The Use of qPCR Reveals a High Frequency of Phytophthora quercina in Two Spanish Holm Oak Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sampling
2.2. Phytophthora spp. Isolation
2.3. Culture DNA Extraction, Sequencing, and Statistical Analyses
2.4. Environmental Samples: DNA Extraction and P. cinnamomi and P. quercina qPCRs
3. Results
3.1. Phytophthora spp. Isolation
3.2. Environmental Samples: Hydrolysis Probes—P. cinnamomi and P. quercina qPCRs
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Romane, F.; Terradas, J. Quercus ilex L. Ecosystems: Function, Dynamics and Management; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992; p. 377. ISBN 0-79231-764-5. [Google Scholar]
- Moro, R. Guía de los árboles de España; Omega: Barcelona, Spain, 2007; p. 407. ISBN 8-42821-043-8. [Google Scholar]
- MAGRAMA. Diagnóstico del Sector Forestal Español. Análisis y Prospectiva. Serie Agrinfo/Medioambiente nº 8. Ed. Ministerio de Agricultura, Alimentación y Medio Ambiente. Madrid, Spain, 2014. Available online: https://www.mapa.gob.es/ministerio/pags/Biblioteca/Revistas/pdf_AAYPP%2FAPMA_2014_8.pdf (accessed on 30 August 2016).
- Camilo-Alves, C.S.P.; da Clara, M.I.E.; de Almeida Ribeiro, N.M.C. Decline of Mediterranean oak trees and its association with Phytophthora cinnamomi: A review. Eur. J. For. Res. 2013, 132, 411–432. [Google Scholar] [CrossRef]
- Sena, K.; Crocker, E.; Vincelli, P.; Barton, C. Phytophthora cinnamomi as a driver of forest change: Implications for conservation and management. For. Ecol. Manag. 2018, 409, 799–807. [Google Scholar] [CrossRef]
- Cobos, J.M.; Montoya, R.; Tuset, J.J. New damages to the oak woodlands in Spain—Preliminary evaluation of the possible implication of Phytophthora cinnamomi. In Recent Advances in Studies on Oak Decline, Proceedings of the International Congress Recent Advances in Studies on Oak Decline, Selva di Fasano, Brindisi, Italy, 13–18 Septemper 1992; Luisi, N., Lerario, P., Vannini, A., Eds.; Dipartamento di Patología Vegetóle, Universitá degli Studi: Bari, Italy, 1992; pp. 163–169. [Google Scholar]
- Tuset, J.J.; Hinarejos, C.; Mira, J.L.; Cobos, M. Implicación de Phytophthora cinnamomi Rands en la enfermedad de la seca de encinas y alcornoques. Bol. Sanid. Veg. Plagas 1996, 22, 491–499. [Google Scholar]
- Brasier, C.M. Oak tree mortality in Iberia. Nature 1992, 360, 539. [Google Scholar] [CrossRef]
- Brasier, C.M. Phytophthora cinnamomi and oak decline in southern Europe—Environmental constraints including climate change. Ann. Sci. For. 1996, 53, 347–358. [Google Scholar] [CrossRef]
- Brasier, C.M.; Robredo, F.; Ferraz, J.F.P. Evidence for Phytophthora cinnamomi involvement in Iberian oak decline. Plant Pathol. 1993, 42, 140–145. [Google Scholar] [CrossRef]
- Gallego, F.J.; Perez de Algaba, A.; Fernandez-Escobar, R. Etiology of oak decline in Spain. Eur. J. For. Pathol. 1999, 29, 17–27. [Google Scholar] [CrossRef]
- Sánchez, M.E.; Caetano, P.; Ferraz, J.; Trapero, A. Phytophtora disease of Quercus ilex in south-western Spain. For. Pathol. 2002, 32, 5–18. [Google Scholar] [CrossRef]
- Sánchez, M.E.; Sánchez, J.E.; Navarro, R.M.; Fernández, P.; Trapero, A. Incidencia de la podredumbre radical causada por Phytophthora cinnamomi en masas de Quercus en Andalucía. Bol. Sanid. Veg. Plagas 2003, 29, 87–108. [Google Scholar]
- Sanchez, M.E.; Andicoberry, S.; Trapero, A. Pathogenicity of three Phytophthora spp. causing late seedling rot of Quercus ilex ssp. ballota. For. Pathol. 2005, 35, 115–125. [Google Scholar] [CrossRef]
- Corcobado, T.; Cubera, E.; Pérez-Sierra, A.; Jung, T.; Solla, A. First report of Phytophthora gonapodyides involved in the decline of Quercus ilex in xeric conditions in Spain. New Dis. Rep. 2010, 22, 33. [Google Scholar] [CrossRef]
