Next Article in Journal
Remembering Jan Svoboda: A Personal Reflection
Next Article in Special Issue
Single Viruses on the Fluorescence Microscope: Imaging Molecular Mobility, Interactions and Structure Sheds New Light on Viral Replication
Previous Article in Journal
Inhibition of Rabies Virus by 1,2,3,4,6-Penta-O-galloyl-β-d-Glucose Involves mTOR-Dependent Autophagy
Open AccessReview

Concepts in Light Microscopy of Viruses

1
Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
2
MRC Laboratory for Molecular Cell Biology, University College London, Gower St., London WC1E 6BT, UK
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Viruses 2018, 10(4), 202; https://doi.org/10.3390/v10040202
Received: 23 March 2018 / Revised: 12 April 2018 / Accepted: 16 April 2018 / Published: 18 April 2018
(This article belongs to the Special Issue Application of Advanced Imaging to the Study of Virus Replication)
Viruses threaten humans, livestock, and plants, and are difficult to combat. Imaging of viruses by light microscopy is key to uncover the nature of known and emerging viruses in the quest for finding new ways to treat viral disease and deepening the understanding of virus–host interactions. Here, we provide an overview of recent technology for imaging cells and viruses by light microscopy, in particular fluorescence microscopy in static and live-cell modes. The review lays out guidelines for how novel fluorescent chemical probes and proteins can be used in light microscopy to illuminate cells, and how they can be used to study virus infections. We discuss advantages and opportunities of confocal and multi-photon microscopy, selective plane illumination microscopy, and super-resolution microscopy. We emphasize the prevalent concepts in image processing and data analyses, and provide an outlook into label-free digital holographic microscopy for virus research. View Full-Text
Keywords: light microscopy; fluorescence microscopy; immunofluorescence microscopy; virus labeling; super-resolution; live imaging; image analysis; data analysis; high-throughput screening, modeling; simulation; computing; quantitative microscopy; fluorescent virions; microscopy; trafficking; membrane traffic; intracellular transport; machine learning; virus infection; DNA virus; RNA virus; enveloped virus; nonenveloped virus; cell biology; virus entry; cytoskeleton; infection; receptor; internalization; innate immunity; virion uncoating; endocytosis; gene expression; gene therapy; adenovirus; herpesvirus; herpes simplex virus; influenza virus; hepatitis B virus; baculovirus; human immunodeficiency virus HIV; parvovirus; adeno-associated virus AAV; simian virus 40 light microscopy; fluorescence microscopy; immunofluorescence microscopy; virus labeling; super-resolution; live imaging; image analysis; data analysis; high-throughput screening, modeling; simulation; computing; quantitative microscopy; fluorescent virions; microscopy; trafficking; membrane traffic; intracellular transport; machine learning; virus infection; DNA virus; RNA virus; enveloped virus; nonenveloped virus; cell biology; virus entry; cytoskeleton; infection; receptor; internalization; innate immunity; virion uncoating; endocytosis; gene expression; gene therapy; adenovirus; herpesvirus; herpes simplex virus; influenza virus; hepatitis B virus; baculovirus; human immunodeficiency virus HIV; parvovirus; adeno-associated virus AAV; simian virus 40
Show Figures

Graphical abstract

MDPI and ACS Style

Witte, R.; Andriasyan, V.; Georgi, F.; Yakimovich, A.; Greber, U.F. Concepts in Light Microscopy of Viruses. Viruses 2018, 10, 202. https://doi.org/10.3390/v10040202

AMA Style

Witte R, Andriasyan V, Georgi F, Yakimovich A, Greber UF. Concepts in Light Microscopy of Viruses. Viruses. 2018; 10(4):202. https://doi.org/10.3390/v10040202

Chicago/Turabian Style

Witte, Robert; Andriasyan, Vardan; Georgi, Fanny; Yakimovich, Artur; Greber, Urs F. 2018. "Concepts in Light Microscopy of Viruses" Viruses 10, no. 4: 202. https://doi.org/10.3390/v10040202

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop