Possibilities and Limitations of Spatially Explicit Site Index Modelling for Spruce Based on National Forest Inventory Data and Digital Maps of Soil and Climate in Bavaria (SE Germany)
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Data
2.2.1. National Forest Inventory Data
Variable | Unit | Min | Max | Mean | SD |
---|---|---|---|---|---|
dbh | cm | 7.8 | 114.6 | 41.2 | 13.2 |
height | m | 5.1 | 48.2 | 28.5 | 6.1 |
age | year | 30 | 150 | 81 | 31 |
2.1.2. Environmental Data
Type | Parameter | Abbreviation | Unit | Min | Max | Mean | SD |
---|---|---|---|---|---|---|---|
Climate | Average temperature during growing season from May to September | T_5to9 | °C | 8.7 | 16.3 | 14.1 | 1.4 |
Precipitation sum during growing season from May to September | P_5to9 | mm | 249 | 1307 | 524 | 213 | |
Growing degree days (threshold: 5 °C) | GDD5 | °C | 541 | 1948 | 1492 | 260 | |
Soil | Available water capacity | AWC | mm | 5 | 284 | 135 | 41 |
Depth gradient of base saturation | DGBS | Categorical variable (Table 3) | |||||
Pool of exchangeable calcium | Ca | kmol/ha | 0.0 | 4771.0 | 479.2 | 565.1 | |
Pool of exchangeable potassium | K | kmol/ha | 0.1 | 108.2 | 15.7 | 14.4 | |
Pool of exchangeable magnesium | Mg | kmol/ha | 0.3 | 2374.0 | 166.1 | 221.9 | |
Base saturation | BS | % | 2 | 100 | 49 | 33 | |
Base saturation of the first 30 cm | BS_30 | % | 2 | 100 | 35 | 34 | |
Pool of nitrogen | N | t/ha | 0.2 | 39.5 | 6.3 | 4.4 | |
Nitrogen deposition (average of NOy + NHx from 2004 until 2007) | N_dep | eq·ha−1·year−1 | 1225 | 2748 | 1927 | 241 | |
Clay content | clay | % | 2 | 77 | 20 | 10 | |
Silt content | silt | % | 4 | 88 | 37 | 14 | |
Sand content | sand | % | 1 | 94 | 43 | 21 | |
Relief | Soil moisture index [18] | SMI | 0.27 | 0.61 | 0.49 | 0.04 | |
Mass balance index [19] | MBI | −2.87 | 2.70 | 0.07 | 0.82 | ||
Climate and soil | Water balance during growing season (Precipitation – evapotranspiration + AWC) | WB | mm | −108 | 1169 | 282 | 257 |
DGBS-Type | Definition | Number of Plots |
---|---|---|
11 | BS > 80% in the whole profile with high stocks of Ca, Mg and K, no soil acidification | 154 |
12 | BS > 80% in the whole profile with high stocks of Ca and Mg and low stocks of K (<400 kg ha−1), no soil acidification | 381 |
2 | high BS with high stocks of Ca, Mg and K, slight acidification in the top soil | 903 |
3 | medium BS with medium stocks of Ca, Mg and K, stronger acidification in the top soil | 888 |
4 | low BS with low stocks of Ca, Mg and K, deep soil acidification, increase of BS > 20% not until 1 m depth | 628 |
5 | low BS (<20%), low stocks of Ca, Mg and K, deep soil acidification | 298 |
2.3. Exploratory Data Analysis
2.3.1. Quantile Regression
2.3.2. Significance Tests
2.3.3. Hypervolumes
2.4. Statistical SI-Model
2.5. Software
3. Results
3.1. Exploratory Data Analysis
3.1.1. Exploring the Environmental Space
Criteria for Separation of Highest and Lowest Growth | Hypervolume Constituted by | ||
---|---|---|---|
T_5to9, WB | T_5to9, WB, Ca, K, Mg, clay | ||
Percentage of | intersection of the hypervolumes of highest and lowest growth | 51 | 15 |
only highest growth on the hypervolume of highest growth | 5 | 19 | |
only lowest growth on the hypervolume of lowest growth | 48 | 85 | |
highest growth on the Bavarian hypervolume | 48 | 7 | |
lowest growth on the Bavarian hypervolume | 86 | 38 |
3.1.2. Effect of Temperature and Water Supply on Height Growth
3.1.3. Additional Modifying Effect of Nutrients
3.2. SI-Model
Variable | Estimate | Standard Error | T-Statistic | p-Value |
---|---|---|---|---|