- Català, S.; Berbegal, M.; Pérez-Sierra, A.; Abad-Campos, P. Metabarcoding and development of new real-time specific assays reveal Phytophthora species diversity in Holm Oak forests in eastern Spain. Plant Pathol. 2017, 66, 115–123. [Google Scholar] [CrossRef]
- Luque, J.; Parladé, J.; Pera, J. Pathogenicity of fungi isolated from Quercus suber in Catalonia (NE Spain). For. Pathol. 2000, 30, 247–263. [Google Scholar] [CrossRef]
- Pérez-Sierra, A.; López-García, C.; León, M.; García-Jiménez, J.; Abad-Campos, P.; Jung, T. Previously unrecorded low-temperature Phytophthora species associated with Quercus decline in a Mediterranean forest in eastern Spain. For. Pathol. 2013, 43, 331–339. [Google Scholar] [CrossRef]
- Jung, T.; Cooke, D.E.L.; Blaschke, H.; Duncan, J.M.; Oßwald, W. Phytophthora quercina sp. nov., causing root rot of European oaks. Mycol. Res. 1999, 103, 785–798. [Google Scholar] [CrossRef]
- Nechwatal, J.; Schlenzig, A.; Jung, T.; Cooke, D.E.L.; Duncan, J.M.; Oßwald, W.F. A combination of baiting and PCR techniques for the detection of Phytophthora quercina and P. citricola in soil samples from oak stands. For. Pathol. 2001, 31, 85–97. [Google Scholar] [CrossRef]
- Balci, Y.; Halmschlager, E. Phytophthora species in oak ecosystems in Turkey and their association with declining oak trees. Plant Pathol. 2003, 52, 694–702. [Google Scholar] [CrossRef]
- Balci, Y.; Balci, S.; MacDonald, W.L.; Gottschalk, K.W. Relative susceptibility of oaks to seven species of Phytophthora isolated from oak forest soils. For. Pathol. 2008, 38, 394–409. [Google Scholar] [CrossRef]
- Jönsson, U.; Jung, T.; Rosengren, U.; Nihlgard, B.; Sonesson, K. Pathogenicity of Swedish isolates of Phytophthora quercina to Quercus robur in two different soils. New Phytol. 2003, 158, 355–364. [Google Scholar] [CrossRef]
- Martín-García, J.; Solla, A.; Corcobado, T.; Siasou, E.; Woodward, S. Influence of temperature on germination of Quercus ilex in Phytophthora cinnamomi, P. gonapodyides, P. quercina and P. psychrophila infested soils. For. Pathol. 2015, 45, 215–223. [Google Scholar] [CrossRef]
- Sánchez, M.E.; Caetano, P.; Romero, M.A.; Navarro, R.M.; Trapero, A. Phytophthora root rot as the main factor of oak decline in southern Spain. In Progress in Research on Phytophthora Diseases of Forest Trees, Proceedings of the Third International IUFRO Working Party S07.02.09, Freising, Germany, 11–18 September 2004; Brasier, C.M., Jung, T., Oßwald, W., Eds.; Forest Research: Farnham, UK, 2006; pp. 149–154. ISBN 0-85538-721-1. [Google Scholar]
- Romero, M.A.; Sánchez, J.E.; Jiménez, J.J.; Belbahri, L.; Trapero, A.; Lefort, F.; Sánchez, M.E. New Pythium taxa causing root rot in Mediterranean Quercus species in southwest Spain and Portugal. J. Phytopathol. 2007, 115, 289–295. [Google Scholar] [CrossRef]
- Jiménez, A.J.; Sánchez, E.J.; Romero, M.A.; Belbahri, L.; Trapero, A.; Lefort, F.; Sánchez, M.E. Pathogenicity of Pythium spiculum and P. sterilum on feeder roots of Quercus rotundifolia. Plant Pathol. 2008, 57, 369. [Google Scholar] [CrossRef]
- Vettraino, A.M.; Barzanti, G.P.; Bianco, M.C.; Ragazzi, A.; Capretti, P.; Paoletti, E.; Vannini, A. Occurrence of Phytophthora species in oak stands in Italy and their association with declining oak trees. For. Pathol. 2002, 32, 19–28. [Google Scholar] [CrossRef]
- Rizzo, D.M.; Garbelotto, M.; Hansen, E.M. Phytophthora ramorum: Integrative research and management of an emerging pathogen in California and Oregon forests. Ann. Rev. Phytopathol. 2005, 43, 309–335. [Google Scholar] [CrossRef] [PubMed]
