Partitioning Forest‐Floor Respiration into Source Based Emissions in a Boreal Forested Bog: Responses to Experimental Drought
Abstract
:1. Introduction
- Partition RFF between the aboveground ground-layer autotrophic respiration (RFF_A_ag), belowground autotrophic respiration of shrubs + herbs (RA_SH_bg) and trees (RA_T_bg), and heterotrophic respiration (RH) across water-table (WT) treatments (control, experimental, drained),
- Evaluate differences in source contributions to RFF along a microtopographic (hummock, hollow) gradient in a boreal forested bog and how these contributions changed in response to WT treatments, and
- Assess the respiration components’ responses to the WT and soil temperature at 5 cm depth (T5) over one growing season.
2. Materials and Methods
2.1. Sites Description and Experimental Design
2.2. CO2 Flux Measurements
2.2.1. Forest Floor Respiration (RFF)
2.2.2. Partitioning Forest Floor Respiration
2.3. Seasonal Modeling
2.4. Statistical Analyses
3. Results
3.1. Controls on Respiration Flux Components
3.2. Measured Respiration Components
3.2.1. Mean Forest Floor Respiration Rate (RFF)
3.2.2. Mean Forest Floor Aboveground Autotrophic Respiration Rate (RFF_A_ag) and Belowground Autotrophic Respiration of Shrubs + Herbs (RA_SH_bg)
3.3. Modeled Respiration Components
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
References
- Page, S.E.; Rieley, J.O.; Banks, C.J. Global and regional importance of the tropical peatland carbon pool. Glob. Chang. Biol. 2011, 17, 798–818. [Google Scholar] [CrossRef]
- Loisel, J.; van Bellen, S.; Pelletier, L.; Talbot, J.; Hugelius, G.; Karran, D.; Yu, Z.; Nichols, J.; Holmquist, J. Insights and issues with estimating northern peatland carbon stocks and fluxes since the last glacial maximum. Earth-Sci. Rev. 2016. [Google Scholar] [CrossRef]
- Strack, M.; Cagampan, J.; Fard, G.H.; Keith, A.; Nugent, K.; Rankin, T.; Robinson, C.; Strachan, I.; Waddington, J.; Xu, B. Controls on plot-scale growing season CO2 and CH4 fluxes in restored peatlands: Do they differ from unrestored and natural sites? Mires Peat 2016, 17. [Google Scholar] [CrossRef]
- Raich, J.W.; Tufekcioglu, A. Vegetation and soil respiration: Correlations and controls. Biogeochemistry 2000, 48, 71–90. [Google Scholar] [CrossRef]
- Tarnocai, C. The effect of climate change on carbon in Canadian peatlands. Glob. Planet. Chang. 2006, 53, 222–232. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Wang, T.; Sun, J.; Shen, Z. Temperature sensitivity of soil respiration in different ecosystems in China. Soil Biol. Biochem. 2009, 41, 1008–1014. [Google Scholar] [CrossRef]
- Hiraishi, T.; Krug, T.; Tanabe, K.; Srivastava, N.; Baasansuren, J.; Fukuda, M.; Troxler, T. IPCC (2014) 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2014. [Google Scholar]
- Ise, T.; Dunn, A.L.; Wofsy, S.C.; Moorcroft, P.R. High sensitivity of peat decomposition to climate change through water-table feedback. Nat. Geosci. 2008, 1, 763–766. [Google Scholar] [CrossRef]
- Cai, T.; Flanagan, L.B.; Syed, K.H. Warmer and drier conditions stimulate respiration more than photosynthesis in a boreal peatland ecosystem: Analysis of automatic chambers and eddy covariance measurements. Plant Cell Environ. 2010, 33, 394–407. [Google Scholar] [CrossRef] [PubMed]