Intercept | 27.092 | 0.151 | 178.800 | 2 × 10−16 |
BAACS1 | 0.04099 | 0.003 | 11.750 | 2 × 10−16 |
edf | df residuals | F-statistic | p-Value | |
f(age) | 7.655 | 8.503 | 839.360 | 2 × 10−16 |
f(BS) | 3.379 | 4.148 | 20.880 | 2 × 10−16 |
f(MBI) | 5.034 | 6.170 | 22.340 | 2 × 10−16 |
f(SMI) | 3.543 | 4.446 | 5.410 | 1.48 × 10−4 |
f(WB,GDD5) | 9.687 | 11.028 | 33.280 | 2 × 10−16 |
Adjusted R2 | 0.652 | |||
Relative RMSPE (crossvalidation) | 0.976 |
4. Discussion
4.1. Confirmation of the Ecological Hypotheses
4.1.1. Large-Scale Pattern of Tree Growth in Bavaria
4.1.2. Additional Modifying Effect of Nutrients
4.2. SI-Model
4.3. Limitations of SI Predictions
4.3.1. Missing Factors Influencing Growth
4.3.2. Quality of the Database
5. Conclusions and Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Nothdurft, A.; Wolf, T.; Ringeler, A.; Böhner, J.; Saborowski, J. Spatio-temporal prediction of site index based on forest inventories and climate change scenarios. For. Ecol. Manag. 2012, 279, 97–111. [Google Scholar] [CrossRef]
- Albert, M.; Schmidt, M. Climate-sensitive modelling of site-productivity relationships for Norway spruce (Picea abies L. Karst) and common beech (Fagus sylvatica L.). For. Ecol. Manag. 2010, 259, 739–749. [Google Scholar] [CrossRef]
- McKenney, D.; Pedlar, J. Spatial models of site index based on climate and soil properties for two boreal tree species in Ontario, Canada. For. Ecol. Manag. 2003, 175, 497–507. [Google Scholar] [CrossRef]
- Chen, H.Y.H.; Krestov, P.V.; Klinka, K. Trembling aspen site index in relation to environmental measures of site quality at two spatial scales. Can. J. For. Res. 2002, 32, 112–119. [Google Scholar] [CrossRef]
- Kahn, M. Quasikausale Modellierung des Standort-Leistungs-Bezuges als Voraussetzung zum Aufbau flexibler Mischbestandsmodelle. Forstwiss. Cent. 1995, 114, 175–187. [Google Scholar] [CrossRef]
- Kramer, H. Waldwachstumslehre. Ökologische und anthropogene Einflüsse auf das Wachstum des Waldes, seine Massen- und Wertleistung und die Bestandessicherheit; Verlag Paul Parey: Hamburg, Berlin, Germany, 1988. [Google Scholar]
- Nagel, J.; Spellmann, H.; Pretzsch, H. Zum Informationspotenzial langfristiger forstlicher Versuchsflächen und periodischer Waldinventuren für die waldwachstumskundliche Forschung. Allg. Forst Jagdztg. 2012, 183, 111–116. [Google Scholar]
- Sharma, R.P.; Brunner, A.; Eid, T.; Oyen, B.H. Modelling dominant height growth from national forest inventory individual tree data with short time series and large age errors. For. Ecol. Manag. 2011, 262, 2162–2175. [Google Scholar] [CrossRef]
- Seynave, I.; Gégout, J.C.; Hervé, J.C.; Dhôte, J.F.; Drapier, J.; Bruno, É.; Dumé, G. Picea abies site index prediction by environmental factors and understorey vegetation: A two-scale approach based on survey databases. Can. J. For. Res. 2005, 35, 1669–1678. [Google Scholar]
- Schmidt, M. Ein standortsensitives, longitudinales Höhen-Durchmesser-Modell als eine Lösung für das Standort-Leistungs-Problem in Deutschland. Tagungsband der DVFFA—Sektion Ertragskunde, Körbecke am Möhnesee, NRW: North Rhine-Westphalia, Germany, May 2010; 131–152. [Google Scholar]
- Wenk, G.; Antanaitis, V.; Smelko, S. Waldertragslehre; Deutscher Landwirtschaftsverlag: Berlin, Germany, 1990. [Google Scholar]
- BMELV. Bundeswaldinventur 2—Website des Bundesministeriums für Ernährung, Landwirtschaft und Verbraucherschutz zu Grundlagen und Ergebnissen der Bundeswaldinventur 2 in Deutschland. Available online: http://www.bundeswaldinventur.de (accessed on 8 January 2014).