- Brasier, C.M. The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol. 2008, 57, 792–808. [Google Scholar] [CrossRef] [Green Version]
- Jung, T.; Orlikowski, L.; Henricot, B.; Abad-Campos, P.; Aday, A.G.; Aguín Casal, O.; Bakonyi, J.; Cacciola, S.O.; Cech, T.; Chavarriaga, D.; et al. Widespread Phytophthora infestations in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora diseases. For. Pathol. 2016, 46, 134–163. [Google Scholar] [CrossRef]
- Hullbert, J.M.; Agne, M.C.; Burgess, T.I.; Roets, F.; Wingfield, M.J. Urban environments provide opportunities for early detections of Phytophthora invasions. Biol. Invasions 2017, 19, 3629–3644. [Google Scholar] [CrossRef]
- Denman, S.; Kirk, S.A.; Moralejo, E.; Webber, J.F. Phytophthora ramorum and Phytophthora kernoviae on naturally infected asymptomatic foliage. Bull. OEPP 2009, 39, 105–111. [Google Scholar] [CrossRef]
- Erwin, D.C.; Ribeiro, O.K. Phytophthora Diseases Worldwide; APS Press: St. Paul, MN, USA, 1996; p. 562. ISBN 0-89054-212-0. [Google Scholar]
- Hernández-Lambraño, R.E.; González-Moreno, P.; Sánchez-Agudo, J.A. Environmental factors associated with the spatial distribution of invasive plant pathogens in the Iberian Peninsula: The case of Phytophthora cinnamomi Rands. For. Ecol. Manag. 2018, 419–420, 101–109. [Google Scholar] [CrossRef]
- Jiménez, M.P.; Díaz-Fernández, P.M.; Iglesias, S.; De Tuero, M.; Gil, L. Regiones de procedencia Quercus ilex L.; Instituto Nacional para la Conservación de la Naturaleza: Madrid, Spain, 1996; p. 100. ISBN 84-8014-143-3. [Google Scholar]
- Boada, M.; Puig, J.; Barriocanal, C. The effects of isolation and Natural Park coverage for landrace in situ conservation: And approach from the Montseny mountains (NE Spain). Sustainability 2013, 5, 654–663. [Google Scholar] [CrossRef]
- García, C. Estudio faunístico y ecológico de la familia Phoridae en el P. N. del Montseny. Ph.D Thesis, Universidad de Barcelona, Barcelona, Spain, 2013. [Google Scholar]
- Peñuelas, J.; Boada, M. A global change-induced biome shift in the Montseny mountains (NE Spain). Glob. Chang. Biol. 2003, 9, 131–140. [Google Scholar] [CrossRef]
- Jeffers, S.N.; Martin, S.B. Comparison of two media selective for Phytophthora and Pythium species. Plant Dis. 1986, 70, 1038–1043. [Google Scholar] [CrossRef]
- Jung, T.; Blaschke, H.; Neumann, P. Isolation, identification and pathogenicity of Phytophthora species from declining oak stands. Eur. J. For. Pathol. 1996, 26, 253–272. [Google Scholar] [CrossRef]
- Jung, T.; Blaschke, H.; Oßwald, W. Involvement of soilborne Phytophthora species in Central European oak decline and the effect of site factors on the disease. Plant Pathol. 2000, 49, 706–718. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, S.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Cooke, D.E.L.; Drenth, A.; Duncan, J.M.; Wagels, G.; Brasier, C.M. A Molecular Phylogeny of Phytophthora and Related Oomycetes. Fungal Genet. Biol. 2000, 30, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Kunadiya, M.; White, D.; Dunstan, W.A.; Hardy, G.E.St.J.; Andjic, V.; Burgess, T.I. Pathways to false-positive diagnoses using molecular detection methods; Phytophthora cinnamomi a case study. FEMS Microbiol. Lett. 2017, 364, fnx009. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Shearer, B.L.; Tippett, J.T. Jarrah Dieback: The Dynamics and Management of Phytophthora cinnamomi in the Jarrah (Eucalyptus marginata) Forests of South-Western Australia; Lewis, M., Ed.; Department of Conservation and Land Management: Como, Australia, 1989; ISSN 1032-8106. [Google Scholar]
- AEMET. Available online: http://www.aemet.es/es/ (accessed on 20 May 2016).
