Species Mixing Effects on Forest Productivity: A Case Study at Stand-, Species- and Tree-Level in the Netherlands
Abstract
:1. Introduction
1.1. Limiting Factors and Resource Acquisition in Mixed-Species Forests
1.2. Below Versus Aboveground Species Interactions in Complementary Resource Use
1.3. Stand Age and Management Effect on Mixing Effects
1.4. Research Questions and Hypotheses
- What is the effect of species mixing on stand productivity with stand development?
- How does overyielding depend on the attributes of mixed species along a soil fertility gradient?
- What is the effect of competitive interactions on tree growth in mixed-species forests along a soil fertility gradient?
- In line with the niche complementarity hypothesis, it is expected that tree species of mixed stands that differ in leaf phenology and/or shade tolerance overyield more strongly. Second, it is expected that overyielding decreases with stand development because fully grown stands take all resources and limit resource partitioning (Figure 2a). However, in thinned stands, resource partition may maintain with age and thus offset trends in overyielding.
- It is hypothesised that the faster growing and more light-demanding species would dominate the slower growing and more shade-tolerant species in mixed-species stands, and that complementary use of light by these two species causes overyielding. Second, according to the stress-gradient hypothesis, overyielding by complementary soil resource use would be stronger at poor soils than at rich soils (Figure 2b). Alternatively, following the resource-ratio hypothesis, overyielding would be stronger at rich soils.
- First, it is predicted that intra-specific competition is stronger than inter-specific competition and the competitive reduction is greater at less fertile soils, in accordance with the stress-gradient hypothesis. Second, when light is the most important growth limiting factor in Dutch forests, size-asymmetric competition for light is more relevant for tree growth than size-symmetric competition for soil resources. Third, given that forests develop a denser canopy, size-asymmetric competition will be greater at high fertility soils, in accordance with the resource-ratio hypothesis, and this in turn may imply a higher probability of complementarity for light than for soil resources (Figure 2c).
2. Methods
3. Results and Discussion
3.1. Complementarity in Light Use
3.2. Effect of Age and Forest Management
3.3. Soil Impact
3.4. Intraspecific Competition Stronger than Interspecific Competition?
3.5. Competition for Light or for Soil Resources?
3.6. Revisiting the Stress-Gradient Hypothesis and the Resource-Ratio Hypothesis
3.7. Limitations of the Data and Approaches
3.8. Suggestions for Management of Mixed Forests
4. Conclusions
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
References
- Agnoletti, M.; Anderson, S. Forest History: International Studies on Socio-Economic and Forest Ecosystem Change, Report No.2 of the IUFRO Task Force on Environmental Change; CABI Publishing: Florence, Italy, 2000; pp. 337–350. [Google Scholar]
- Johann, E. Norway Spruce Conversion, Option and Consequences (EFI research report). Available online: http://www.technometre.com/norway-spruce-conversion-options-and-consequences-eurpoean-forest-institute-reseach.pdf (accessed on 16 November 2018).
- Machar, I.; Vlckova, V.; Bucek, A.; Vozenilek, V.; Salek, L.; Jerabkova, L. Modelling of climate conditions in forest vegetation zones as a support tool for forest management strategy in European beech dominated forests. Forests 2017, 8, 82. [Google Scholar] [CrossRef]