- Roulet, N.; Moore, T.I.M.; Bubier, J.; Lafleur, P. Northern fens: Methane flux and climatic change. Tellus B 1992, 44, 100–105. [Google Scholar] [CrossRef]
- Erwin, K.L. Wetlands and global climate change: The role of wetland restoration in a changing world. Wetl. Ecol. Manag. 2008, 17, 71. [Google Scholar] [CrossRef]
- Clymo, R.S.; Turunen, J.; Tolonen, K. Carbon accumulation in peatland. Oikos 1998, 81, 368–388. [Google Scholar] [CrossRef]
- Nykänen, H.; Alm, J.; Silvola, J.; Tolonen, K.; Martikainen, P.J. Methane fluxes on boreal peatlands of different fertility and the effect of long-term experimental lowering of the water table on flux rates. Glob. Biogeochem. Cycles 1998, 12, 53–69. [Google Scholar] [CrossRef]
- Bubier, J.L.; Bhatia, G.; Moore, T.R.; Roulet, N.T.; Lafleur, P.M. Spatial and temporal variability in growing-season net ecosystem carbon dioxide exchange at a large peatland in Ontario, Canada. Ecosystems 2003, 6, 353–367. [Google Scholar]
- Lafleur, P.M.; Moore, T.R.; Roulet, N.T.; Frolking, S. Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table. Ecosystems 2005, 8, 619–629. [Google Scholar] [CrossRef]
- Strack, M.; Waddington, J.M.; Rochefort, L.; Tuittila, E.S. Response of vegetation and net ecosystem carbon dioxide exchange at different peatland microforms following water table drawdown. J. Geophys. Res. Biogeosci. 2006, 111. [Google Scholar] [CrossRef]
- Munir, T.M.; Perkins, M.; Kaing, E.; Strack, M. Carbon dioxide flux and net primary production of a boreal treed bog: Responses to warming and water-table-lowering simulations of climate change. Biogeosciences 2015, 12, 1091–1111. [Google Scholar] [CrossRef]
- Lee, K.-H.; Jose, S. Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. For. Ecol. Manag. 2003, 185, 263–273. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Bronson, D.; Bladyka, E.; Gower, S.T. A comparison of trenched plot techniques for partitioning soil respiration. Soil Biol. Biochem. 2011, 43, 2108–2114. [Google Scholar] [CrossRef]
- Shaw, C.; Bona, K.; Thompson, D.; Dimitrov, D.; Bhatti, J.; Hilger, A.; Webster, K.; Kurz, W. Canadian Model for Peatlands Version 1.0: Amodel Design Document; Northern Forestry Centre: Edmonton, AB, Canada, 2016. [Google Scholar]
- Ekblad, A.; Hogberg, P. Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia 2001, 127, 305–308. [Google Scholar] [CrossRef]
- Lalonde, R.G.; Prescott, C.E. Partitioning heterotrophic and rhizospheric soil respiration in a mature douglas-fir (pseudotsuga menziesii) forest. Can. J. For. Res. 2007, 37, 1287–1297. [Google Scholar] [CrossRef]
- Vitt, D.H.; Halsey, L.A.; Zoltai, S.C. The bog landforms of continental western Canada in relation to climate and permafrost patterns. Arct. Alp. Res. 1994, 26, 1–13. [Google Scholar] [CrossRef]
- Roulet, N.T.; Moore, T.R. The effect of forestry drainage practices on the emission of methane from northern peatlands. Can. J. For. Res. 1995, 25, 491–499. [Google Scholar] [CrossRef]