- Assmann, E. Waldertragskunde. Organische Produktion, Struktur, Zuwachs und Ertrag von Waldbeständen; BLV Verlagsgesellschaft: München, Germany, 1961. [Google Scholar]
- Zimmermann, L.; Rötzer, T.; Hera, U.; Maier, H.; Schulz, C.; Kölling, C. Konzept zur Erstellung neuer hochaufgelöster Klimakarten für die Wälder Bayerns als Bestandteil eines forstlichen Standortinformationssystems. In Proceedings zur 6. Fachtagung BIOMET des Fachausschusses Biometeorologie der Deutschen Meteorologischen Gesellschaft e.V, Berichte des Meteorologischen Institutes der Universität Freiburg, Freiburg, Germany, March 2007; pp. 153–159.
- Hera, U.; Rötzer, T.; Zimmermann, L.; Schulz, C.; Maier, H.; Weber, H.; Kölling, C. Klima en detail. LWF Aktuell 2013, 86, 34–37. [Google Scholar]
- Beck, J.; Kölling, C. Das bayerische Standortinformationssystem—Das neue Standortinformationssystem mit seinen zahlreichen Themenkarten ist ein wichtiges Hilfsmittel für die Beratung der Waldbesitzer. LWF Aktuell 2013, 94, 4–7. [Google Scholar]
- Häring, T.; Dietz, E.; Osenstetter, S.; Koschitzki, T.; Schröder, B. Spatial disaggregation of complex soil map units: A decision-tree based approach in Bavarian forest soils. Geoderma 2012, 185–186, 37–47. [Google Scholar] [CrossRef]
- Bock, M.; Köthe, R. Predicting the depth of hydromorphic Soil Characteristics influenced by Ground Water. In SAGA—Seconds Out; Böhner, J., Blaschke, T., Monatanarella, L., Eds.; Hamburger Beiträge zur Physischen Geographie und Landschaftsökologie 19: Hamburg, Germany, 2008; pp. 13–22. [Google Scholar]
- Möller, M.; Volk, M.; Friedrich, K.; Lymburner, L. Placing soil-genesis and transport processes into a landscape context: A multiscale terrain-analysis approach. J. Plant Nutr. Soil Sci. 2008, 171, 419–430. [Google Scholar] [CrossRef]
- Röhle, H. Änderung von Bonität und Ertragsniveau in südbayerischen Fichtenbeständen. Allg. Forst Jagdztg. 1997, 168, 110–114. [Google Scholar]
- Blonder, B.; Lamanna, C.; Violle, C.; Enquist, B.J. The n-dimensional hypervolume. Glob. Ecol. Biogeogr. 2014, 23, 595–609. [Google Scholar] [CrossRef]
- Marra, G.; Wood, S. Practical variable selection for generalized additive models. Comput. Stat. Data Anal. 2011, 55, 2372–2387. [Google Scholar] [CrossRef]
- Maindonald, J.; Braun, J. Data Analysis and Graphics Using R; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef] [PubMed]
- Mellert, K.H.; Ewald, J. Nutrient limitation and site-related growth potential of Norway spruce (Picea abies L. Karst) in the Bavarian Alps. Eur. J. For. Res. 2014, 133, 433–451. [Google Scholar] [CrossRef]
- Klemmt, H.-J. Standortabhängige Ableitung der Höhenwuchsleistung aus Forstinventurdaten mit Hilfe von Data-Mining-Methoden. Grundlage für die Regionale, Standortbezogene Feinjustierung des forstlichen Wuchsmodells SILVA. Ph.D. Thesis, Technische Universität München, Deutschland, Germany, 2007. [Google Scholar]
- Roloff, A.; Weisgerber, H.; Lang, U.; Stimm, B. Bäume Mitteleuropas; WILEY-VCH Verlag: Weinheim, Germany, 2010. [Google Scholar]
