Baculovirus Surface Display of Immunogenic Proteins for Vaccine Development
Abstract
:1. Introduction
2. Surface Display of Influenza Proteins
2.1. Recombinant Baculovirus Displayed H5 Subtype HA Protein and Its Immunogenicity
2.2. Recombinant Baculovirus Displayed HA Protein of Other Influenza Subtypes and Its Immunogenicity
3. Recombinant Baculovirus Display of Other Viral Proteins and Its Immunogenicity
4. Recombinant Baculovirus Display of Viral Capsid Proteins and Its Immunogenicity
5. Recombinant Baculovirus Display of Malarial Parasite Proteins and Its Immunogenicity
6. Development of Baculovirus Surface-Displayed Mucosal Vaccines for Broad Protection
7. Conclusions and Future Perspective
Funding
Acknowledgments
Conflicts of Interest
References
- Baxter, D. Active and passive immunity, vaccine types, excipients and licensing. Occup. Med. (Lond.) 2007, 57, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Amanna, I.J.; Slifka, M.K. Wanted, dead or alive: New viral vaccines. Antivir. Res. 2009, 84, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Kumbhani, D.J.; Healey, N.A.; Thatte, H.S.; Nawas, S.; Crittenden, M.D.; Birjiniuk, V.; Treanor, P.R.; Khuri, S.F. Patients with diabetes mellitus undergoing cardiac surgery are at greater risk for developing intraoperative myocardial acidosis. J. Thorac. Cardiovasc. Surg. 2007, 133, 1566–1572. [Google Scholar] [CrossRef] [PubMed]
- Chow, Y.H.; Chiang, B.L.; Lee, Y.L.; Chi, W.K.; Lin, W.C.; Chen, Y.T.; Tao, M.H. Development of Th1 and Th2 populations and the nature of immune responses to hepatitis B virus DNA vaccines can be modulated by codelivery of various cytokine genes. J. Immunol. 1998, 160, 1320–1329. [Google Scholar] [PubMed]
- Ulmer, J.B.; Donnelly, J.J.; Parker, S.E.; Rhodes, G.H.; Felgner, P.L.; Dwarki, V.J.; Gromkowski, S.H.; Deck, R.R.; DeWitt, C.M.; Friedman, A.; et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 1993, 259, 1745–1749. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.H. DNA vaccines: Roles against diseases. Germs 2013, 3, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Draper, S.J.; Moore, A.C.; Goodman, A.L.; Long, C.A.; Holder, A.A.; Gilbert, S.C.; Hill, F.; Hill, A.V. Effective induction of high-titer antibodies by viral vector vaccines. Nat. Med. 2008, 14, 819–821. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; O’Brien, K.L.; Lynch, D.M.; Simmons, N.L.; La Porte, A.; Riggs, A.M.; Abbink, P.; Coffey, R.T.; Grandpre, L.E.; Seaman, M.S.; et al. Immune control of an SIV challenge by a T-cell-based vaccine in rhesus monkeys. Nature 2009, 457, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Ayres, M.D.; Howard, S.C.; Kuzio, J.; Lopez-Ferber, M.; Possee, R.D. The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 1994, 202, 586–605. [Google Scholar] [CrossRef] [PubMed]
- Volkman, L.E.; Summers, I.N. Autographa californica nuclear polyhedrosis virus: Comparative infectivity of the occluded, alkali-liberated, and nonoccluded forms. J. Invertebr. Pathol. 1977, 30, 102–103. [Google Scholar] [CrossRef]
- Kuzio, J.; Rohel, D.Z.; Curry, C.J.; Krebs, A.; Carstens, E.B.; Faulkner, P. Nucleotide sequence of the p10 polypeptide gene of Autographa californica nuclear polyhedrosis virus. Virology 1984, 139, 414–418. [Google Scholar] [CrossRef]
- Lopez-Vidal, J.; Gomez-Sebastian, S.; Sanchez-Ramos, I.; Escribano, J.M. Characterization of a Trichoplusia ni hexamerin-derived promoter in the AcMNPV baculovirus vector. J. Biotechnol. 2013, 165, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Morris, T.D.; Miller, L.K. Promoter influence on baculovirus-mediated gene expression in permissive and nonpermissive insect cell lines. J. Virol. 1992, 66, 7397–7405. [Google Scholar] [PubMed]
- Thiem, S.M.; Miller, L.K. Differential gene expression mediated by late, very late and hybrid baculovirus promoters. Gene 1990, 91, 87–94. [Google Scholar] [CrossRef]
- Ishiyama, S.; Ikeda, M. High-level expression and improved folding of proteins by using the vp39 late promoter enhanced with homologous DNA regions. Biotechnol. Lett. 2010, 32, 1637–1647. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Jarvis, D.L. Utility of temporally distinct baculovirus promoters for constitutive and baculovirus-inducible transgene expression in transformed insect cells. J. Biotechnol. 2013, 165, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Lin, C.Y.; Chen, G.Y.; Hu, Y.C. Baculovirus as a gene delivery vector: Recent understandings of molecular alterations in transduced cells and latest applications. Biotechnol. Adv. 2011, 29, 618–631. [Google Scholar] [CrossRef] [PubMed]
- Airenne, K.J.; Makkonen, K.E.; Mahonen, A.J.; Yla-Herttuala, S. In vivo application and tracking of baculovirus. Curr. Gene Ther. 2010, 10, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Madhan, S.; Prabakaran, M.; Kwang, J. Baculovirus as vaccine vectors. Curr. Gene Ther. 2010, 10, 201–213. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Liu, H.J.; Tsai, C.P.; Chung, C.Y.; Shih, Y.S.; Chang, P.C.; Chiu, Y.T.; Hu, Y.C. Baculovirus as an avian influenza vaccine vector: Differential immune responses elicited by different vector forms. Vaccine 2010, 28, 7644–7651. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.Y.; Ha do, L.A.; Simmons, C.; de Jong, M.D.; Chau, N.V.; Schumacher, R.; Peng, Y.C.; McMichael, A.J.; Farrar, J.J.; Smith, G.L.; et al. Memory T cells established by seasonal human influenza A infection cross-react with avian influenza a (H5N1) in healthy individuals. J. Clin. Investig. 2008, 118, 3478–3490. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.H.; Ben-Yedidia, T.; Arnon, R. Intranasal immunization with synthetic recombinant vaccine containing multiple epitopes of influenza virus. Vaccine 2002, 20, 2772–2780. [Google Scholar] [CrossRef]