- Mäkiranta, P.; Minkkinen, K.; Hytönen, J.; Laine, J. Factors causing temporal and spatial variation in heterotrophic and rhizospheric components of soil respiration in afforested organic soil croplands in Finland. Soil Biol. Biochem. 2008, 40, 1592–1600. [Google Scholar] [CrossRef]
- Mäkiranta, P.; Laiho, R.; Fritze, H.; Hytönen, J.; Laine, J.; Minkkinen, K. Indirect regulation of heterotrophic peat soil respiration by water level via microbial community structure and temperature sensitivity. Soil Biol. Biochem. 2009, 41, 695–703. [Google Scholar] [CrossRef]
- Moore, T.R.; Bubier, J.L.; Frolking, S.E.; Lafleur, P.M.; Roulet, N.T. Plant biomass and production and CO2 exchange in an ombrotrophic bog. J. Ecol. 2002, 90, 25–36. [Google Scholar] [CrossRef]
- Hanson, P.J.; Edwards, N.T.; Garten, C.T.; Andrews, J.A. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 2000, 48, 115–146. [Google Scholar] [CrossRef]
- Murphy, M.; Laiho, R.; Moore, T.R. Effects of water table drawdown on root production and aboveground biomass in a boreal bog. Ecosystems 2009, 12, 1268–1282. [Google Scholar] [CrossRef]
- Murphy, M.T.; Moore, T.R. Linking root production to aboveground plant characteristics and water table in a temperate bog. Plant Soil 2010, 336, 219–231. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Chimner, R.A.; Pypker, T.G.; Hribljan, J.A.; Moore, P.A.; Waddington, J.M. Multi-decadal changes in water table levels alter peatland carbon cycling. Ecosystems 2016, 1–16. [Google Scholar] [CrossRef]
- Rustad, L.; Campbell, J.; Marion, G.; Norby, R.; Mitchell, M.; Hartley, A.; Cornelissen, J.; Gurevitch, J.; GCTE-NEWS. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 2001, 126, 543–562. [Google Scholar]
- Kunkel, V.; Wells, T.; Hancock, G. Soil temperature dynamics at the catchment scale. Geoderma 2016, 273, 32–44. [Google Scholar] [CrossRef]
- Alm, J.; Shurpali, N.J.; Minkkinen, K.; Aro, L.; Hytanen, J.; Lauriia, T.; Lohila, A.; Maijanen, M.; Martikainen, P.J.; Mäkiranta, P. Emission factors and their uncertainty for the exchange of CO2, CH4 and N2O in Finnish managed peatlands. Boreal Environ. Res. 2007, 12, 191–209. [Google Scholar]
- Ojanen, P.; Minkkinen, K.; Penttilä, T. The current greenhouse gas impact of forestry-drained boreal peatlands. For. Ecol. Manag. 2013, 289, 201–208. [Google Scholar] [CrossRef]
- Lemprière, T.C.; Kurz, W.A.; Hogg, E.H.; Schmoll, C.; Rampley, G.J.; Yemshanov, D.; McKenney, D.W.; Gilsenan, R.; Beatch, A.; Blain, D.; et al. Canadian boreal forests and climate change mitigation. Environ. Rev. 2013, 21, 293–321. [Google Scholar] [CrossRef]
- Jandl, R.; Bauhus, J.; Bolte, A.; Schindlbacher, A.; Schüler, S. Effect of climate-adapted forest management on carbon pools and greenhouse gas emissions. Curr. For. Rep. 2015, 1, 1–7. [Google Scholar] [CrossRef]
- Minkkinen, K.; Lame, J.; Shurpali, N.J.; Mäkiranta, P.; Alm, J.; Penttilä, T. Heterotrophic soil respiration in forestry-drained peatlands. Boreal Environ. Res. 2007, 12, 115–126. [Google Scholar]
- Strack, M.; Waddington, J.M.; Lucchese, M.C.; Cagampan, J.P. Moisture controls on CO2 exchange in a sphagnum-dominated peatland: Results from an extreme drought field experiment. Ecohydrology 2009, 2, 454–461. [Google Scholar] [CrossRef]