- Shearer, B.L.; Shea, S.R. Variation in seasonal population fluctuations of Phytophthora cinnamomi within and between infected Eucalyptus marginata sites of southwestern Australia. For. Ecol. Manag. 1987, 21, 209–230. [Google Scholar] [CrossRef]
- Balci, Y.; Halmschlager, E. Incidence of Phytophthora species in oak forests in Austria and their possible involvement in oak decline. For. Pathol. 2003, 33, 157–174. [Google Scholar] [CrossRef]
- Brasier, C.M.; Hamm, P.B.; Hansen, E.M. Cultural characters, protein patterns and unusual mating behaviour of P. gonapodyides isolates from Britain and North America. Mycol. Res. 1993, 97, 1287–1298. [Google Scholar] [CrossRef]
- Corcobado, T.; Cubera, E.; Moreno, G.; Solla, A. Quercus ilex forests are influenced by annual variations in water table, soil water deficit and fine root loss caused by Phytophthora cinnamomi. Agric. For. Meteorol. 2013, 169, 92–99. [Google Scholar] [CrossRef]
- Hardham, A.R.; Blackman, L.M. Molecular cytology of Phytophthora–plant interactions. Australas. Plant Path. 2010, 39, 29. [Google Scholar] [CrossRef]
- Crone, M.; McComb, J.; O’Brien, P.A.; Hardy, G.E. Survival of Phytophthora cinnamomi as oospores, stromata, and thick-walled chlamydospores in roots of symptomatic and asymptomatic annual and herbaceous perennial plant species. Fungal Biol. 2013, 117, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Crone, M.; McComb, J.; O’Brien, P.A.; Hardy, G.E. Assessment of Australian native annual/herbaceous perennial plant species as asymptomatic or symptomatic hosts of Phytophthora cinnamomi under controlled conditions. For. Pathol. 2013, 43, 245–251. [Google Scholar] [CrossRef]
- Gómez-Aparicio, L.; Ibáñez, B.; Serrano, M.S.; De Vita, P.; Ávila, J.M.; Pérez-Ramos, I.M.; García, L.V.; Sánchez, M.E.; Marañón, T. Spatial patterns of soil pathogens in declining Mediterranean forests: Implications for trees regeneration. New Phytol. 2012, 194, 1014–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrano, M.S.; de Vita, P.; Fernández-Rebollo, P.; Sánchez, M.E. Calcium fertilizers induce soil suppressiveness to Phytophthora cinnamomi root rot of Quercus ilex. Eur. J. Plant Pathol. 2012, 132, 271–279. [Google Scholar] [CrossRef]
- Robin, C.; Desprez-Loustau, M.L. Testing variability in pathogenicity of Phytophthora cinnamomi. Eur. J. Plant Pathol. 1998, 104, 465–475. [Google Scholar] [CrossRef]
- Robin, C.; Desprez-Loustau, M.L.; Capron, G.; Delatour, C. First record of Phytophthora cinnamomi on cork and holm oaks in France and evidence of pathogenicity. Ann. Sci. For. 1998, 55, 869–883. [Google Scholar] [CrossRef]
- Robin, C.; Capron, G.; Desprez-Loustau, M.L. Root infection by Phytophthora cinnamomi in seedlings of three oak species. Plant Pathol. 2001, 50, 708–716. [Google Scholar] [CrossRef]