- Adar, Y.; Singer, Y.; Levi, R.; Tzehoval, E.; Perk, S.; Banet-Noach, C.; Nagar, S.; Arnon, R.; Ben-Yedidia, T. A universal epitope-based influenza vaccine and its efficacy against H5N1. Vaccine 2009, 27, 2099–2107. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.P.; Yin, J.; Zhang, Y.Y.; Jia, S.Y.; Chen, Z.J.; Zhong, J. Characterization of the immune responses elicited by baculovirus-based vector vaccines against influenza virus hemagglutinin. Acta Pharmacol. Sin. 2012, 33, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.C.; Lu, H.R.; Ross, T.M. Hemagglutinin displayed baculovirus protects against highly pathogenic influenza. Vaccine 2010, 28, 6821–6831. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Fang, L.; Wu, X.; Li, B.; Luo, R.; Yu, Z.; Jin, M.; Chen, H.; Xiao, S. A pseudotype baculovirus-mediated vaccine confers protective immunity against lethal challenge with H5N1 avian influenza virus in mice and chickens. Mol. Immunol. 2009, 46, 2210–2217. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Ho, Y.; Yu, L.; Kwang, J. WSSV ie1 promoter is more efficient than CMV promoter to express h5 hemagglutinin from influenza virus in baculovirus as a chicken vaccine. BMC Microbiol. 2008, 8, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prabakaran, M.; Kolpe, A.B.; He, F.; Kwang, J. Cross-protective efficacy of bivalent recombinant baculoviral vaccine against heterologous influenza H5N1 challenge. Vaccine 2013, 31, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.Y.; Gwon, Y.D.; Kim, J.K.; Cho, Y.D.; Heo, Y.K.; Cho, H.S.; Choi, T.J.; Poo, H.R.; Oh, Y.K.; Kim, Y.B. Protective efficacy of a human endogenous retrovirus envelope-coated, nonreplicable, baculovirus-based hemagglutin vaccine against pandemic influenza H1N1 2009. PLoS ONE 2013, 8, e80762. [Google Scholar] [CrossRef] [PubMed]
- Sim, S.H.; Kim, J.Y.; Seong, B.L.; Nguyen, H.H.; Chang, J. Baculovirus displaying hemagglutinin elicits broad cross-protection against influenza in mice. PLoS ONE 2016, 11, e0152485. [Google Scholar] [CrossRef] [PubMed]
- Rajesh Kumar, S.; Syed Khader, S.M.; Kiener, T.K.; Szyporta, M.; Kwang, J. Intranasal immunization of baculovirus displayed hemagglutinin confers complete protection against mouse adapted highly pathogenic H7N7 reassortant influenza virus. PLoS ONE 2013, 8, e63856. [Google Scholar] [CrossRef] [PubMed]
- Prabakaran, M.; Kumar, S.R.; Raj, K.V.; Wu, X.; He, F.; Zhou, J.; Kwang, J. Cross-protective efficacy of baculovirus displayed hemagglutinin against highly pathogenic influenza H7 subtypes. Antivir. Res. 2014, 109, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Musthaq, S.K.; Kumar, S.R.; Szyporta, M.; Kwang, J. Immunization with baculovirus displayed h6 hemagglutinin vaccine protects mice against lethal H6 influenza virus challenge. Antivir. Res. 2014, 109, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Fan, H.; Cheng, X.; Ye, Y.; Chen, X.; Ren, T.; Qi, W.; Liao, M. A baculovirus dual expression system-based vaccine confers complete protection against lethal challenge with H9N2 avian influenza virus in mice. Virol. J. 2011, 8, 273. [Google Scholar] [CrossRef] [PubMed]
- Syed, M.S.; Kwang, J. Oral vaccination of baculovirus-expressed VP28 displays enhanced protection against White Spot Syndrome Virus in Penaeus monodon. PLoS ONE 2011, 6, e26428. [Google Scholar]
- Xu, X.G.; Wang, Z.S.; Zhang, Q.; Li, Z.C.; Ding, L.; Li, W.; Wu, H.Y.; Chang, C.D.; Lee, L.H.; Tong, D.W.; et al. Baculovirus as a PRRSV and PCV2 bivalent vaccine vector: Baculovirus virions displaying simultaneously GP5 glycoprotein of PRRSV and capsid protein of PCV2. J. Virol. Methods 2012, 179, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Karuppannan, A.K.; Qiang, J.; Chang, C.C.; Kwang, J. A novel baculovirus vector shows efficient gene delivery of modified porcine reproductive and respiratory syndrome virus antigens and elicits specific immune response. Vaccine 2013, 31, 5471–5478. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Cheng, X.; Zhang, J.; Tong, T.; Lin, W.; Liao, M.; Fan, H. Induction of robust immunity response in mice by dual-expression-system-based recombinant baculovirus expressing the capsid protein of porcine circovirus type 2. Virol. J. 2013, 10, 316. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.G.; Liu, H.J. Baculovirus surface display of E2 envelope glycoprotein of classical swine fever virus and immunogenicity of the displayed proteins in a mouse model. Vaccine 2008, 26, 5455–5460. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.G.; Chiou, M.T.; Zhang, Y.M.; Tong, D.W.; Hu, J.H.; Zhang, M.T.; Liu, H.J. Baculovirus surface display of Erns envelope glycoprotein of classical swine fever virus. J. Virol. Methods 2008, 153, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qiao, L.; Hu, X.; Zhao, K.; Zhang, Y.; Chai, F.; Pan, Z. Baculovirus vectors expressing F proteins in combination with virus-induced signaling adaptor (VISA) molecules confer protection against respiratory syncytial virus infection. Vaccine 2016, 34, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Yu, F.; Xu, J.; Li, Y.; Chen, H.; Xiao, S.; Fu, Z.F.; Fang, L. Rabies-virus-glycoprotein-pseudotyped recombinant baculovirus vaccine confers complete protection against lethal rabies virus challenge in a mouse model. Vet. Microbiol. 