Effect of Slope Gradient and Litter on Soil Moisture Content in Temperate Deciduous Broadleaf Forest
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Environmental Factors
2.3. Rainfall Event
2.4. Plant Phenology
2.5. Leaf Area Index Estimations
2.6. Data Analysis
3. Results
3.1. Division of Seasons
3.2. Rainfall and SMC
3.3. Seasonal Characteristics of Soil Moisture Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SMC | Soil moisture content |
DBH | Diameter at breast height |
PPFD | Photosynthetic photon flux density |
LAI | Leaf area index |
DOY | Day of year |
F | Foliage season |
NF | Non-foliage season |
Southwest | Southwestern slope |
References
- Kardol, P.; Cregger, M.A.; Campany, C.E.; Classen, A.T. Soil ecosystem functioning under climate change: Plant species and community effects. Ecology 2010, 91, 767–781. [Google Scholar] [CrossRef] [PubMed]
- Manzoni, S.; Ahmed, M.H.; Porporato, A. Ecohydrological and Stoichiometric Controls on Soil Carbon and Nitrogen Dynamics in Drylands. In Dryland Ecohydrology; D’Odorico, P., Porporato, A., Wilkinson Runyan, C., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 279–307. ISBN 978-3-030-23268-9. [Google Scholar]
- D’Odorico, P.; Laio, F.; Porporato, A.; Rodriguez-Iturbe, I. Hydrologic controls on soil carbon and nitrogen cycles. II. A case study. Adv. Water Resour. 2003, 26, 59–70. [Google Scholar] [CrossRef]
- Bell, C.W.; Tissue, D.T.; Loik, M.E.; Wallenstein, M.D.; Acosta-Martinez, V.; Erickson, R.A.; Zak, J.C. Soil microbial and nutrient responses to 7 years of seasonally altered precipitation in a Chihuahuan Desert grassland. Glob. Change Biol. 2014, 20, 1657–1673. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Wang, S.; Bai, X.; Luo, G.; Wu, L.; Cao, Y.; Li, H.; Li, C.; Yang, Y.; Hu, Z.; et al. Variation trend of global soil moisture and its cause analysis. Ecol. Indic. 2020, 110, 105939. [Google Scholar] [CrossRef]
- Cook, B.I.; Mankin, J.S.; Anchukaitis, K.J. Climate change and drought: From past to future. Curr. Clim. Change Rep. 2018, 4, 164–179. [Google Scholar] [CrossRef]
- Wang, X.; Luo, M.; Song, F.; Wu, S.; Chen, Y.D.; Zhang, W. Precipitation seasonality amplifies as Earth warms. Geophys. Res. Lett. 2024, 51, e2024GL109132. [Google Scholar] [CrossRef]
- Azam, M.; Maeng, S.J.; Kim, H.S.; Lee, S.W.; Lee, J.E. Spatial and temporal trend analysis of precipitation and drought in South Korea. Water 2018, 10, 765. [Google Scholar] [CrossRef]
- Cao, D.; Zhang, J.; Han, J.; Zhang, T.; Yang, S.; Wang, J.; Prodhan, F.A.; Yao, F. Projected increases in global terrestrial net primary productivity loss caused by drought under climate change. Earth’s Future 2022, 10, e2022EF002681. [Google Scholar] [CrossRef]
- Yang, R.; Wang, F.; Tang, X.; Cui, J.; Wang, G.; Guo, L.; Zhang, H. Quantification of Soil Water Dynamics Response to Rainfall in Forested Hillslope Based on Soil Water Potential Measurement. Forests 2025, 16, 75. [Google Scholar] [CrossRef]