- Chen, X.; Post, W.M.; Norby, R.J.; Classen, A.T. Modeling soil respiration and variations in source components using a multi-factor global climate change experiment. Clim. Chang. 2011, 107, 459–480. [Google Scholar] [CrossRef]
- Jandl, R.; Rodeghiero, M.; Martinez, C.; Cotrufo, M.F.; Bampa, F.; van Wesemael, B.; Harrison, R.B.; Guerrini, I.A.; deB Richter, D.; Rustad, L. Current status, uncertainty and future needs in soil organic carbon monitoring. Sci. Total Environ. 2014, 468, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Lafleur, P.M.; Roulet, N.T.; Bubier, J.L.; Frolking, S.; Moore, T.R. Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog. Glob. Biogeochem. Cycles 2003, 17. [Google Scholar] [CrossRef]
- Munir, T.M.; Xu, B.; Perkins, M.; Strack, M. Responses of carbon dioxide flux and plant biomass to water table drawdown in a treed peatland in northern Alberta: A climate change perspective. Biogeosciences 2014, 11, 807–820. [Google Scholar] [CrossRef] [Green Version]
- Crow, S.E.; Wieder, R.K. Sources of CO2 emission from a northern peatland: Root respiration, exudation, and decomposition. Ecology 2005, 86, 1825–1834. [Google Scholar] [CrossRef]
- Mokany, K.; Raison, R.J.; Prokushkin, A.S. Critical analysis of root: Shoot ratios in terrestrial biomes. Glob. Chang. Biol. 2006, 12, 84–96. [Google Scholar] [CrossRef]
- Nadelhoffer, K.J.; Raich, J.W. Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology 1992, 73, 1139–1147. [Google Scholar] [CrossRef]
- Klepper, B. Root-shoot relationships. In Plant Roots: The Hidden Half; Dekker, M., Ed.; CRC Press: New York, NY, USA, 1991; pp. 265–286. [Google Scholar]
- Korrensalo, A.; Hajek, T.; Vesala, T.; Mehtatalo, L.; Tuittila, E.S. Variation in photosynthetic properties among bog plants. Botany 2016, 94, 1127–1139. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; Trumbore, S.E. Partitioning sources of soil respiration in boreal black spruce forest using radiocarbon. Glob. Chang. Biol. 2006, 12, 165–176. [Google Scholar] [CrossRef]
- Biasi, C.; Pitkamaki, A.S.; Tavi, N.M.; Koponen, H.T.; Martikainen, P.J. An isotope approach based on 13C pulse-chase labelling vs. The root trenching method to separate heterotrophic and autotrophic respiration in cultivated peatlands. Boreal Environ. Res. 2012, 17, 184–193. [Google Scholar]
- Wang, X.G.; Zhu, B.; Wang, Y.Q.; Zheng, X.H. Field measures of the contribution of root respiration to soil respiration in an alder and cypress mixed plantation by two methods: Trenching method and root biomass regression method. Eur. J. For. Res. 2008, 127, 285–291. [Google Scholar] [CrossRef]
- Environment Canada. Canadian Climate Normals and Averages: 1971–2000. Natlonal Climate Data and Information Archives; Environment Canada: Fredericton, NB, Canada, 1 February 2010.
- DMTI Spatial. DMTI Canmap Postal Geograph (Retrieved from University of Calgary). DMTI Spatial [Producer(s)]: DMTI Spatial Mapping Academic Research Tools (SMART) Program; DMTI Spatial: Markham, ON, Canada, 2014. [Google Scholar]
- John, R. Flora of the Hudson Bay Lowland and Its Postglacial Origins; NRC Research Press: Ottawa, ON, Canada, 2003; p. 237. [Google Scholar]