- Krejci, L.; Kolejka, J.; Vozenilek, V.; Machar, I. Application of GIS to empirical windthrow risk model in mountain forested landscapes. Forests 2018, 9, 96. [Google Scholar] [CrossRef]
- Agnoletti, M. Man, forestry, and forest landscapes—Trends and perspectives in the evolution of forestry and woodland history research. Schweiz. Z. Forstwes. 2006, 157, 384–392. [Google Scholar] [CrossRef]
- Bartelink, H.H. Simulation of Growth and Competition in Mixed Stands of Douglas-Fir and Beech; Landbouwuniversiteit Wageningen: Wageningen, The Netherlands, 1998. [Google Scholar]
- Bravo-Oviedo, A.; Pretzsch, H.; Ammer, C.; Andenmatten, E.; Barbati, A.; Barreiro, S.; Brang, P.; Bravo, F.; Coll, L.; Corona, P.; et al. European mixed forests: Definition and research perspectives. For. Syst. 2014, 23, 518–533. [Google Scholar] [CrossRef]
- Chamagne, J.; Tanadini, M.; Frank, D.; Matula, R.; Paine, C.E.T.; Philipson, C.D.; Svátek, M.; Turnbull, L.A.; Volařík, D.; Hector, A. Forest diversity promotes individual tree growth in central European forest stands. J. Appl. Ecol. 2016, 54, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Jucker, T.; Bouriaud, O.; Avacaritei, D.; Coomes, D.A. Stabilizing effects of diversity on aboveground wood production in forest ecosystems: Linking patterns and processes. Ecol. Lett. 2014, 17, 1560–1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- del Río, M.; Pretzsch, H.; Ruíz-Peinado, R.; Ampoorter, E.; Annigöfer, P.; Barbeito, I.; Bielak, K.; Brazaitis, G.; Coll, L. Species interactions increase the temporal stability of community productivity in Pinus sylvestris-Fagus sylvatica mixtures across Europe. J. Ecol. 2017, 105, 1032–1043. [Google Scholar] [CrossRef]
- Asensio, I.A.; Bouvet, T.B.A.; Bozzano, M.; Caudullo, G. Forest Europe: State of Europe’s forests 2015; Forest Europe, Liaison Unit Madrid: Madrid, Spain, 2015. [Google Scholar]
- Schelhaas, M.; Clerkx, A.P.P.M.; Daamen, W.P.; Oldenburger, J.F.; Velema, G.; Schnitger, P.; Schoonderwoerd, H.; Kramer, H. Zesde Nederlandse Bosinventarisatie: Methoden en Basisresultaten; Alterra Wageningen-UR: Wageningen, The Netherlands, 2014. [Google Scholar]
- Lu, H.; Mohren, G.M.J.; den Ouden, J.; Goudiaby, V.; Sterck, F.J. Overyielding of temperate mixed forests occurs in evergreen-deciduous but not in deciduous-deciduous species mixtures over time in the Netherlands. For. Ecol. Manag. 2016, 376, 321–332. [Google Scholar] [CrossRef]
- Lu, H.; Condés, S.; del Río, M.; Goudiaby, V.; den Ouden, J.; Mohren, G.M.J.; Schelhaas, M.-J.; de Waal, R.; Sterck, F.J. Species and soil effects on overyielding of tree species mixtures in the Netherlands. For. Ecol. Manag. 2018, 409, 105–118. [Google Scholar] [CrossRef]
- Pretzsch, H.; Zenner, E.K. Toward managing mixed-species stands: From parametrization to prescription. For. Ecosyst. 2017, 4, 19. [Google Scholar] [CrossRef]
- Tilman, D. The ecological consequences of changes in biodiversity: A search for general principles 101. Ecology 1999, 80, 1455–1474. [Google Scholar]
- Forrester, D.I. The spatial and temporal dynamics of species interactions in mixed-species forests: From pattern to process. For. Ecol. Manag. 2014, 312, 282–292. [Google Scholar] [CrossRef]
- Hynynen, J.; Repola, J.; Mielikäinen, K. The effects of species mixture on the growth and yield of mid-rotation mixed stands of Scots pine and silver birch. For. Ecol. Manag. 2011, 262, 1174–1183. [Google Scholar] [CrossRef]
- Ammer, C. Diversity and forest productivity in a changing climate. New Phytol. 2018. [CrossRef] [PubMed]
- Kelty, M.J. Comparative productivity of monocultures and mixed-species stands. In The Ecology and Silviculture of Mixed-Species Forests; Springer: New York, NY, USA, 1992; pp. 125–141. [Google Scholar]