- Tsao, P.H. Why many Phytophthora root rots and crown rots of tree and horticultural crops remain undetected. Bull. OEPP 1990, 20, 11–17. [Google Scholar] [CrossRef]
- Brasier, C.M.; Cooke, D.E.L.; Duncan, J.M.; Hansen, E.M. Multiple new phenotypic taxa from trees and riparian ecosystems in Phytophthora gonapodyides-P. megasperma ITS Clade 6, which tend to be high-temperature tolerant and either inbreeding or sterile. Mycol. Res. 2003, 107, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Hansen, E.M.; Reeser, P.; Sutton, W.; Brasier, C.M. Redesignation of Phytophthora taxon Pgchlamydo as Phytophthora chlamydospora sp. nov. N. Am. Fungi 2015, 10, 1–14. [Google Scholar]
- Safaiefarahani, B.; Mostowfizadeh-Ghalamfarsa, R.; Hardy, G.E.; Burgess, T.I. Re-evaluation of Phytophthora cryptogea species complex and the description of a new species, Phytophthtora pseudocryptogea sp. nov. Mycol. Prog. 2015, 14, 108. [Google Scholar] [CrossRef]
- Ippolito, A.; Schena, L.; Nigro, F.; Soleti, V.L.; Yaseen, T. Real-time detection of Phytophthora nicotianae and P. citrophthora in citrus roots and soil. Eur. J. Plant Pathol. 2004, 110, 833–843. [Google Scholar] [CrossRef]
- Bonants, P.J.; van Gent-Pelzer, M.P.; Hooftman, R.; Cooke, D.E.L.; Guy, D.C.; Duncan, J.M. A combination of baiting and different PCR formats, including measurement of real-time quantitative fluorescence, for the detection of Phytophthora fragariae in strawberry plants. Eur. J. Plant Pathol. 2004, 110, 689–702. [Google Scholar] [CrossRef]
- Tooley, P.W.; Martin, F.N.M.; Carras, M.M.; Frederick, R.D. Real-time fluorescent Polymerase Chain Reaction detection of Phytophthora ramorum and Phytophthora pseudosyringae using mitochondrial gene regions. Am. Phytopathol. Soc. 2006, 96, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Schena, L.; Hughes, K.J.D.; Cooke, D.E.L. Detection and quantification of Phytophthora ramorum, P. kernoviae, P. citricola and P. quercina in symptomatic leaves by multiplex real-time PCR. Mol. Plant Pathol. 2006, 7, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Schena, L.; Duncan, J.M.; Cooke, D.E.L. Development and application of a PCR-based ‘molecular tool box’ for the identification of Phytophthora species damaging forests and natural ecosystems. Plant Pathol. 2008, 57, 64–75. [Google Scholar] [CrossRef]
- Hughes, K.J.D.; Tomlinson, J.A.; Giltrap, P.M.; Barton, V.; Hobden, E.; Boonham, N.; Lane, C.R. Development of a real-time PCR assay for detection of Phytophthora kernoviae and comparison of this method with a conventional culturing technique. Eur. J. Plant Pathol. 2011, 131, 695–703. [Google Scholar] [CrossRef]
- Than, D.J.; Hughes, K.J.D.; Boonhan, N.; Tomlinson, J.A.; Woodhall, J.W.; Bellgard, S.E. A TaqMan real-time PCR assay for the detection of Phytophthora ‘taxon Agathis’ in soil, pathogen of Kauri in New Zealand. For. Pathol. 2013, 43, 324–330. [Google Scholar] [CrossRef]