2014, 171, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Liu, Y.; Qu, X.; Deng, H.; Ding, M.; Lau, T.L.; Yu, A.C.; Chen, J. Baculovirus surface display of SARS coronavirus (SARS-CoV) spike protein and immunogenicity of the displayed protein in mice models. DNA Cell Biol. 2006, 25, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, X.W.; Tong, T.Z.; Ye, Y.; Liao, M.; Fan, H.Y. Bacmam virus-based surface display of the infectious bronchitis virus (IBV) S1 glycoprotein confers strong protection against virulent IBV challenge in chickens. Vaccine 2014, 32, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.G.; Wang, Z.S.; Zhang, Q.; Li, Z.C.; Zhao, H.N.; Li, W.; Tong, D.W.; Liu, H.J. Baculovirus surface display of E envelope glycoprotein of Japanese encephalitis virus and its immunogenicity of the displayed proteins in mouse and swine models. Vaccine 2011, 29, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Peralta, A.; Molinari, P.; Conte-Grand, D.; Calamante, G.; Taboga, O. A chimeric baculovirus displaying bovine herpesvirus-1 (BHV-1) glycoprotein D on its surface and their immunological properties. Appl. Microbiol. Biotechnol. 2007, 75, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Meng, T.; Kolpe, A.B.; Kiener, T.K.; Chow, V.T.; Kwang, J. Display of VP1 on the surface of baculovirus and its immunogenicity against heterologous human enterovirus 71 strains in mice. PLoS ONE 2011, 6, e21757. [Google Scholar] [CrossRef] [PubMed]
- Kolpe, A.B.; Kiener, T.K.; Grotenbreg, G.M.; Kwang, J. Display of enterovirus 71 VP1 on baculovirus as a type II transmembrane protein elicits protective B and T cell responses in immunized mice. Virus Res. 2012, 168, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.G.; Tong, D.W.; Wang, Z.S.; Zhang, Q.; Li, Z.C.; Zhang, K.; Li, W.; Liu, H.J. Baculovirus virions displaying infectious bursal disease virus VP2 protein protect chickens against infectious bursal disease virus infection. Avian Dis. 2011, 55, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.H.; Wang, J.Y.; Xu, X.G.; Tong, D.W.; Lu, H.Y.; Tong, D.W.; Chen, Y.H.; Chiou, M.T.; Chang, C.D.; Liu, H.J. Localization of the VP2 protein of canine parvovirus type 2 on the baculovirus envelop and its immunogenicity in a mouse model. Open J. Vet. Med. 2012, 2, 178–185. [Google Scholar]
- Lin, Y.H.; Lee, L.H.; Shih, W.L.; Hu, Y.C.; Liu, H.J. Baculovirus surface display of sigmaC and sigmaB proteins of avian reovirus and immunogenicity of the displayed proteins in a mouse model. Vaccine 2008, 26, 6361–6367. [Google Scholar] [CrossRef] [PubMed]
- Iyori, M.; Yamamoto, D.S.; Sakaguchi, M.; Mizutani, M.; Ogata, S.; Nishiura, H.; Tamura, T.; Matsuoka, H.; Yoshida, S. DAF-shielded baculovirus-vectored vaccine enhances protection against malaria sporozoite challenge in mice. Malar J. 2017, 16, 390. [Google Scholar] [CrossRef] [PubMed]
- Iyori, M.; Nakaya, H.; Inagaki, K.; Pichyangkul, S.; Yamamoto, D.S.; Kawasaki, M.; Kwak, K.; Mizukoshi, M.; Goto, Y.; Matsuoka, H.; et al. Protective efficacy of baculovirus dual expression system vaccine expressing Plasmodium falciparum circumsporozoite protein. PLoS ONE 2013, 8, e70819. [Google Scholar] [CrossRef] [PubMed]
- Mizutani, M.; Iyori, M.; Blagborough, A.M.; Fukumoto, S.; Funatsu, T.; Sinden, R.E.; Yoshida, S. Baculovirus-vectored multistage Plasmodium vivax vaccine induces both protective and transmission-blocking immunities against transgenic rodent malaria parasites. Infect. Immun. 2014, 82, 4348–4357. [Google Scholar] [CrossRef] [PubMed]
- Mlambo, G.; Kumar, N.; Yoshida, S. Functional immunogenicity of baculovirus expressing Pfs25, a human malaria transmission-blocking vaccine candidate antigen. Vaccine 2010, 28, 7025–7029. [Google Scholar] [CrossRef] [PubMed]
- Blagborough, A.M.; Yoshida, S.; Sattabongkot, J.; Tsuboi, T.; Sinden, R.E. Intranasal and intramuscular immunization with Baculovirus Dual Expression System-based Pvs25 vaccine substantially blocks Plasmodium vivax transmission. Vaccine 2010, 28, 6014–6020. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Araki, H.; Yokomine, T. Baculovirus-based nasal drop vaccine confers complete protection against malaria by natural boosting of vaccine-induced antibodies in mice. Infect. Immun. 2010, 78, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Kawasaki, M.; Hariguchi, N.; Hirota, K.; Matsumoto, M. A baculovirus dual expression system-based malaria vaccine induces strong protection against Plasmodium berghei sporozoite challenge in mice. Infect. Immun. 2009, 77, 1782–1789. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Kondoh, D.; Arai, E.; Matsuoka, H.; Seki, C.; Tanaka, T.; Okada, M.; Ishii, A. Baculovirus virions displaying Plasmodium berghei circumsporozoite protein protect mice against malaria sporozoite infection. Virology 2003, 316, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Strauss, R.; Huser, A.; Ni, S.; Tuve, S.; Kiviat, N.; Sow, P.S.; Hofmann, C.; Lieber, A. Baculovirus-based vaccination vectors allow for efficient induction of immune responses against Plasmodium falciparum circumsporozoite protein. Mol. Ther. 2007, 15, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Premanand, B.; Prabakaran, M.; Kiener, T.K.; Kwang, J. Recombinant baculovirus associated with bilosomes as an oral vaccine candidate against HEV71 infection in mice. PLoS ONE 2013, 8, e55536. [Google Scholar] [CrossRef] [PubMed]
- WHO. Influenza (Seasonal) 2014. Available online: www.who.int/mediacentre/factsheets/fs211/en/ (accessed on 17 April 2018).