- Sehler, R.; Li, J.; Reager, J.T.; Ye, H. Investigating relationship between soil moisture and precipitation globally using remote sensing observations. J. Contemp. Water Res. Educ. 2019, 168, 106–118. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, Y.; Du, Y.; Li, Z.; Wang, T. Estimation of spatial distribution of soil moisture on steep hillslopes by state-space approach (SSA). Sci. Total Environ. 2024, 914, 169973. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, S.; Fu, Z.; Wang, K.; Chen, H. Characterizing rapid infiltration processes on complex hillslopes: Insights from soil moisture response to rainfall events. J. Hydrol. 2024, 644, 132110. [Google Scholar] [CrossRef]
- Rains, M.C.; Mount, J.F.; Larsen, E.W. Simulated changes in shallow groundwater and vegetation distributions under different reservoir operations scenarios. Ecol. Appl. 2004, 14, 192–207. [Google Scholar] [CrossRef][Green Version]
- Lowry, C.S.; Loheide, S.P., II; Moore, C.E.; Lundquist, J.D. Groundwater controls on vegetation composition and patterning in mountain meadows. Water Resour. Res. 2011, 47, W00J11. [Google Scholar] [CrossRef]
- Zhao, Y.-I.; Goldberg, S.D.; Xu, J.-C.; Harrison, R.D. Spatial and seasonal variation in soil respiration along a slope in a rubber plantation and a natural forest in Xishuangbanna, Southwest China. J. Mt. Sci. 2018, 15, 695–707. [Google Scholar] [CrossRef]
- Zhu, D.; Zhou, Y.; Hui, D. Altitudinal variation of soil extracellular enzyme activity in a subtropical evergreen broad-leaved forest. BMC Microbiol. 2025, 25, 428. [Google Scholar] [CrossRef]
- Dai, L.; Fu, R.; Guo, X.; Du, Y.; Zhang, F.; Cao, G. Soil moisture variations in response to precipitation across different vegetation types on the northeastern Qinghai-Tibet plateau. Front. Plant Sci. 2022, 13, 854152. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Pan, C. Hydrological responses to litter density on runoff-infiltration patterns and water conservation in Pinus tabuliformis plantation. J. Hydrol. 2023, 619, 129293. [Google Scholar] [CrossRef]
- Guo, X.; Fu, Q.; Hang, Y.; Lu, H.; Gao, F.; Si, J. Spatial variability of soil moisture in relation to land use types and topographic features on hillslopes in the black soil (Mollisols) area of Northeast China. Sustainability 2020, 12, 3552. [Google Scholar] [CrossRef]
- Li, L.; Wu, D.; Wang, T.; Wang, Y. Effect of topography on spatiotemporal patterns of soil moisture in a mountainous region of Northwest China. Geoderma Reg. 2022, 28, e00456. [Google Scholar] [CrossRef]
- Varga, C.; Csiszér, L. The influence of slope aspect on soil moisture. Acta Univ. Sapientiae Agric. Environ. 2020, 12, 82–93. [Google Scholar] [CrossRef]
- Takagi, K.; Lin, H.S. Changing controls of soil moisture spatial organization in the Shale Hills Catchment. Geoderma 2012, 173–174, 289–302. [Google Scholar] [CrossRef]
- Zhang, Q.-P.; Wang, J.; Gu, H.-L.; Zhang, Z.-G.; Wang, Q. Effects of continuous slope gradient on the dominance characteristics of plant functional groups and plant diversity in alpine meadows. Sustainability 2018, 10, 4805. [Google Scholar] [CrossRef]
- Kang, S.; Doh, S.; Lee, D.; Lee, D.; Jin, V.L.; Kimball, J.S. Topographic and climatic controls on soil respiration in six temperate mixed-hardwood forest slopes, Korea. Glob. Change Biol. 2003, 9, 1427–1437. [Google Scholar] [CrossRef]