- Touseef, H.; Bir, P.S.; Firoz, A. A quantitative real-time PCR based method for the detection of Phytophthora infestans causing Late blight of potato, in infested soil. Saud. J. Biol. Sci. 2014, 21, 380–386. [Google Scholar]
2012 Dehesas | |||
Site | Number of Samples | X Coordinate | Y Coordinate |
1 | 6 | 748324.99 | 4428259.51 |
2 | 6 | 248632.54 | 4460613.6 |
3 | 6 | 752500 | 4418487 |
4 | 6 | 694464.02 | 4431470.91 |
5 | 6 | 752500 | 4418487 |
6 | 6 | 750948.57 | 4437972.39 |
7 | 6 | 742685 | 4456109 |
8 | 6 | 753940.25 | 4450439.88 |
9 | 6 | 248428 | 4459568 |
10 | 6 | 749280 | 4457282 |
2013 Dehesas | |||
Site | Number of Samples | X Coordinate | Y Coordinate |
1 | 6 | 748324.99 | 4428259.51 |
2 | 6 | 248632.54 | 4460613.6 |
3 | 6 | 752500 | 4418487 |
4 | 6 | 694464.02 | 4431470.91 |
5 | 6 | 761398,91 | 4425067.28 |
6 | 2 | 750948.57 | 4437972.39 |
7 | 2 | 742685 | 4456109 |
8 | 2 | 753940.25 | 4450439.88 |
9 | 2 | 248428 | 4459568 |
10 | 2 | 749580 | 4457274 |
11 | 2 | 279799 | 4430500 |
12 | 2 | 285614.18 | 4435261.32 |
13 | 2 | 281973 | 4432507 |
14 | 2 | 724766.4 | 4438845.56 |
15 | 2 | 246007.77 | 4396525.56 |
2013 Montseny Biosphere Reserve (Oak Woodland) | |||
Site | Number of Samples | X Coordinate | Y Coordinate |
MS 2 | 1 | 450134 | 4625428 |
MS 6 | 1 | 458610 | 4621206 |
MS 12 | 1 | 457172 | 4620252 |
MS 13 | 1 | 457197 | 4620078 |
MS 14 | 1 | 455346 | 4619895 |
MS 16 | 1 | 454763 | 4621083 |
MS 18 | 1 | 455161 | 4621632 |
MS 22 | 1 | 455266 | 4618911 |
MS 23 | 1 | 454086 | 4619117 |
MS 24 | 1 | 453979 | 4619403 |
MS 25 | 1 | 452961 | 4620152 |
MS 26 | 1 | 452734 | 4619947 |
MS 27 | 1 | 451398 | 4622040 |
MS 28 | 1 | 450537 | 4622715 |
MS 29 | 1 | 449829 | 4622703 |
Site | Symptomatology | Isolates | qPCR | |||||
---|---|---|---|---|---|---|---|---|
CIN | QUE | |||||||
CAM | CIN | GON | Roots | Soil * | Roots | Soil * | ||
1 | d | 0 | 0 | 1 a | ndt | 0/3 | ndt | 3/3 |
1 | nd | 0 | 0 | 0 | ndt | 2/3 | ndt | 3/3 |
2 | d | 0 | 0 | 0 | ndt | 0/3 | ndt | 1/3 |
2 | nd | 0 | 0 | 0 | ndt | 0/3 | ndt | 1/3 |
3 | d | 0 | 0 | 0 | ndt | 0/3 | ndt | 2/3 |
3 | nd | 0 | 0 | 0 | ndt | 1/3 | ndt | 0/3 |
4 | d | 0 | 0 | 0 | ndt | 0/3 | ndt | 1/3 |
4 | nd | 0 | 0 | 0 | ndt | 0/3 | ndt | 3/3 |
5 | d | 0 | 0 | 0 | ndt | 0/3 | ndt | 2/3 |
5 | nd | 0 | 0 | 0 | ndt | 1/3 | ndt | 1/3 |
6 | d | 0 | 0 | 0 | ndt | 1/3 | ndt | 3/3 |
6 | nd | 0 | 0 | 0 | ndt | 0/3 | ndt | 2/3 |
7 | d | 0 | 0 | 0 | ndt | 0/3 | ndt | 2/3 |
7 | nd | 0 | 0 | 0 | ndt | 0/3 | ndt | 3/3 |
8 | d | 0 | 0 | 0 | ndt | 2/3 | ndt | 2/3 |
8 | nd | 0 | 0 | 0 | ndt | 0/3 | ndt | 3/3 |
9 | d | 0 | 0 | 0 | ndt | 2/3 | ndt | 0/3 |
9 | nd | 1 a | 0 | 0 | ndt | 1/3 | ndt | 2/3 |
10 | d | 0 | 1 a | 0 | ndt | 1/3 | ndt | 3/3 |
10 | nd | 0 | 0 | 0 | ndt | 0/3 | ndt | 3/3 |
Site | Symptomatology | Isolates | qPCR | ||||||