- Houser, K.; Subbarao, K. Influenza vaccines: Challenges and solutions. Cell Host Microbe 2015, 17, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Russell, C.J.; Webster, R.G. The genesis of a pandemic influenza virus. Cell 2005, 123, 368–371. [Google Scholar] [CrossRef] [PubMed]
- Taubenberger, J.K.; Reid, A.H.; Lourens, R.M.; Wang, R.; Jin, G.; Fanning, T.G. Characterization of the 1918 influenza virus polymerase genes. Nature 2005, 437, 889–893. [Google Scholar] [CrossRef] [PubMed]
- Scholtissek, C.; Rohde, W.; Von Hoyningen, V.; Rott, R. On the origin of the human influenza virus subtypes H2N2 and H3N2. Virology 1978, 87, 13–20. [Google Scholar] [CrossRef]
- Kawaoka, Y.; Krauss, S.; Webster, R.G. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J. Virol. 1989, 63, 4603–4608. [Google Scholar] [PubMed]
- James, D.C.; Freedman, R.B.; Hoare, M.; Ogonah, O.W.; Rooney, B.C.; Larionov, O.A.; Dobrovolsky, V.N.; Lagutin, O.V.; Jenkins, N. N-glycosylation of recombinant human interferon-γ produced in different animal expression systems. Biotechnology 1995, 13, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Héricourt, F.; Blanc, S.; Redeker, V.; Jupin, I. Evidence for phosphorylation and ubiquitinylation of the turnip yellow mosaic virus RNA-dependent RNA polymerase domain expressed in a baculovirus-insect cell system. Biochem. J. 2000, 349, 417–425. [Google Scholar] [PubMed]
- Hodder, A.N.; Crewther, P.E.; Matthew, M.L.; Reid, G.E.; Moritz, R.L.; Simpson, R.J.; Anders, R.F. The disulfide bond structure of Plasmodium apical membrane antigen-1. J. Biol. Chem. 1996, 271, 29446–29452. [Google Scholar] [CrossRef] [PubMed]
- Hervas-Stubbs, S.; Rueda, P.; Lopez, L.; Leclerc, C. Insect baculoviruses strongly potentiate adaptive immune responses by inducing type I IFN. J. Immunol. 2007, 178, 2361–2369. [Google Scholar] [CrossRef] [PubMed]
- Oker-Blom, C.; Airenne, K.J.; Grabherr, R. Baculovirus display strategies: Emerging tools for eukaryotic libraries and gene delivery. Brief. Funct. Genom. 2003, 2, 244–253. [Google Scholar] [CrossRef]
- Grabherr, R.; Ernst, W.; Doblhoff-Dier, O.; Sara, M.; Katinger, H. Expression of foreign proteins on the surface of Autographa californica nuclear polyhedrosis virus. Biotechniques 1997, 22, 730–735. [Google Scholar] [PubMed]
- Kitagawa, Y.; Tani, H.; Limn, C.K.; Matsunaga, T.M.; Moriishi, K.; Matsuura, Y. Ligand-directed gene targeting to mammalian cells by pseudotype baculoviruses. J. Virol. 2005, 79, 3639–3652. [Google Scholar] [CrossRef] [PubMed]
- Kaikkonen, M.U.; Raty, J.K.; Airenne, K.J.; Wirth, T.; Heikura, T.; Yla-Herttuala, S. Truncated vesicular stomatitis virus G protein improves baculovirus transduction efficiency in vitro and in vivo. Gene Ther. 2006, 13, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.G.; Chung, Y.C.; Lai, Y.K.; Lai, C.W.; Liu, H.J.; Hu, Y.C. Avian influenza virus hemagglutinin display on baculovirus envelope: Cytoplasmic domain affects virus properties and vaccine potential. Mol. Ther. 2007, 15, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Boublik, Y.; Di Bonito, P.; Jones, I.M. Eukaryotic virus display: Engineeringthe major surface glycoprotein of the Autographa californica nuclear polyhedrosis virus (AcNPV) for the presentation of foreign proteins on the virus surface. Biotechnology (N. Y.) 1995, 13, 1079–1084. [Google Scholar] [CrossRef]
- Thomas, P.G.; Keating, R.; Hulse-Post, D.J.; Doherty, P.C. Cell-mediated protection in influenza infection. Emerg. Infect. Dis. 2006, 12, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Heiny, A.T.; Miotto, O.; Srinivasan, K.N.; Khan, A.M.; Zhang, G.L.; Brusic, V.; Tan, T.W.; August, J.T. Evolutionarily conserved protein sequences of influenza a viruses, avian and human, as vaccine targets. PLoS ONE 2007, 2, e1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sridhar, S.; Begom, S.; Bermingham, A.; Hoschler, K.; Adamson, W.; Carman, W.; Bean, T.; Barclay, W.; Deeks, J.J.; Lalvani, A. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat. Med. 2013, 19, 1305–1312. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, T.M.; Li, C.K.; Chui, C.S.; Huang, A.K.; Perkins, M.; Liebner, J.C.; Lambkin-Williams, R.; Gilbert, A.; Oxford, J.; Nicholas, B.; et al. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat. Med. 2012, 18, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fan, H.Y.; Zhang, Z.; Zhang, J.; Zhang, J.; Huang, J.N.; Ye, Y.; Liao, M. Recombinant baculovirus vaccine containing multiple M2e and adjuvant LTB induces t cell dependent, cross-clade protection against H5N1 influenza virus in mice. Vaccine 2016, 34, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Lin, S.Y.; Cheng, M.C.; Tsai, C.P.; Hung, C.L.; Lo, K.W.; Hwang, Y.; Hu, Y.C. Baculovirus vector as an avian influenza vaccine: Hemagglutinin expression and presentation augment the vaccine immunogenicity. J. Biotechnol. 2013, 164, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; An, Q.; Gao, D.; Liu, Y.; Ping, W. Construction of recombinant baculoviruses expressing hemagglutinin of H5N1 avian influenza and research on the immunogenicity. Sci. Rep. 2016, 6, 24290. [Google Scholar] [CrossRef] [PubMed]
- Rapoport, T.A. Transport of proteins across the endoplasmic reticulum membrane. Science 1992, 258, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Blissard, G.W. Functional analysis of the transmembrane (TM) domain of the Autographa californica multicapsid nucleopolyhedrovirus GP64 protein: Substitution of heterologous TM domains. J. Virol. 2008, 82, 3329–3341. [Google Scholar] [CrossRef] [PubMed]
- Lazarovits, J.; Shia, S.P.; Ktistakis, N.; Lee, M.S.; Bird, C.; Roth, M.G. The effects of foreign transmembrane domains on the biosynthesis of the influenza virus hemagglutinin. J. Biol. Chem. 1990, 265, 4760–4767. [Google Scholar] [PubMed]