- Bergh, J.; Linder, S.; Lundmark, T.; Elfving, B. The effect of water and nutrient availability on the productivity of Norway spruce in northern and southern Sweden. For. Ecol. Manag. 1999, 119, 51–62. [Google Scholar] [CrossRef]
- Bergh, J.; Linder, S.; Bergström, J. Potential production of Norway spruce in Sweden. For. Ecol. Manag. 2005, 204, 1–10. [Google Scholar] [CrossRef]
- Schubert, A.; Falk, W.; Stetter, U. BZE II—Waldböden in Bayern. Bodenzustandsbericht 2014, in press. [Google Scholar]
- Kölling, C. Ordination von Waldökosystemen nach Stoffkonzentrationen der Lösungsphase und bodenchemischen Tiefengradienten. J. Plant Nutr. Soil Sci. 1999, 162, 89–95. [Google Scholar]
- Rehfuess, K.E. Waldböden; Parey: Hamburg, Germany, 1990. [Google Scholar]
- Pretzsch, H. Grundlagen der Waldwachstumsforschung; Parey Buchverlag: Berlin, Germany, 2002. [Google Scholar]
- Moosmayer, H.-U.; Schöpfer, W. Beziehungen zwischen Standortfaktoren und Wuchsleistung der Fichte. Allg. Forst Jagdztg. 1972, 143, 203–215. [Google Scholar]
- Anders, S. Modelle der ökofaktorabhängigen Stoffproduktion gleichaltriger Baumholzreinbestände von Kiefer und Buche. Ph.D. Thesis, Technische Universität Dresden, Dresden, Germany, 1988. [Google Scholar]
- Rötzer, T.; Seifert, T.; Gayler, S.; Priesack, E.; Pretzsch, H. Effects of stress and defence allocation on tree growth—Simulation results at the individual and stand level. In Growth and Defence in Plants; Matyssek, R., Schnyder, H., Oßwald, W., Ernst, D., Munch, C., Pretzsch, H., Eds.; Springer-Verlag: Berlin Heidelberg, Germany, 2012; pp. 401–432. [Google Scholar]
- Pretzsch, H.; Dieler, J. The dependency of the size-growth relationship of Norway spruce (Picea abies L. Karst) and European beech (Fagus sylvatica L.) in forest stands on long-term site conditions, drought events, and ozone stress. Trees 2011, 25, 355–369. [Google Scholar] [CrossRef]
- Pretzsch, H.; Dieler, J.; Rötzer, T. Principles of growth partitioning between trees in forest stands under stress. In Growth and Defence in Plants; Matyssek, R., Schnyder, H., Oßwald, W., Ernst, D., Munch, C., Pretzsch, H., Eds.; Springer-Verlag: Berlin Heidelberg, Germany, 2012; pp. 311–329. [Google Scholar]
- Pretzsch, H.; Schütze, G.; Uhl, E. Resistance of European tree species to drought stress in mixed versus pure forests: Evidence of stress release by inter-specific facilitation. Plant Biol. J. 2013, 15, 483–495. [Google Scholar] [CrossRef]
- Müller-Starck, G.; Baradat, Ph.; Bergmann, F. Genetic variation within European tree species. New For. 1992, 6, 23–47. [Google Scholar] [CrossRef]
- Konnert, M. Genetic variation of Picea abies in southern Germany as determined using isozyme and STS markers. Dendrobiology 2009, 61, 131–136. [Google Scholar]
- Medlyn, B.; Duursma, R.; Zeppel, M. Forest productivity under climate change: A checklist for evaluating model studies. WIREs Clim. Chang. 2011, 2, 332–355. [Google Scholar] [CrossRef]