- Heinemeyer, A.; di Bene, C.; Lloyd, A.R.; Tortorella, D.; Baxter, R.; Huntley, B.; Gelsomino, A.; Ineson, P. Soil respiration: Implications of the plant-soil continuum and respiration chamber collar-insertion depth on measurement and modelling of soil CO2. Eur. J. Soil Sci. 2011, 62, 82–94. [Google Scholar] [CrossRef] [Green Version]
- Lai, D.; Roulet, N.; Humphreys, E.; Moore, T.; Dalva, M. The effect of atmospheric turbulence and chamber deployment period on autochamber CO2 and CH4 flux measurements in an ombrotrophic peatland. Biogeosciences 2012, 9, 3305. [Google Scholar] [CrossRef]
- Koskinen, M.; Minkkinen, K.; Ojanen, P.; Kämäräinen, M.; Laurila, T.; Lohila, A. Measurements of CO2 exchange with an automated chamber system throughout the year: Challenges in measuring night-time respiration on porous peat soil. Biogeosciences 2014, 11, 347. [Google Scholar] [CrossRef] [Green Version]
- Loisel, J.; Gallego-Sala, A.V.; Yu, Z. Global-scale pattern of peatland sphagnum growth driven by photosynthetically active radiation and growing season length. Biogeosciences 2012, 9, 2737–2746. [Google Scholar] [CrossRef] [Green Version]
- Munir, T.M.; Strack, M. Methane flux influenced by experimental water table drawdown and soil warming in a dry boreal continental bog. Ecosystems 2014, 17, 1271–1285. [Google Scholar] [CrossRef]
- Clogg, C.C.; Petkova, E.; Haritou, A. Statistical methods for comparing regression coefficients between models. Am. J. Sociol. 1995, 100, 1261–1293. [Google Scholar] [CrossRef]
- von Arnold, K.; Hånell, B.; Stendahl, J.; Klemedtsson, L. Greenhouse gas fluxes from drained organic forestland in Sweden. Scand. J. For. Res. 2005, 20, 400–411. [Google Scholar] [CrossRef]
- Simola, H.; Pitkänen, A.; Turunen, J. Carbon loss in drained forestry peatlands in Finland, estimated by re-sampling peatlands surveyed in the 1980s. Eur. J. Soil Sci. 2012, 63, 798–807. [Google Scholar] [CrossRef]
- Aurela, M.; Riutta, T.; Laurila, T.; Tuovinen, J.-P.; Vesala, T.; Tuittila, E.-S.; Rinne, J.; Haapanala, S.; Laine, J. CO2 exchange of a sedge fen in southern Finland—The impact of a drought period. Tellus B 2007, 59, 826–837. [Google Scholar] [CrossRef]
- Straková, P.; Anttila, J.; Spetz, P.; Kitunen, V.; Tapanila, T.; Laiho, R. Litter quality and its response to water level drawdown in boreal peatlands at plant species and community level. Plant Soil 2010, 335, 501–520. [Google Scholar] [CrossRef]
- Strack, M.; Waddington, J.M.; Tuittila, E.S. Effect of water table drawdown on northern peatland methane dynamics: Implications for climate change. Glob. Biogeochem. Cycles 2004, 18. [Google Scholar] [CrossRef]
- Blodau, C.; Basiliko, N.; Moore, T.R. Carbon turnover in peatland mesocosms exposed to different water table levels. Biogeochemistry 2004, 67, 331–351. [Google Scholar] [CrossRef]
- Updegraff, K.; Bridgham, S.D.; Pastor, J.; Weishampel, P.; Harth, C. Response of CO2 and CH4 emissions from peatlands to warming and water table manipulation. Ecol. Appl. 2001, 11, 311–326. [Google Scholar]