- Schnell, M.J.; Buonocore, L.; Boritz, E.; Ghosh, H.P.; Chernish, R.; Rose, J.K. Requirement for a non-specific glycoprotein cytoplasmic domain sequence to drive efficient budding of vesicular stomatitis virus. EMBO J. 1998, 17, 1289–1296. [Google Scholar] [CrossRef] [PubMed]
- Suomalainen, M.; Liljeström, P.; Garoff, H. Spike protein-nucleocapsid interactions drive the budding of alphaviruses. J. Virol. 1992, 66, 4737–4747. [Google Scholar] [PubMed]
- Prabakaran, M.; Velumani, S.; He, F.; Karuppannan, A.K.; Geng, G.Y.; Yin, L.K.; Kwang, J. Protective immunity against influenza H5N1 virus challenge in mice by intranasal co-administration of baculovirus surface-displayed HA and recombinant CTB as an adjuvant. Virology 2008, 380, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Prabakaran, M.; Madhan, S.; Prabhu, N.; Qiang, J.; Kwang, J. Gastrointestinal delivery of baculovirus displaying influenza virus hemagglutinin protects mice against heterologous H5N1 infection. J. Virol. 2010, 84, 3201–3209. [Google Scholar] [CrossRef] [PubMed]
- Pieroni, L.; Maione, D.; La Monica, N. In vivo gene transfer in mouse skeletal muscle mediated by baculovirus vectors. Hum. Gene Ther. 2001, 12, 871–881. [Google Scholar] [CrossRef] [PubMed]
- Fang, R.; Feng, H.; Nie, H.; Wang, L.; Tu, P.; Song, Q.; Zhou, Y.; Zhao, J. Construction and immunogenicity of pseudotype baculovirus expressing Toxoplasma gondii SAG1 protein in BALB/c mice model. Vaccine 2010, 28, 1803–1807. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.W.; Cheng, T.J.; Huang, Y.; Jan, J.T.; Ma, S.H.; Yu, A.L.; Wong, C.H.; Ho, D.D. A consensus-hemagglutinin-based DNA vaccine that protects mice against divergent H5N1 influenza viruses. Proc. Natl. Acad. Sci. USA 2008, 105, 13538–13543. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, H.J.; Muller, M.; Oh, H.M.; Tambyah, P.A.; Joukhadar, C.; Montomoli, E.; Fisher, D.; Berezuk, G.; Fritsch, S.; Low-Baselli, A.; et al. A clinical trial of a whole-virus h5n1 vaccine derived from cell culture. N. Engl. J. Med. 2008, 358, 2573–2584. [Google Scholar] [CrossRef] [PubMed]
- Prabakaran, M.; He, F.; Meng, T.; Madhan, S.; Yunrui, T.; Jia, Q.; Kwang, J. Neutralizing epitopes of influenza virus hemagglutinin: Target for the development of a universal vaccine against H5N1 lineages. J. Virol. 2010, 84, 11822–11830. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Xiao, S.; Fan, H.; Li, Y.; Xu, J.; Li, Z.; Lu, W.; Su, X.; Zou, W.; Jin, M.; et al. Protective immunity elicited by a pseudotyped baculovirus-mediated bivalent H5N1 influenza vaccine. Antivir. Res. 2011, 92, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Ory, D.S.; Neugeboren, B.A.; Mulligan, R.C. A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc. Natl. Acad. Sci. USA 1996, 93, 11400–11406. [Google Scholar] [CrossRef] [PubMed]
- DePolo, N.J.; Reed, J.D.; Sheridan, P.L.; Townsend, K.; Sauter, S.L.; Jolly, D.J.; Dubensky, T.W., Jr. VSV-G pseudotyped lentiviral vector particles produced in human cells are inactivated by human serum. Mol. Ther. 2000, 2, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Kost, T.A.; Condreay, J.P.; Jarvis, D.L. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat. Biotechnol. 2005, 23, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Prabakaran, M.; Meng, T.; He, F.; Yunrui, T.; Qiang, J.; Lin, R.T.; Kwang, J. Subcutaneous immunization with baculovirus surface-displayed hemagglutinin of pandemic H1N1 influenza a virus induces protective immunity in mice. Clin. Vaccine Immunol. 2011, 18, 1582–1585. [Google Scholar] [CrossRef] [PubMed]
- Bommakanti, G.; Citron, M.P.; Hepler, R.W.; Callahan, C.; Heidecker, G.J.; Najar, T.A.; Lu, X.; Joyce, J.G.; Shiver, J.W.; Casimiro, D.R.; et al. Design of an ha2-based Escherichia coli expressed influenza immunogen that protects mice from pathogenic challenge. Proc. Natl. Acad. Sci. USA 2010, 107, 13701–13706. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.H.; Park, H.J.; Han, G.Y.; Song, M.K.; Pereboev, A.; Hong, J.S.; Chang, J.; Byun, Y.H.; Seong, B.L.; Nguyen, H.H. Intranasal adenovirus-vectored vaccine for induction of long-lasting humoral immunity-mediated broad protection against influenza in mice. J. Virol. 2014, 88, 9693–9703. [Google Scholar] [CrossRef] [PubMed]
- Krammer, F.; Pica, N.; Hai, R.; Margine, I.; Palese, P. Chimeric hemagglutinin influenza virus vaccine constructs elicit broadly protective stalk-specific antibodies. J. Virol. 2013, 87, 6542–6550. [Google Scholar] [CrossRef] [PubMed]
- Pica, N.; Hai, R.; Krammer, F.; Wang, T.T.; Maamary, J.; Eggink, D.; Tan, G.S.; Krause, J.C.; Moran, T.; Stein, C.R.; et al. Hemagglutinin stalk antibodies elicited by the 2009 pandemic influenza virus as a mechanism for the extinction of seasonal H1N1 viruses. Proc. Natl. Acad. Sci. USA 2012, 109, 2573–2578. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.J.; Boyington, J.C.; McTamney, P.M.; Kong, W.P.; Pearce, M.B.; Xu, L.; Andersen, H.; Rao, S.; Tumpey, T.M.; Yang, Z.Y.; et al. Induction of broadly neutralizing H1N1 influenza antibodies by vaccination. Science 2010, 329, 1060–1064. [Google Scholar] [CrossRef] [PubMed]
- Steel, J.; Lowen, A.C.; Wang, T.T.; Yondola, M.; Gao, Q.; Haye, K.; Garcia-Sastre, A.; Palese, P. Influenza virus vaccine based on the conserved hemagglutinin stalk domain. MBio 2010, 1. [Google Scholar] [CrossRef] [PubMed]
- Hai, R.; Krammer, F.; Tan, G.S.; Pica, N.; Eggink, D.; Maamary, J.; Margine, I.; Albrecht, R.A.; Palese, P. Influenza viruses expressing chimeric hemagglutinins: Globular head and stalk domains derived from different subtypes. J. Virol. 2012, 86, 5774–5781. [Google Scholar] [CrossRef] [PubMed]
- Margine, I.; Hai, R.; Albrecht, R.A.; Obermoser, G.; Harrod, A.C.; Banchereau, J.; Palucka, K.; Garcia-Sastre, A.; Palese, P.; Treanor, J.J.; et al. H3N2 influenza virus infection induces broadly reactive hemagglutinin stalk antibodies in humans and mice. J. Virol. 2013, 87, 4728–4737. [Google Scholar] [CrossRef] [PubMed]
