huynh A, Morcos G, Kuo N, Parsa S, Erill I. A Novel Genus of Actinobacterial Tectiviridae. Viruses. 2019; 11(12):1134. https://doi.org/10.3390/v11121134
Chicago/Turabian StyleCaruso, Steven M., Tagide N. deCarvalho, Anthony Huynh, George Morcos, Nansen Kuo, Shabnam Parsa, and Ivan Erill. 2019. "A Novel Genus of Actinobacterial Tectiviridae" Viruses 11, no. 12: 1134. https://doi.org/10.3390/v11121134