- Waddington, J.M.; Roulet, N.T. Carbon balance of a boreal patterned peatland. Glob. Chang. Biol. 2000, 6, 87–97. [Google Scholar] [CrossRef]
- Laine, A.; Sottocornola, M.; Kiely, G.; Byrne, K.A.; Wilson, D.; Tuittila, E.-S. Estimating net ecosystem exchange in a patterned ecosystem: Example from blanket bog. Agric. For. Meteorol. 2006, 138, 231–243. [Google Scholar] [CrossRef]
- Laiho, R. Decomposition in peatlands: Reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biol. Biochem. 2006, 38, 2011–2024. [Google Scholar] [CrossRef]
- Riutta, T.; Laine, J.; Tuittila, E.-S. Sensitivity of CO2 exchange of fen ecosystem components to water level variation. Ecosystems 2007, 10, 718–733. [Google Scholar] [CrossRef]
- Ward, S.E.; Ostle, N.J.; Oakley, S.; Quirk, H.; Henrys, P.A.; Bardgett, R.D. Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition. Ecol. Lett. 2013, 16, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Tuittila, E.-S.; Vasander, H.; Laine, J. Sensitivity of c sequestration in reintroduced sphagnum to water-level variation in a cutaway peatland. Restor. Ecol. 2004, 12, 483–493. [Google Scholar] [CrossRef]
- Wan, S.; Norby, R.J.; Ledford, J.; Weltzin, J.F. Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Glob. Chang. Biol. 2007, 13, 2411–2424. [Google Scholar] [CrossRef]
- Fahey, T.J.; Tierney, G.L.; Fitzhugh, R.D.; Wilson, G.F.; Siccama, T.G. Soil respiration and soil carbon balance in a northern hardwood forest ecosystem. Can. J. For. Res. 2005, 35, 244–253. [Google Scholar] [CrossRef]
Site/Microform | Flux | a | b | c | RSE | p | r2 | n |
---|---|---|---|---|---|---|---|---|
Dimensionless | g·CO2·m−2·day−1 | |||||||
Control | ||||||||
Hummock | RFF | 0.52 ± 0.14 | −0.47 ± 0.15 | −19.90 ± 5.1 | 1.09 | <0.001 | 0.80 | 24 |
RFF_A_ag | 0.36 ± 0.10 | −0.45 ± 0.13 | −22.51 ± 5.3 | 1.16 | <0.001 | 0.67 | 24 | |
RA_T_bg | 0.43 ± 0.17 | 0.25 ± 0.17 | 7.88 ± 5.1 | 1.46 | 0.044 | 0.17 | 26 | |
Hollow | RFF | 1.08 ± 0.21 | −0.29 ± 0.14 | −15.74 ± 5.1 | 2.45 | <0.001 | 0.61 | 24 |
RFF_A_ag | 0.85 ± 0.19 | −0.54 ± 0.18 | −24.59 ± 5.5 | 1.55 | <0.001 | 0.75 | 24 | |
RA_T_bg | 0.86 ± 0.23 | −0.21 ± 0.14 | 14.80 ± 5.7 | 2.34 | 0.002 | 0.43 | 22 | |
Experimental | ||||||||
Hummock | RFF | 0.05 ± 0.10 | −0.24 ± 0.11 | −15.67 ± 11.8 | 0.24 | 0.010 | 0.77 | 8 |
RFF_A_ag | 0.96 ± 0.50 | −0.83 ± 0.57 | −86.98 ± 55. 9 | 2.02 | 0.049 | 0.58 | 8 | |
RA_T_bg | 0.91 ± 0.52 | −0.72 ± 0.63 | −75.24 ± 61.5 | 1.24 | 0.032 | 0.83 | 6 | |
Hollow | RFF | 2.59 ± 0.80 | 0.70 ± 0.09 | −15.09 ± 13.2 | 1.59 | 0.058 | 0.55 | 8 |
RFF_A_ag | 0.82 ± 1.60 | −0.27 ± 0.18 | −29.44 ± 10.0 | 2.56 | 0.061 | 0.54 | 8 | |
RA_T_bg | 0.94 ± 0.39 | −0.69 ± 0.87 | −61.08 ± 70.1 | 2.06 | 0.021 | 0.79 | 7 | |
Drained | ||||||||
Hummock | RFF | −0.32 ± 0.16 | −1.40 ± 0.20 | −167.53 ± 30.9 | 3.27 | <0.001 | 0.76 | 24 |
RFF_A_ag | 0.93 ± 0.31 | −0.49 ± 0.18 | −70.88 ± 19.3 | 2.43 | <0.001 | 0.75 | 24 | |
RA_T_bg | 1.69 ± 0.35 | 0.39 ± 0.64 | 34.86 ± 89.9 | 2.41 | <0.001 | 0.79 | 24 | |
Hollow | RFF | 0.79 ± 0.33 | −0.58 ± 0.17 | −61.70 ± 16.9 | 2.29 | <0.001 | 0.70 | 20 |
RFF_A_ag | 0.70 ± 0.23 | −0.32 ± 0.10 | −40.53 ± 10.6 | 2.15 | <0.001 | 0.56 | 24 | |
RA_T_bg | 0.26 ± 0.19 | −1.08 ± 0.42 | −113.87 ± 46.4 | 1.28 | <0.001 | 0.77 | 25 |