- Cervarolo, G.; Mendicino, G.; Senatore, A. Coupled vegetation and soil moisture dynamics modeling in heterogeneous and sloping terrains. Vadose Zone J. 2011, 10, 206–225. [Google Scholar] [CrossRef]
- Zhao, L.; Meng, P.; Zhang, J.; Zhang, J.; Sun, S.; He, C. Effect of slopes on rainfall interception by leaf litter under simulated rainfall conditions. Hydrol. Process. 2022, 36, e14659. [Google Scholar] [CrossRef]
- Han, Z.; Li, K.; Fang, Q.; Fan, C.; Zhao, L. Rainfall interception by leaf litters: What happens with fallen leaves of different types and mixing degrees under simulated rainfall? J. Hydrol. 2024, 637, 131390. [Google Scholar] [CrossRef]
- Zhao, L.; Hou, R.; Fang, Q. Differences in interception storage capacities of undecomposed broad-leaf and needle-leaf litter under simulated rainfall conditions. For. Ecol. Manag. 2019, 446, 135–142. [Google Scholar] [CrossRef]
- Lee, J.-S. Effect of micro-environment in ridge and southern slope on soil respiration in Quercus mongolica forest. J. Ecol. Environ. 2018, 42, 26. [Google Scholar] [CrossRef]
- Lee, D.; Yoo, G.; Oh, S.; Shim, J.H.; Kang, S. Significance of aspect and understory type to leaf litter redistribution in a temperate hardwood forest. Korean J. Biol. Sci. 1999, 3, 143–147. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Q.; Qiao, Y.; Zhai, D.; Jiang, L.; Liang, G.; Sun, X.; Wei, N.; Wang, X.; Xia, J. Relative contributions of biotic and abiotic factors to the spatial variation of litter stock in a mature subtropical forest. J. Plant Ecol. 2019, 12, 769–780. [Google Scholar] [CrossRef]
- Hou, D.; He, W.; Liu, C.; Qiao, X.; Guo, K. Litter accumulation alters the abiotic environment and drives community successional changes in two fenced grasslands in Inner Mongolia. Ecol. Evol. 2019, 9, 9214–9224. [Google Scholar] [CrossRef]
- Ma, Z.; Li, L.; Zhou, Q.; Hou, F. Litter manipulation enhances plant community heterogeneity via distinct mechanisms: The role of distribution patterns of plant functional composition and niche breadth variability. J. Environ. Manag. 2022, 320, 115877. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, D.; Liu, Q.; Xing, X.; Liu, B.; Jin, S.; Tigabu, M. Meta-analysis of effects of forest litter on seedling establishment. Forests 2022, 13, 644. [Google Scholar] [CrossRef]
- Won, H.-Y.; Lee, Y.-S.; Lee, J.-S.; Lee, I.-H. Correlation between litter decomposition rate of Quercus mongolica leaf and microclimatic factors at Mt. Jeombongsan. Korean J. Environ. Biol. 2022, 40, 455–463. [Google Scholar] [CrossRef]
- Lee, J.-H.; Yu, Y.-J.; Kwon, Y.; Lee, J.-S. Analysis of the interactive effects of environmental factors and seasonal variations on soil respiration in Quercus mongolica forests. Korean J. Ecol. Environ. 2024, 57, 303–314. [Google Scholar] [CrossRef]
- Park, J.S.; Joo, S.J.; Lee, J.; Seo, D.; Kim, H.S.; Jeon, J.; Yun, C.W.; Lee, J.E.; Choi, S.-W.; Lee, J.-Y. Long-term ecological monitoring in South Korea: Progress and perspectives. J. Ecol. Environ. 2023, 47, 26. [Google Scholar] [CrossRef]
- Walter, H. General Section. In Vegetation of the Earth and Ecological Systems of the Geo-Biosphere, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 1985; pp. 19–38. ISBN 978-3-642-96859-4. [Google Scholar]