- Jucker, T.; Bouriaud, O.; Coomes, D.A. Crown plasticity enables trees to optimize canopy packing in mixed-species forests. Funct. Ecol. 2015, 29, 1078–1086. [Google Scholar] [CrossRef] [Green Version]
- Pretzsch, H. Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. For. Ecol. Manag. 2014, 327, 251–264. [Google Scholar] [CrossRef]
- Kelty, M.J. Productivity of New England hemlock/hardwood stands as affected by species composition and canopy structure. For. Ecol. Manag. 1989, 28, 237–257. [Google Scholar] [CrossRef]
- Longuetaud, F.; Piboule, A.; Wernsdörfer, H.; Collet, C. Crown plasticity reduces inter-tree competition in a mixed broadleaved forest. Eur. J. For. Res. 2013, 132, 621–634. [Google Scholar] [CrossRef]
- Williams, L.J.; Paquette, A.; Cavender-Bares, J.; Messier, C.; Reich, P.B. Spatial complementarity in tree crowns explains overyielding in species mixtures. Nat. Ecol. Evol. 2017, 1, 63. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Chen, H.Y. Effects of species diversity on fine root productivity increase with stand development and associated mechanisms in a boreal forest. J. Ecol. 2017, 105, 237–245. [Google Scholar] [CrossRef]
- Thurm, E.A.; Biber, P.; Pretzsch, H. Stem growth is favored at expenses of root growth in mixed stands and humid conditions for Douglas-fir (Pseudotsuga menziesii) and European beech (Fagus sylvatica). Trees 2016, 31, 349–365. [Google Scholar] [CrossRef]
- Brassard, B.W.; Chen, H.Y.H.; Cavard, X.; Laganière, J.; Reich, P.B.; Bergeron, Y.; Paré, D.; Yuan, Z. Tree species diversity increases fine root productivity through increased soil volume filling. J. Ecol. 2013, 101, 210–219. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, H.Y.H. Positive species mixture effects on fine root turnover and mortality in natural boreal forests. Soil Biol. Biochem. 2018, 121, 130–137. [Google Scholar] [CrossRef]
- Reyer, C.; Lasch, P.; Mohren, G.M.J.; Sterck, F.J. Inter-specific competition in mixed forests of Douglas-fir (Pseudotsuga menziesii) and common beech (Fagus sylvatica) under climate change—A model-based analysis. Ann. For. Sci. 2010, 67, 805. [Google Scholar] [CrossRef]
- Forrester, D.I.; Theiveyanathan, S.; Collopy, J.J.; Marcar, N.E. Enhanced water use efficiency in a mixed Eucalyptus globulus and Acacia mearnsii plantation. For. Ecol. Manag. 2010, 259, 1761–1770. [Google Scholar] [CrossRef]
- Thomas, F.; Bögelein, R.; Werner, W. Interaction between Douglas fir and European beech: Investigations in pure and mixed stands. Forstarchiv 2015, 86, 83–91. [Google Scholar]
- Hendriks, C.; Bianchi, F. Root density and root biomass in pure and mixed forest stands of Douglas-fir and Beech. Neth. J. Agric. Sci. 1995, 43, 321–331. [Google Scholar]
- Manso, R.; Morneau, F.; Ningre, F.; Fortin, M. Effect of climate and intra-and inter-specific competition on diameter increment in beech and oak stands. Forestry 2015, 88, 540–551. [Google Scholar] [CrossRef]
- Forrester, D.I.; Bauhus, J.; Cowie, A.L.; Vanclay, J.K. Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: A review. For. Ecol. Manag. 2006, 233, 211–230. [Google Scholar] [CrossRef] [Green Version]
- Poorter, H.; Niklas, K.J.; Reich, P.B.; Oleksyn, J.; Poot, P.; Mommer, L. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytol. 2012, 193, 30–50. [Google Scholar] [CrossRef] [PubMed]
- Bertness, M.D.; Callaway, R. Positive interactions in communities. Trends Ecol. Evol. 1994, 9, 191–193. [Google Scholar] [CrossRef]
- Tilman, D. The resource-ratio hypothesis of plant succession. Am. Nat. 1985, 125, 827–852. [Google Scholar] [CrossRef]