Effect | Flux Component | |||||||
---|---|---|---|---|---|---|---|---|
RFF | RFF_A_ag | RA_SH_bg | RA_T_bg | |||||
F | p | F | p | F | p | F | p | |
Site | F2, 7 = 8.1 | 0.015 | F2, 15 = 4.9 | 0.023 | F2, 12 = 25.3 | <0.001 | F2, 12 = 6.4 | 0.012 |
Microform | F1, 7 = 6.9 | 0.033 | F1, 15 = 10.3 | 0.005 | F2, 12 = 44.4 | <0.001 | F2, 27 = 2.5 | 0.123 |
Site × Microform | F2, 7 = 3.5 | 0.090 | F2, 15 = 4.1 | 0.037 | F2, 12 = 35.6 | <0.001 | F2, 12 = 0.9 | 0.437 |
Vascular vegetation | Control | Experimental | Drained | ||||||
---|---|---|---|---|---|---|---|---|---|
Site | Hummock | Hollow | Site | Hummock | Hollow | Site | Hummock | Hollow | |
Shrubs + herbs | |||||||||
BSH_ag | 90 ± 41 | 110 ± 54 | 65 ± 27 | 62 ± 34 | 70 ± 32 | 52 ± 36 | 152 ± 103 | 245 ± 180 | 52 ± 27 |
BSH_bg | 35 ± 16 | 43 ± 21 | 25 ± 10 | 24 ± 1 | 27 ± 0.6 | 20 ± 1 | 59 ± 35 | 95 ± 70 | 20 ± 1 |
Tree | |||||||||
BT_ag | 2142 ± 376 | 1986 | 1964 ± 381 |
Respiration | Effect | F | p |
---|---|---|---|
RFF_A_ag | BSH_ag | F1, 34 = 10.63 | 0.003 |
Site | F2, 34 = 4.09 | 0.026 | |
Microform | F1, 34 = 6.00 | 0.020 | |
BSH_ag × Microform | F1, 34 = 9.20 | 0.005 | |
Site × Microform | F2, 34 = 9.57 | 0.001 | |
BSH_ag × Site × Microform | F4, 34 = 3.93 | 0.010 |
Site | Microform | RFF | RFF_A_ag | RA_SH_bg | RA_T_bg | RH ** |
---|---|---|---|---|---|---|
Control | 255 ± 10.3 a | 38 ± 6.7 a | 37 ± 8.0 a | 58 ± 8.9 a | 122 ± 33.9 a | |
Hummock | 282 ± 4.6 a,b | 42 ± 2.1 a,b | 36 ± 6.2 a,b | 80 ± 3.9 a | 124 ± 16.8 a | |
Hollow | 221 ± 5.8 a | 33 ± 4.6 a,b | 39 ± 1.8 a,b | 30 ± 5.1 b | 119 ± 17.3 a | |
Experimental | 354 ± 15.7 a,b | 45 ± 11.8 a | 40 ± 21.9 a | 117 ± 11.1 a,b | 152 ± 60.5 a | |
Hummock | 361 ± 2.2 a,b | 57 ± 6.5 a,b | 43 ± 6.8 a,b | 101 ± 17.4 a | 160 ± 22.9 a | |
Hollow | 346 ± 13.6 a,b | 31 ± 5.3 a,b | 36 ± 15.1 a,b | 137 ± 13.8 a | 142 ± 37.8 a | |
Drained | 422 ± 21.9 b | 66 ± 23.4 a | 51 ± 22.7 a | 150 ± 9.0 b | 155 ± 77.0 a | |
Hummock | 429 ± 15.7 b | 108 ± 11.2 a | 69 ± 19.9 a | 147 ± 5.2 c | 105 ± 52.0 a | |
Hollow | 415 ± 6.2 b | 21 ± 12.2 b,c | 33 ± 2.8 b,c | 154 ± 3.8 c | 207 ± 25.0 a |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munir, T.M.; Khadka, B.; Xu, B.; Strack, M. Partitioning Forest‐Floor Respiration into Source Based Emissions in a Boreal Forested Bog: Responses to Experimental Drought. Forests 2017, 8, 75. https://doi.org/10.3390/f8030075
Munir TM, Khadka B, Xu B, Strack M. Partitioning Forest‐Floor Respiration into Source Based Emissions in a Boreal Forested Bog: Responses to Experimental Drought. Forests. 2017; 8(3):75. https://doi.org/10.3390/f8030075
Chicago/Turabian StyleMunir, Tariq Muhammad, Bhupesh Khadka, Bin Xu, and Maria Strack. 2017. "Partitioning Forest‐Floor Respiration into Source Based Emissions in a Boreal Forested Bog: Responses to Experimental Drought" Forests 8, no. 3: 75. https://doi.org/10.3390/f8030075
APA StyleMunir, T. M., Khadka, B., Xu, B., & Strack, M. (2017). Partitioning Forest‐Floor Respiration into Source Based Emissions in a Boreal Forested Bog: Responses to Experimental Drought. Forests, 8(3), 75. https://doi.org/10.3390/f8030075