- Cho, E.-S.; Yang, G.-S.; Kim, Y.-S.; Cho, D.-G. Community structure and growth rate of Korean Quercus mongolica forests by vegetation climate zone. Sustainability 2023, 15, 6465. [Google Scholar] [CrossRef]
- Jeong, H.M.; Jang, I.; Hong, S. Relationship between aboveground biomass and measures of structure and species diversity in Quercus mongolica-dominated forest, Mt. Jeombong. Korean J. Environ. Ecol. 2016, 30, 1022–1031. [Google Scholar] [CrossRef]
- Ivanov, V.Y.; Fatichi, S.; Jenerette, G.D.; Espeleta, J.F.; Troch, P.A.; Huxman, T.E. Hysteresis of soil moisture spatial heterogeneity and the “homogenizing” effect of vegetation. Water Resour. Res. 2010, 46, W09521. [Google Scholar] [CrossRef]
- Zhao, Y.; Meng, X.; Qi, T.; Li, Y.; Chen, G.; Yue, D.; Qing, F. AI-based rainfall prediction model for debris flows. Eng. Geol. 2022, 296, 106456. [Google Scholar] [CrossRef]
- Jiang, Z.; Fan, X.; Subramanian, S.S.; Yang, F.; Tang, R.; Xu, Q.; Huang, R. Probabilistic rainfall thresholds for debris flows occurred after the Wenchuan earthquake using a Bayesian technique. Eng. Geol. 2021, 280, 105965. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Q.; Guo, L.; Yi, J.; Lin, H.; Zhu, Q.; Fan, B.; Zhang, H. Influence of canopy and topographic position on soil moisture response to rainfall in a hilly catchment of Three Gorges Reservoir Area, China. J. Geogr. Sci. 2020, 30, 949–968. [Google Scholar] [CrossRef]
- Asner, G.P.; Scurlock, J.M.O.; Hicke, J.A. Global synthesis of leaf area index observations: Implications for ecological and remote sensing studies. Glob. Ecol. Biogeogr. 2003, 12, 191–205. [Google Scholar] [CrossRef]
- Padilha Leitzke, J.; Zangl, H. A review on electrical impedance tomography spectroscopy. Sensors 2020, 20, 5160. [Google Scholar] [CrossRef]
- Castagnolli, L.; Boggiani, F.S.; de Lima, J.A.; Lima, M.T.; Tonello, K.C. Hydrological properties of litter in different vegetation types: Implications for ecosystem functioning. Hydrology 2023, 10, 165. [Google Scholar] [CrossRef]
- Pereira, L.C.; Balbinot, L.; Lima, M.T.; Bramorski, J.; Tonello, K.C. Aspects of forest restoration and hydrology: The hydrological function of litter. J. For. Res. 2022, 33, 543–552. [Google Scholar] [CrossRef]
- Srinet, R.; Nandy, S.; Patel, N.R. Estimating leaf area index and light extinction coefficient using Random Forest regression algorithm in a tropical moist deciduous forest, India. Ecol. Inform. 2019, 52, 94–102. [Google Scholar] [CrossRef]
- Ibaraki, Y. Evaluation of spatial light environment and plant canopy structure. In LED Lighting for Urban Agriculture; Kozai, T., Fujiwara, K., Runkle, E., Eds.; Springer: Singapore, 2016; pp. 137–149. ISBN 978-981-10-1846-6. [Google Scholar]
- Augspurger, C.K.; Salk, C.F. Understory plants evade shading in a temperate deciduous forest amid climate variability by shifting phenology in synchrony with canopy trees. PLoS ONE 2024, 19, e0306023. [Google Scholar] [CrossRef]
- Lee, B.; Kim, E.; Lee, J.; Chung, J.-M.; Lim, J.-H. Detecting phenology using MODIS vegetation indices and forest type map in South Korea. Korean J. Remote Sens. 2018, 34, 267–282. [Google Scholar] [CrossRef]