- Toïgo, M.; Vallet, P.; Perot, T.; Bontemps, J.-D.; Piedallu, C.; Courbaud, B. Overyielding in mixed forests decreases with site productivity. J. Ecol. 2015, 103, 502–512. [Google Scholar] [CrossRef] [Green Version]
- del Río, M.; Sterba, H. Comparing volume growth in pure and mixed stands of Pinus sylvestris and Quercus pyrenaica. Ann. For. Sci. 2009, 66, 1–11. [Google Scholar]
- Pretzsch, H.; Bielak, K.; Block, J.; Bruchwald, A.; Dieler, J.; Ehrhart, H.-P.; Kohnle, U.; Nagel, J.; Spellmann, H.; Zasada, M.; et al. Productivity of mixed versus pure stands of oak (Quercus petraea (Matt.) Liebl. and Quercus robur L.) and European beech (Fagus sylvatica L.) along an ecological gradient. Eur. J. For. Res. 2013, 132, 263–280. [Google Scholar] [CrossRef]
- Forrester, D.I.; Kohnle, U.; Albrecht, A.T.; Bauhus, J. Complementarity in mixed-species stands of Abies alba and Picea abies varies with climate, site quality and stand density. For. Ecol. Manag. 2013, 304, 233–242. [Google Scholar] [CrossRef]
- Jucker, T.; Bouriaud, O.; Avacaritei, D.; Dănilă, I.; Duduman, G.; Valladares, F.; Coomes, D.A. Competition for light and water play contrasting roles in driving diversity-productivity relationships in Iberian forests. J. Ecol. 2014, 102, 1202–1213. [Google Scholar] [CrossRef] [Green Version]
- Thurm, E.A.; Pretzsch, H. Improved productivity and modified tree morphology of mixed versus pure stands of European beech (Fagus sylvatica) and Douglas-fir (Pseudotsuga menziesii) with increasing precipitation and age. Ann. For. Sci. 2016, 73, 1047–1061. [Google Scholar] [CrossRef]
- Pretzsch, H.; Block, J.; Dieler, J.; Dong, P.H.; Kohnle, U.; Nagel, J.; Spellmann, H.; Zingg, A. Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Ann. For. Sci. 2010, 67, 712. [Google Scholar] [CrossRef]
- Pretzsch, H.; Schuetze, G.; Uhl, E. Resistance of European tree species to drought stress in mixed versus pure forests: Evidence of stress release by inter-specific facilitation. Plant Biol. 2013, 15, 483–495. [Google Scholar] [CrossRef] [PubMed]
- del Río, M.; Schütze, G.; Pretzsch, H. Temporal variation of competition and facilitation in mixed species forests in Central Europe. Plant Biol. 2014, 16, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Lebourgeois, F.; Gomez, N.; Pinto, P.; Mérian, P. Mixed stands reduce Abies alba tree-ring sensitivity to summer drought in the Vosges mountains, western Europe. For. Ecol. Manag. 2013, 303, 61–71. [Google Scholar] [CrossRef]
- Condés, S.; Río, M. Climate modifies tree interactions in terms of basal area growth and mortality in monospecific and mixed Fagus sylvatica and Pinus sylvestris forests. Eur. J. For. Res. 2015, 134, 1–14. [Google Scholar] [CrossRef]
- del Río, M.; Condés, S.; Pretzsch, H. Analyzing size-symmetric vs. size-asymmetric and intra- vs. inter-specific competition in beech (Fagus sylvatica L.) mixed stands. For. Ecol. Manag. 2014, 325, 90–98. [Google Scholar] [CrossRef]
- Schwinning, S.; Weiner, J. Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia 1998, 113, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Hara, T. Mode of competition and size-structure dynamics in plant communities. Plant Species Biol. 1993, 8, 75–84. [Google Scholar] [CrossRef]
- Oliver, C.D.; Larson, B.C. Forest Stand Dynamics: Updated Edition; John Wiley and Sons: New York, NY, USA, 1996. [Google Scholar]
- Ryan, M.; Binkley, D.; Fownes, J. Age-related decline in forest productivity. Adv. Ecol. Res. 1997, 27, 213–262. [Google Scholar]
- Jansen, J.J.; Sevenster, J.; Faber, J. Opbrengsttabellen voor Belangrijke Boomsoorten in Nederland; Institute for Forestry and Nature Research: Wageningen, The Netherlands, 1996; p. 202. [Google Scholar]