- Fouchier, R.A.; Schneeberger, P.M.; Rozendaal, F.W.; Broekman, J.M.; Kemink, S.A.; Munster, V.; Kuiken, T.; Rimmelzwaan, G.F.; Schutten, M.; Van Doornum, G.J.; et al. Avian influenza a virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc. Natl. Acad. Sci. USA 2004, 101, 1356–1361. [Google Scholar] [CrossRef] [PubMed]
- Steinhauer, D.A. Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology 1999, 258, 1–20. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Influenza a(H7N9) Virus in China—Implications for Public Health—7th Update, 3 July 2017; European Centre for Disease Prevention and Control: Solna Municipality, Sweden, 2017. [Google Scholar]
- Munster, V.J.; de Wit, E.; van Riel, D.; Beyer, W.E.; Rimmelzwaan, G.F.; Osterhaus, A.D.; Kuiken, T.; Fouchier, R.A. The molecular basis of the pathogenicity of the dutch highly pathogenic human influenza a H7N7 viruses. J. Infect. Dis. 2007, 196, 258–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.T.; Tan, G.S.; Hai, R.; Pica, N.; Ngai, L.; Ekiert, D.C.; Wilson, I.A.; Garcia-Sastre, A.; Moran, T.M.; Palese, P. Vaccination with a synthetic peptide from the influenza virus hemagglutinin provides protection against distinct viral subtypes. Proc. Natl. Acad. Sci. USA 2010, 107, 18979–18984. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.R.; Prabakaran, M.; Ashok Raj, K.V.; He, F.; Kwang, J. Amino acid substitutions improve the immunogenicity of H7N7 HA protein and protect mice against lethal H7N7 viral challenge. PLoS ONE 2015, 10, e0128940. [Google Scholar]
- Venegas, C.A.; Nonaka, L.; Mushiake, K.; Nishizawa, T.; Murog, K. Quasi-immune response of Penaeus japonicus to penaeid rod-shaped DNA virus (PRDV). Dis. Aquat. Org. 2000, 42, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.L.; Nishioka, T.; Mori, K.; Nishizawa, T.; Muroga, K. A time-course study on the resistance of Penaeus japonicus induced by artificial infection with white spot syndrome virus. Fish Shellfish Immunol. 2002, 13, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Namikoshi, A.; Wu, J.L.; Yamashita, T.; Nishizawa, T.; Nishioka, T.; Arimoto, M.; Muroga, K. Vaccination trials with Penaeus japonicus to induce resistance to white spot syndrome virus. Aquaculture 2004, 229, 25–35. [Google Scholar] [CrossRef]
- Wei, K.Q.; Xu, Z.R. Effect of white spot syndrome virus envelope protein Vp28 expressed in silkworm (Bombyx mori) pupae on disease resistence in Procambarus clarkii. Shi Yan Sheng Wu Xue Bao 2005, 38, 190–198. [Google Scholar] [PubMed]
- Rajeshkumar, S.; Venkatesan, C.; Sarathi, M.; Sarathbabu, V.; Thomas, J.; Anver Basha, K.; Sahul Hameed, A.S. Oral delivery of DNA construct using chitosan nanoparticles to protect the shrimp from white spot syndrome virus (WSSV). Fish Shellfish Immunol. 2009, 26, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Ning, J.F.; Zhu, W.; Xu, J.P.; Zheng, C.Y.; Meng, X.L. Oral delivery of DNA vaccine encoding VP28 against white spot syndrome virus in crayfish by attenuated Salmonella typhimurium. Vaccine 2009, 27, 1127–1135. [Google Scholar] [CrossRef] [PubMed]
- Syed Musthaq, S.; Madhan, S.; Sahul Hameed, A.S.; Kwang, J. Localization of VP28 on the baculovirus envelope and its immunogenicity against white spot syndrome virus in Penaeus monodon. Virology 2009, 391, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, J.A.; Reichhart, J.M.; Hetru, C. Innate immunity in higher insects. Curr. Opin. Immunol. 1996, 8, 8–13. [Google Scholar] [CrossRef]
- Cai, J.; Ma, Y.; Li, J.; Yan, C.; Hu, R.; Zhang, J. Construction and characterization of a recombinant canine adenovirus expressing GP5 and M proteins of porcine reproductive and respiratory syndrome virus. J. Vet. Med. Sci. 2010, 72, 1035–1040. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.S.; Hwang, I.W.; Kim, S.M.; Kim, C.J.; Shin, K.S.; Kim, H.S. Expression of open reading frame 5 protein of porcine reproductive and respiratory syndrome virus using semliki forest virus expression system. J. Vet. Sci. 2002, 3, 13–18. [Google Scholar] [PubMed]
- Qiu, H.J.; Tian, Z.J.; Tong, G.Z.; Zhou, Y.J.; Ni, J.Q.; Luo, Y.Z.; Cai, X.H. Protective immunity induced by a recombinant pseudorabies virus expressing the GP5 of porcine reproductive and respiratory syndrome virus in piglets. Vet. Immunol. Immunopathol. 2005, 106, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Chen, D.; Li, P.; Bi, Z.; Cao, R.; Zhou, B.; Chen, P. Co-expressing GP5 and M proteins under different promoters in recombinant modified vaccinia virus ankara (rMVA)-based vaccine vector enhanced the humoral and cellular immune responses of porcine reproductive and respiratory syndrome virus (PRRSV). Virus Genes 2007, 35, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Falsey, A.R. Respiratory syncytial virus infection in elderly and high-risk adults. Exp. Lung Res. 2005, 31 (Suppl. 1), 77. [Google Scholar] [CrossRef] [PubMed]
- Kapikian, A.Z.; Mitchell, R.H.; Chanock, R.M.; Shvedoff, R.A.; Stewart, C.E. An epidemiologic study of altered clinical reactivity to respiratory syncytial (RS) virus infection in children previously vaccinated with an inactivated RS virus vaccine. Am. J. Epidemiol. 1969, 89, 405–421. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.W.; Canchola, J.G.; Brandt, C.D.; Pyles, G.; Chanock, R.M.; Jensen, K.; Parrott, R.H. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am. J. Epidemiol. 1969, 89, 422–434. [Google Scholar] [CrossRef] [PubMed]
- Castilow, E.M.; Olson, M.R.; Varga, S.M. Understanding respiratory syncytial virus (RSV) vaccine-enhanced disease. Immunol. Res. 2007, 39, 225–239. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.K.; Sharma, S.; Walunj, S.S.; Chaturvedi, V.K.; Raut, A.A.; Patial, S.; Rai, A.; Pandey, K.D.; Saini, M. Immunogenic and antigenic properties of recombinant soluble glycoprotein of rabies virus. Vet. Microbiol. 2005, 108, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.; Cunningham, A.F.; Fooks, A.R. The immune response to rabies virus infection and vaccination. Vaccine 2010, 28, 3896–3901. [Google Scholar] [CrossRef] [PubMed]