- Lim, C.H.; Jung, S.H.; Kim, A.R.; Kim, N.S.; Lee, C.S. Monitoring for changes in spring phenology at both temporal and spatial scales based on MODIS LST data in South Korea. Remote Sens. 2020, 12, 3282. [Google Scholar] [CrossRef]
- Han, S.H.; Yun, C.W.; Lee, S. Phenophase Extraction from Repeat Digital Photography in the Northern Temperate Type Deciduous Broadleaf Forest. J. Korean Soc. For. Sci. 2020, 109, 361–370. [Google Scholar] [CrossRef]
- Lee, H.K.; Lee, S.J.; Kim, M.K.; Lee, S.D. Prediction of plant phenological shift under climate change in South Korea. Sustainability 2020, 12, 9276. [Google Scholar] [CrossRef]
- Ambadan, J.T.; Berg, A.A.; Merryfield, W.J.; Lee, W.-S. Influence of snowmelt on soil moisture and on near surface air temperature during winter–spring transition season. Clim. Dyn. 2018, 51, 1295–1309. [Google Scholar] [CrossRef]
- Jeong, S.-H.; Eom, J.-Y.; Park, J.-Y.; Chun, J.-H.; Lee, J.-S. Effect of precipitation on soil respiration in a temperate broad-leaved forest. J. Ecol. Environ. 2018, 42, 10. [Google Scholar] [CrossRef]
- Ma, C.; Luo, Y.; Shao, M.; Jia, X. Estimation and testing of linkages between forest structure and rainfall interception characteristics of a Robinia pseudoacacia plantation on China’s Loess Plateau. J. For. Res. 2022, 33, 529–542. [Google Scholar] [CrossRef]
- Yu, Y.; Zhu, J.; Gao, T.; Liu, L.; Yu, F.; Zhang, J.; Wei, X. Evaluating the influential variables on rainfall interception at different rainfall amount levels in temperate forests. J. Hydrol. 2022, 615, 128572. [Google Scholar] [CrossRef]
- de Mello, C.R.; Guo, L.; Yuan, C.; Rodrigues, A.F.; Lima, R.R.; Terra, M.C. Deciphering global patterns of forest canopy rainfall interception (FCRI): A synthesis of geographical, forest species, and methodological influences. J. Environ. Manag. 2024, 358, 120879. [Google Scholar] [CrossRef]
- Tu, A.; Zeng, J.; Liu, Z.; Zheng, H.; Xie, S. Effect of minimum inter-event time for rainfall event separation on rainfall properties and rainfall erosivity in a humid area of southern China. Geoderma 2023, 431, 116332. [Google Scholar] [CrossRef]
- Chen, R.; Dou, H.; Lin, Y.; Liu, Q.; Jian, W. In-situ infiltration-runoff characterization of slopes under the influences of different rainfall patterns and slope gradients. Catena 2024, 247, 108519. [Google Scholar] [CrossRef]
- Belayneh, M. Soil erosion responses of cropland uses in contrasting slope in the Abay basin, Ethiopia. Phys. Chem. Earth 2024, 136, 103732. [Google Scholar] [CrossRef]
- Vaezi, A.R.; Zarrinabadi, E.; Auerswald, K. Interaction of land use, slope gradient and rain sequence on runoff and soil loss from weakly aggregated semi-arid soils. Soil Tillage Res. 2017, 172, 22–31. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Rudnicki, J.W.; Rodell, M. Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas. J. Hydrol. 1998, 210, 259–281. [Google Scholar] [CrossRef]
- Kang, M.-S.; Hong, J.-W.; Bong, H.-Y.; Jang, H.-M.; Choi, M.-J.; Jang, Y.-H.; Cheon, J.-H.; Kim, J. On Estimating Interception Storage Capacity of Litter Layer at Gwangneung Deciduous Forest. Korean J. Agric. For. Meteorol. 2011, 13, 87–92. [Google Scholar] [CrossRef][Green Version]
- Li, Q.; Lee, Y.E.; Im, S. Characterizing the interception capacity of floor litter with rainfall simulation experiments. Water 2020, 12, 3145. [Google Scholar] [CrossRef]