- Drössler, L.; Agestam, E.; Bielak, K.; Dudzinska, M.; Koricheva, J.; Liziniewicz, M.; Löf, M.; Mason, B.; Pretzsch, H.; Valkonen, S.; et al. Over- and underyielding in time and space in experiments with mixed stands of Scots pine and Norway spruce. Forests 2018, 9, 18. [Google Scholar] [CrossRef]
- Puettmann, K.J.; Wilson, S.M.; Baker, S.C.; Donoso, P.J.; Drössler, L.; Amente, G.; Harvey, B.D.; Knoke, T.K.; Lu, Y.; Nocentini, S.; et al. Silvicultural alternatives to conventional even-aged forest management-what limits global adoption? For. Ecosyst. 2015, 2, 8. [Google Scholar] [CrossRef]
- Den Ouden, J.; Mohren, G. Thematic Collection: FEM Growth and Yield Data; DANS: Wageningen, The Netherlands, 2016. [Google Scholar]
- Forrester, D.I.; Pretzsch, H. Tamm Review: On the strength of evidence when comparing ecosystem functions of mixtures with monocultures. For. Ecol. Manag. 2015, 356, 41–53. [Google Scholar] [CrossRef]
- Pretzsch, H.F.; David, I.; Rotzer, T. Representation of species mixing in forest growth models: A review and perspective. Ecol. Model. 2015, 313, 276–292. [Google Scholar] [CrossRef]
- Hengl, T.; de Jesus, J.M.; Heuvelink, G.B.M.; Gonzalez, M.R.; Kilibarda, M.; Blagotić, A.; Wei, S.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250 m: Global gridded soil information based on machine learning. PLoS ONE 2016, 12, e0169748. [Google Scholar]
- Lu, H. Species Mixing Effects on Forest Productivity in the Netherlands; Wageningen University: Wageningen, The Netherlands, 2017. [Google Scholar]
- Dekker, M.; van Breugel, M.; Sterck, F.J. Effective height development of four co-occurring species in the gap-phase regeneration of Douglas fir monocultures under nature-oriented conversion. For. Ecol. Manag. 2007, 238, 189–198. [Google Scholar] [CrossRef]
- Janse-Ten Klooster, S.H.; Thomas, E.J.; Sterck, F.J. Explaining interspecific differences in sapling growth and shade tolerance in temperate forests. J. Ecol. 2007, 95, 1250–1260. [Google Scholar] [CrossRef] [Green Version]
- Oliver, C.D. Forest organization, management, and policy. In Maintaining Biodiversity in Forest Ecosystems; Hunter, M., Ed.; Cambridge University Press: New York, NY, USA, 1999; pp. 556–596. [Google Scholar]
- Latham, P.A.; Zuuring, H.R.; Coble, D.W. A method for quantifying vertical forest structure. For. Ecol. Manag. 1998, 104, 157–170. [Google Scholar] [CrossRef]
- Pretzsch, H.; del Río, M.; Ammer, C.; Avdagic, A.; Barbeito, I.; Bielak, K.; Brazaitis, G.; Coll, L.; Dirnberger, G.; Fabrika, M.; et al. Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe. Eur. J. For. Res. 2015, 134, 927–947. [Google Scholar] [CrossRef] [Green Version]
- Coates, K.D.; Lilles, E.B.; Astrup, R. Competitive interactions across a soil fertility gradient in a multispecies forest. J. Ecol. 2013, 101, 806–818. [Google Scholar] [CrossRef] [Green Version]
- Cavard, X.; Bergeron, Y.; Chen, H.Y.H.; Paré, D.; Laganière, J.; Brassard, B. Competition and facilitation between tree species change with stand development. Oikos 2011, 120, 1683–1695. [Google Scholar] [CrossRef]
- Baribault, T.W.; Kobe, R.K. Neighbour interactions strengthen with increased soil resources in a northern hardwood forest. J. Ecol. 2011, 99, 1358–1372. [Google Scholar] [CrossRef] [Green Version]
- Trinder, C.J.; Brooker, R.W.; Davidson, H.; Robinson, D. A new hammer to crack an old nut: Interspecific competitive resource capture by plants is regulated by nutrient supply, not climate. PLoS ONE 2012, 7, e29413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coates, K.D.; Canham, C.D.; LePage, P.T. Above-versus below-ground competitive effects and responses of a guild of temperate tree species. J. Ecol. 2009, 97, 118–130. [Google Scholar] [CrossRef]