- Chopy, D.; Detje, C.N.; Lafage, M.; Kalinke, U.; Lafon, M. The type I interferon response bridles rabies virus infection and reduces pathogenicity. J. Neurovirol. 2011, 17, 353–367. [Google Scholar] [CrossRef] [PubMed]
- Hooper, D.C.; Morimoto, K.; Bette, M.; Weihe, E.; Koprowski, H.; Dietzschold, B. Collaboration of antibody and inflammation in clearance of rabies virus from the central nervous system. J. Virol. 1998, 72, 3711–3719. [Google Scholar] [PubMed]
- Wen, Y.; Wang, H.; Wu, H.; Yang, F.; Tripp, R.A.; Hogan, R.J.; Fu, Z.F. Rabies virus expressing dendritic cell-activating molecules enhances the innate and adaptive immune response to vaccination. J. Virol. 2011, 85, 1634–1644. [Google Scholar] [CrossRef] [PubMed]
- Premanand, B.; Kiener, T.K.; Meng, T.; Tan, Y.R.; Jia, Q.; Chow, V.T.; Kwang, J. Induction of protective immune responses against EV71 in mice by baculovirus encoding a novel expression cassette for capsid protein VP1. Antivir. Res. 2012, 95, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Muller, H.; Islam, M.R.; Raue, R. Research on infectious bursal disease-the past, the present and the future. Vet. Microbiol. 2003, 97, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Elankumaran, S.; Yunus, A.S.; Samal, S.K. A recombinant Newcastle disease virus (NDV) expressing VP2 protein of infectious bursal disease virus (IBDV) protects against NDV and IBDV. J. Virol. 2004, 78, 10054–10063. [Google Scholar] [CrossRef] [PubMed]
- Francois, A.; Chevalier, C.; Delmas, B.; Eterradossi, N.; Toquin, D.; Rivallan, G.; Langlois, P. Avian adenovirus CELO recombinants expressing VP2 of infectious bursal disease virus induce protection against bursal disease in chickens. Vaccine 2004, 22, 2351–2360. [Google Scholar] [CrossRef] [PubMed]
- Rts, S.C.T.P.; Agnandji, S.T.; Lell, B.; Soulanoudjingar, S.S.; Fernandes, J.F.; Abossolo, B.P.; Conzelmann, C.; Methogo, B.G.; Doucka, Y.; Flamen, A.; et al. First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children. N. Engl. J. Med. 2011, 365, 1863–1875. [Google Scholar]
- Olotu, A.; Fegan, G.; Wambua, J.; Nyangweso, G.; Leach, A.; Lievens, M.; Kaslow, D.C.; Njuguna, P.; Marsh, K.; Bejon, P. Seven-year efficacy of RTS,S/AS01 malaria vaccine among young African children. N. Engl. J. Med. 2016, 374, 2519–2529. [Google Scholar] [CrossRef] [PubMed]
- Lyke, K.E.; Ishizuka, A.S.; Berry, A.A.; Chakravarty, S.; DeZure, A.; Enama, M.E.; James, E.R.; Billingsley, P.F.; Gunasekera, A.; Manoj, A.; et al. Attenuated PFSPZ vaccine induces strain-transcending T cells and durable protection against heterologous controlled human malaria infection. Proc. Natl. Acad. Sci. USA 2017, 114, 2711–2716. [Google Scholar] [CrossRef] [PubMed]
- Sissoko, M.S.; Healy, S.A.; Katile, A.; Omaswa, F.; Zaidi, I.; Gabriel, E.E.; Kamate, B.; Samake, Y.; Guindo, M.A.; Dolo, A.; et al. Safety and efficacy of PFSPZ vaccine against Plasmodium falciparum via direct venous inoculation in healthy malaria-exposed adults in Mali: A randomised, double-blind phase 1 trial. Lancet Infect. Dis. 2017, 17, 498–509. [Google Scholar] [CrossRef]
- Epstein, J.E.; Paolino, K.M.; Richie, T.L.; Sedegah, M.; Singer, A.; Ruben, A.J.; Chakravarty, S.; Stafford, A.; Ruck, R.C.; Eappen, A.G.; et al. Protection against Plasmodium falciparum malaria by PFSPZ vaccine. JCI Insight 2017, 2, e89154. [Google Scholar] [CrossRef] [PubMed]
- McGhee, J.R.; Fujihashi, K. Inside the mucosal immune system. PLoS Biol. 2012, 10, e1001397. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Hemmi, H.; Miyamoto, H.; Moriishi, K.; Tamura, S.; Takaku, H.; Akira, S.; Matsuura, Y. Involvement of the Toll-like receptor 9 signaling pathway in the induction of innate immunity by baculovirus. J. Virol. 2005, 79, 2847–2858. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Takahashi, H.; Hamazaki, H.; Miyano-Kurosaki, N.; Matsuura, Y.; Takaku, H. Baculovirus induces an innate immune response and confers protection from lethal influenza virus infection in mice. J. Immunol. 2003, 171, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, J.; Zganiacz, A.; Xing, Z. Single intranasal mucosal Mycobacterium bovis BCG vaccination confers improved protection compared to subcutaneous vaccination against pulmonary tuberculosis. Infect. Immun. 2004, 72, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Giri, P.K.; Sable, S.B.; Verma, I.; Khuller, G.K. Comparative evaluation of intranasal and subcutaneous route of immunization for development of mucosal vaccine against experimental tuberculosis. FEMS Immunol. Med. Microbiol. 2005, 45, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L. Mucosal adjuvants: Opportunities and challenges. Hum. Vaccin Immunother. 2016, 12, 2456–2458. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Berzofsky, J.A. Oral vaccines: Directed safe passage to the front line of defense. Gut Microbes 2013, 4, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Prabakaran, M.; Madhan, S.; Prabhu, N.; Geng, G.Y.; New, R.; Kwang, J. Reverse micelle-encapsulated recombinant baculovirus as an oral vaccine against H5N1 infection in mice. Antivir. Res. 2010, 86, 180–187. [Google Scholar] [CrossRef] [PubMed]
- OECD. Consensus Document on Information Used in the Assessment of Environmental Applications Involving Baculovirus; Series on Harmonization of Regulatory Oversight in Biotechnology Number 20; Organisation for Economic Co-Operation and Development (OECD) Environment: Paris, France, 2002; 79p. [Google Scholar]
- European Commission’s Health & Consumer Protection Directorate-General. Available online: https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_aas_guidance_baculovirus.pdf (accessed on 21 May 2018).