- Sohng, J.; Han, A.R.; Jeong, M.-A.; Park, Y.; Park, B.B.; Park, P.S. Seasonal pattern of decomposition and N, P, and C dynamics in leaf litter in a Mongolian oak forest and a Korean pine plantation. Forests 2014, 5, 2561–2580. [Google Scholar] [CrossRef]
- Lee, K.E.; Cha, S.; Lee, S.H.; Shim, J.K. Decomposition of leaf litter of some evergreen broadleaf trees in Korea. J. Ecol. Environ. 2015, 38, 517–528. [Google Scholar] [CrossRef][Green Version]
- Zhang, D.; Zhou, G. Estimation of soil moisture from optical and thermal remote sensing: A review. Sensors 2016, 16, 1308. [Google Scholar] [CrossRef]
- Paasche, H.; Schröter, I. Quantification of data-related uncertainty of spatially dense soil moisture patterns on the small catchment scale estimated using unsupervised multiple regression. Vadose Zone J. 2023, 22, e20258. [Google Scholar] [CrossRef]
- Song, X.; Zhang, G.; Liu, F.; Li, D.; Zhao, Y.; Yang, J. Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model. J. Arid Land 2016, 8, 734–748. [Google Scholar] [CrossRef]
- Saboori, M.; Ghag, K.S.; Panchanathan, A.; Patro, E.R.; Haghighi, A.T. Assessing feature importance for forecasting soil moisture in subarctic regions using gridded historical and forecasted climate data. Geoderma 2025, 458, 117304. [Google Scholar] [CrossRef]
- Fu, X.; Jiang, X.; Yu, Z.; Ding, Y.; Lü, H.; Zheng, D. Understanding the key factors that influence soil moisture estimation using the unscented weighted ensemble Kalman filter. Agric. For. Meteorol. 2022, 313, 108745. [Google Scholar] [CrossRef]
- Yu, B.; Liu, G.; Liu, Q.; Wang, X.; Feng, J.; Huang, C. Soil moisture variations at different topographic domains and land use types in the semi-arid Loess Plateau, China. Catena 2018, 165, 125–132. [Google Scholar] [CrossRef]
Site | Average DBH (cm) of Q. mongolica |
---|---|
Ridge | 19.34 ± 10.27 a |
Southwestern slope | 16.32 ± 11.10 a |
Total | 17.96 ± 10.76 |
Variable | Ridge | Southwestern Slope | p-Value |
---|---|---|---|
Dried Leaf weight per one-sided leaf area (g m−2) | 96.41 ± 24.35 a | 104.93 ± 28.89 a | 0.628 |
LAI | 5.91 ± 1.27 a | 5.02 ± 1.25 a | 0.295 |
Variable | Daily Mean Value |
---|---|
Wind direction (°) | 194.39 ± 20.01 |
Wind speed (m/s) | 0.95 ± 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.; Seo, D.; Park, J.S.; Lee, J. Effect of Slope Gradient and Litter on Soil Moisture Content in Temperate Deciduous Broadleaf Forest. Forests 2025, 16, 1495. https://doi.org/10.3390/f16091495
Lee M, Seo D, Park JS, Lee J. Effect of Slope Gradient and Litter on Soil Moisture Content in Temperate Deciduous Broadleaf Forest. Forests. 2025; 16(9):1495. https://doi.org/10.3390/f16091495
Chicago/Turabian StyleLee, Minyoung, Dongmin Seo, Jeong Soo Park, and Jaeseok Lee. 2025. "Effect of Slope Gradient and Litter on Soil Moisture Content in Temperate Deciduous Broadleaf Forest" Forests 16, no. 9: 1495. https://doi.org/10.3390/f16091495
APA StyleLee, M., Seo, D., Park, J. S., & Lee, J. (2025). Effect of Slope Gradient and Litter on Soil Moisture Content in Temperate Deciduous Broadleaf Forest. Forests, 16(9), 1495. https://doi.org/10.3390/f16091495