- Perot, T.; Picard, N. Mixture enhances productivity in a two-species forest: Evidence from a modeling approach. Ecol. Res. 2012, 27, 83–94. [Google Scholar] [CrossRef] [Green Version]
- Weemstra, M. Belowground Uptake Strategies: How Fine-Root Traits Determine Tree Growth; Wageningen University: Wageningen, The Netherlands, 2017. [Google Scholar]
- Hantsch, L.; Bien, S.; Radatz, S.; Braun, U.; Auge, H.; Bruelheide, H. Tree diversity and the role of non-host neighbour tree species in reducing fungal pathogen infestation. J. Ecol. 2014, 102, 1673–1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawud, S.; Vesterdal, L.; Raulund-Rasmussen, K. Mixed-species effects on soil C and N stocks, C/N ratio and pH using a transboundary approach in adjacent common garden Douglas-fir and beech stands. Forests 2017, 8, 95. [Google Scholar] [CrossRef]
- Setiawan, N.N.; Vanhellemont, M.; De Schrijver, A.; Schelfhout, S.; Baeten, L.; Verheyen, K. Mixing effects on litter decomposition rates in a young tree diversity experiment. Acta Oecologica 2016, 70, 79–86. [Google Scholar] [CrossRef]
Species | Number of Plots | Plot Size (ha) | Age Span (years) | Survey Duration (years) | Stand Density (trees/ha) |
---|---|---|---|---|---|
Growth and yield data | |||||
Pure stands | |||||
Douglas-fir | 114 | 0.008–0.290 | 6–130 | 1929–2011 | 63–5781 |
Common beech | 39 | 0.008–0.198 | 16–176 | 1960–1999 | 60–3671 |
Scots pine | 72 | 0.008–0.156 | 16–150 | 1954–1999 | 129–14450 |
Pedunculate oak | 72 | 0.008–0.255 | 9–150 | 1947–2004 | 80–13356 |
Silver birch | 22 | 0.008–0.090 | 7–125 | 1984–1999 | 224–2927 |
Mixed stands | |||||
Fir–beech | 17 | 0.032–0.315 | 11–108 | 1984–2003 | 84–6012 |
Pine–oak | 30 | 0.016–0.400 | 12–160 | 1949–2004 | 152–13789 |
Oak–beech | 18 | 0.008–0.198 | 19–265 | 1984–1999 | 106–2753 |
Oak–birch | 26 | 0.008–0.072 | 10–86 | 1984–1999 | 293–2195 |
NFI data | |||||
Mixed stands | |||||
Oak–birch | 37 | 0.008–0.126 | 5–105 | 2004–2013 | 96–3056 |
Pine–oak | 53 | 0.005–0.102 | 14–124 | 2004–2013 | 167–2674 |
Pine–birch | 55 | 0.008–0.102 | 9–121 | 2004–2013 | 210–3311 |
Douglas-Fir | Common Beech | Scots Pine | Pedunculate Oak | Silver Birch | |
---|---|---|---|---|---|
Douglas-fir | n.a. | n.a. | n.a. | ||
Common beech | +/++ | n.a. | n.a. | ||
Scots pine | n.a. | n.a. | |||
Pedunculate oak | n.a. | −/+ | ++/+ | ||
Silver birch | n.a. | n.a. | +/− (potential) | −/− |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, H.; Mohren, G.M.J.; Del Río, M.; Schelhaas, M.-J.; Bouwman, M.; Sterck, F.J. Species Mixing Effects on Forest Productivity: A Case Study at Stand-, Species- and Tree-Level in the Netherlands. Forests 2018, 9, 713. https://doi.org/10.3390/f9110713
Lu H, Mohren GMJ, Del Río M, Schelhaas M-J, Bouwman M, Sterck FJ. Species Mixing Effects on Forest Productivity: A Case Study at Stand-, Species- and Tree-Level in the Netherlands. Forests. 2018; 9(11):713. https://doi.org/10.3390/f9110713
Chicago/Turabian StyleLu, Huicui, Godefridus M. J. Mohren, Miren Del Río, Mart-Jan Schelhaas, Meike Bouwman, and Frank J. Sterck. 2018. "Species Mixing Effects on Forest Productivity: A Case Study at Stand-, Species- and Tree-Level in the Netherlands" Forests 9, no. 11: 713. https://doi.org/10.3390/f9110713
APA StyleLu, H., Mohren, G. M. J., Del Río, M., Schelhaas, M.-J., Bouwman, M., & Sterck, F. J. (2018). Species Mixing Effects on Forest Productivity: A Case Study at Stand-, Species- and Tree-Level in the Netherlands. Forests, 9(11), 713. https://doi.org/10.3390/f9110713