- Prietzel, J.; Rehfuess, K.E.; Stetter, U.; Pretzsch, H. Changes of soil chemistry, stand nutrition, and stand growth at two Scots pine (Pinus sylvestris L.) sites in Central Europe during 40 years after fertilization, liming, and lupine introduction. Eur. J. For. Res. 2008, 127, 43–61. [Google Scholar] [CrossRef]
- Stevenson, F.J.; Cole, M.A. Cycles of Soil: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients; John Wiley & Sibs: Hoboken, NJ, USA, 1999. [Google Scholar]
- Bayerisches Staatsministerium für Ernährung, Landwirtschaft und Forsten. Der Wald in Oberfranken; Bayerisches Staatsministerium für Ernährung, Landwirtschaft und Forsten: Munich, Germany, 1994. [Google Scholar]
- Zang, C.; Rothe, A. Effect of nutrient removal on radial growth of Pinus sylvestris and Quercus petraea in Southern Germany. Ann. For. Sci. 2013, 70, 143–149. [Google Scholar] [CrossRef]
- Skovsgaard, J.; Vanclay, J.K. Forest site productivity: A review of spatial and temporal variability in natural site conditions. Forestry 2013, 86, 1–11. [Google Scholar] [CrossRef]
- Rötzer, T.; Dieler, J.; Mette, T.; Moshammer, R.; Pretzsch, H. Productivity and carbon dynamics in managed Central European forests depending on site conditions and thinning regimes. Forestry 2010, 83, 483–495. [Google Scholar] [CrossRef]
- Pommerening, A. Eine Analyse neuer Ansätze zur Bestandesinventur in strukturreichen Wäldern. Ph.D. Thesis, Georg-August-Universität Göttingen, Göttingen, Germany, 1997. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brandl, S.; Falk, W.; Klemmt, H.-J.; Stricker, G.; Bender, A.; Rötzer, T.; Pretzsch, H. Possibilities and Limitations of Spatially Explicit Site Index Modelling for Spruce Based on National Forest Inventory Data and Digital Maps of Soil and Climate in Bavaria (SE Germany). Forests 2014, 5, 2626-2646. https://doi.org/10.3390/f5112626
Brandl S, Falk W, Klemmt H-J, Stricker G, Bender A, Rötzer T, Pretzsch H. Possibilities and Limitations of Spatially Explicit Site Index Modelling for Spruce Based on National Forest Inventory Data and Digital Maps of Soil and Climate in Bavaria (SE Germany). Forests. 2014; 5(11):2626-2646. https://doi.org/10.3390/f5112626
Chicago/Turabian StyleBrandl, Susanne, Wolfgang Falk, Hans-Joachim Klemmt, Georg Stricker, Andreas Bender, Thomas Rötzer, and Hans Pretzsch. 2014. "Possibilities and Limitations of Spatially Explicit Site Index Modelling for Spruce Based on National Forest Inventory Data and Digital Maps of Soil and Climate in Bavaria (SE Germany)" Forests 5, no. 11: 2626-2646. https://doi.org/10.3390/f5112626
APA StyleBrandl, S., Falk, W., Klemmt, H.-J., Stricker, G., Bender, A., Rötzer, T., & Pretzsch, H. (2014). Possibilities and Limitations of Spatially Explicit Site Index Modelling for Spruce Based on National Forest Inventory Data and Digital Maps of Soil and Climate in Bavaria (SE Germany). Forests, 5(11), 2626-2646. https://doi.org/10.3390/f5112626