Recombinant Baculovirus | Target Antigen | Immunized Species | Promoters | Induced Immune Responses | References | ||
---|---|---|---|---|---|---|---|
Humoral | Cellular | Mucosal | |||||
Bac-CHA/HA64 | HA (H5) | Mice | Pp10, PCMV-IE | Yes | Yes | Yes | [20] |
BV-Dual-3M2e-LTB | HA (H5) | Mice | Pp10, PCMV-IE, PPH | NT | Yes | Yes | [21] |
Bac-HAMW | HA (H5) | Mice | Pp10, PCAG | Yes | Yes | NT | [22] |
BV-A-ITRs-HA | HA (H5) | Chickens | WSSV-ie1 | Yes | Yes | NT | [23] |
vAc-HA-DUAL | HA (H5) | Mice | PPH, CMV, Pp10 | Yes | Yes | Yes | [24] |
Bac-spHAct | HA (H5) | Mice | PPH | Yes | Yes | NT | [25] |
BV-G-HA | HA (H5) | Mice Chickens | PPH, CMV | Yes | Yes | NT | [26] |
vAC-ie-HA | HA (H5) | Chickens | WSSV-ie1 | Yes | NT | NT | [27] |
BacHA | HA (H5) | Mice | WSSV-ie1 | Yes | Yes | Yes | [28] |
AcHERV-sHINI-HA | HA (H1) | Mice | PPH | Yes | Yes | NT | [29] |
rBac-HA | HA (H1) | Mice | PPH | Yes | Yes | Yes | [30] |
Bac-HA | HA (H7) | Mice | WSSV-ie1 | Yes | Yes | Yes | [31] |
BacHA | HA (H7) | Mice | WSSV-ie1 | Yes | NT | Yes | [32] |
Bac-HABV-Dual-HA | HA (H6) HA (H9) | Mice Mice | WSSV-ie1 PPH, CMV | Yes Yes | Yes NT | Yes NT | [33] [34] |
Bac-VP28 | WSSV-VP28 | Shrimp | WSSV-ie1 | NT | NT | NT | [35] |
BacSC-Dual-GP5–Cap | GP5 (PRRSV), Cap (PCV2) | Swine | Pp10, PPH | Yes | Yes | NT | [36] |
Bac-ORF2a, ORF4 | ORF2a, ORF4 (PRRSV) | Mice | WSSV-ie1 | Yes | NT | NT | [37] |
BV-GD-ORF2 | ORF2 (PCV2) | Mice | Pp10, PPH, CMV | Yes | Yes | NT | [38] |
Bac-SC-E2 | E2 (CSFV) | Mice | Pp10, PPH, CMV | Yes | NT | NT | [39] |
BacSc-Erns | Erns (CSFV) | Mice | Pp10, PPH, CMV | Yes | NT | NT | [40] |
Bac-CF/tF64-VISA | F protein (RSV) | Mice | Pp10, CMV | Yes | Yes | NT | [41] |
BV-RVG/RVG | RVG (RABV) | Mice | PPH, CMV | Yes | Yes | NT | [42] |
S-vsvG | Spike (s) protein (SARS-CoV) | Mice | PPH | Yes | NT | NT | [43] |
BV-Dual-S1 | S1 protein (IBV) | Chickens | PPH, CMV, Pp10 | Yes | Yes | NT | [44] |
BacSC-E | E protein (JEV) | Mice/Swine | PPH, CMV, Pp10 | Yes | Yes | NT | [45] |
AcSupgD | D protein (BHV-1) | Mice | PPH | Yes | NT | NT | [46] |
Bac-Pie1-gp64-VP1 | VP1 (EV71) | Mice | WSSV-ie1 | Yes | NT | NT | [47] |
Bac-NA-VP1 BacSc-VP2 | VP1 (EV71) VP2 protein (IBDV) | Mice Chickens | WSSV-ie1 PPH, CMV, Pp10 | Yes Yes | Yes Yes | NTNT | [48] [49] |
BacSC-VP2 | VP2 (CPV-2) | Mice | PPH, CMV, Pp10 | Yes | NT | NT | [50] |
BacSC-σC, BacSC-σB | σC, σB protein (ARV) | Mice | PPH, CMV, Pp10 | Yes | NT | NT | [51] |
BDES-sPfCSP2-Spider | PfCSP (P. falciparum) | Mice | PCMV-IE, PPH | Yes | NT | NT | [52] |
BDES-PfCSP | PfCSP (P. falciparum) | Mice/Monkeys | PCMV-IE, PPH, CAG | Yes | Yes | NT | [53] |
BDES-Pvs25-PvCSP | PvCSP (P. vivax) | Mice | PCMV-IE, PPH | Yes | Yes | NT | [54] |
AcNPV-Pfs25surf | Pfs25 (P. falciparum) | Mice | PPH | Yes | NT | NT | [55] |
AcNPV-Dual-Pvs25 | Pvs25 (P. vivax) | Mice/Rabbit | PCMV-IE, PPH | Yes | NT | NT | [56] |
AcNPV-PyMSP119surf | PyMSP119 (P. yoelii) | Mice | PPH | Yes | NT | NT | [57] |
AcNPV-Dual-PbCSP | PbCSP (P. berghei) | Mice | PCMV-IE, PPH | Yes | Yes | NT | [58] |
AcNPV-CSPsurf | PbCSP (P. berghei) | Mice | Pp10, PPH | Yes | Yes | NT | [59] |
AcNPV.CS-CS64 | CS (P. falciparum) | Mice | PCMV-IE, PPH | Yes | Yes | NT | [60] |
Bac-VP1 | VP1 (EV71) | Mice | WSSV-ie1 | Yes | NT | Yes | [61] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Premanand, B.; Zhong Wee, P.; Prabakaran, M. Baculovirus Surface Display of Immunogenic Proteins for Vaccine Development. Viruses 2018, 10, 298. https://doi.org/10.3390/v10060298
Premanand B, Zhong Wee P, Prabakaran M. Baculovirus Surface Display of Immunogenic Proteins for Vaccine Development. Viruses. 2018; 10(6):298. https://doi.org/10.3390/v10060298
Chicago/Turabian StylePremanand, Balraj, Poh Zhong Wee, and Mookkan Prabakaran. 2018. "Baculovirus Surface Display of Immunogenic Proteins for Vaccine Development" Viruses 10, no. 6: 298. https://doi.org/10.3390/v10060298