---|---|---|---|---|---|---|---|---|---|
CIN | QUE | ||||||||
CIN | GON | PSC | MEG | Roots * | Soil * | Roots * | Soil * | ||
1 | d | 0 | 1 b | 0 | 0 | 0/3 | 2/3 | 2/3 | 3/3 |
1 | nd | 4 r,b | 8 r,b | 0 | 4 b | 2/3 | 2/3 | 3/3 | 3/3 |
2 | d | 0 | 0 | 0 | 0 | 0/3 | 1/3 | 2/3 | 1/3 |
2 | nd | 0 | 3 b | 0 | 3 b | 1/3 | 2/3 | 1/3 | 3/3 |
3 | d | 4 b | 0 | 0 | 0 | 3/3 | 2/3 | 0/3 | 0/3 |
3 | nd | 0 | 0 | 0 | 0 | 2/3 | 1/3 | 1/3 | 1/3 |
4 | d | 0 | 0 | 0 | 2 b | 0/3 | 2/3 | 3/3 | 3/3 |
4 | nd | 0 | 3 b | 0 | 0 | 0/3 | 1/3 | 2/3 | 3/3 |
5 | d | 3 b | 0 | 0 | 0 | 2/3 | 0/3 | 1/3 | 2/3 |
5 | nd | 2 b | 6 b | 0 | 0 | 1/3 | 1/3 | 3/3 | 3/3 |
6 | d | 0 | 0 | 0 | 0 | − | − | + | − |
6 | nd | 0 | 0 | 0 | 0 | − | − | − | + |
7 | d | 0 | 0 | 0 | 0 | + | + | + | + |
7 | nd | 0 | 0 | 0 | 0 | − | − | + | + |
8 | d | 0 | 0 | 0 | 0 | + | − | − | + |
8 | nd | 0 | 0 | 0 | 0 | + | − | + | + |
9 | d | 0 | 0 | 0 | 0 | − | − | − | + |
9 | nd | 0 | 0 | 0 | 1 b | + | + | + | − |
10 | d | 3 r,b | 0 | 0 | 0 | + | + | + | − |
10 | nd | 0 | 0 | 0 | 0 | − | + | − | − |
11 | d | 1 b | 0 | 0 | 0 | − | + | + | − |
11 | nd | 0 | 0 | 0 | 0 | − | − | + | + |
12 | d | 0 | 0 | 0 | 0 | + | − | − | + |
12 | nd | 0 | 0 | 0 | 0 | + | − | − | + |
13 | d | 0 | 0 | 0 | 0 | + | + | − | + |
13 | nd | 0 | 0 | 0 | 0 | − | − | + | − |
14 | d | 0 | 0 | 0 | 1 b | − | − | − | − |
14 | nd | 0 | 0 | 0 | 0 | − | − | + | + |
15 | d | 5 a,b | 0 | 2 b | 0 | + | + | + | + |
15 | nd | 1 r | 0 | 1 a | 0 | + | − | − | + |
Site | qPCR | |||
---|---|---|---|---|
CIN | QUE | |||
Roots | Soil | Roots | Soil | |
MS 2 | − | + | + | + |
MS 6 | + | + | − | − |
MS 12 | + | + | − | − |
MS 13 | − | − | + | + |
MS 14 | − | − | − | + |
MS 16 | − | − | − | + |
MS 18 | − | − | − | − |
MS 22 | − | − | + | + |
MS 23 | + | − | + | + |
MS 24 | + | + | + | − |
MS 25 | − | − | − | − |
MS 26 | + | + | + | − |
MS 27 | − | − | − | + |
MS 28 | + | − | − | − |
MS 29 | + | − | − | + |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mora-Sala, B.; Berbegal, M.; Abad-Campos, P. The Use of qPCR Reveals a High Frequency of Phytophthora quercina in Two Spanish Holm Oak Areas. Forests 2018, 9, 697. https://doi.org/10.3390/f9110697
Mora-Sala B, Berbegal M, Abad-Campos P. The Use of qPCR Reveals a High Frequency of Phytophthora quercina in Two Spanish Holm Oak Areas. Forests. 2018; 9(11):697. https://doi.org/10.3390/f9110697
Chicago/Turabian StyleMora-Sala, Beatriz, Mónica Berbegal, and Paloma Abad-Campos. 2018. "The Use of qPCR Reveals a High Frequency of Phytophthora quercina in Two Spanish Holm Oak Areas" Forests 9, no. 11: 697. https://doi.org/10.3390/f9110697
APA StyleMora-Sala, B., Berbegal, M., & Abad-Campos, P. (2018). The Use of qPCR Reveals a High Frequency of Phytophthora quercina in Two Spanish Holm Oak Areas. Forests, 9(11), 697. https://doi.org/10.3390/f9110697