Drought Resistance and Its Relationship with Functional Traits of Tree Species in a Tropical Urban Environment
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Species Selection
2.2. Measurement of Functional Traits of Leaves and Stems
2.3. Leaf Water Potentials
2.4. Water Potential at Turgor Loss
2.5. Leaf Safety Margin and Diurnal Change in Water Potential
2.6. Statistical Analysis
3. Results
3.1. Functional Differences Among Species
3.2. Seasonal Adjustment in Water Relations
3.3. Seasonal Variation in Drought Tolerance
3.4. Functional Trait–Drought Tolerance Relationship
4. Discussion
4.1. Seasonal Variation in πTLP and SM
4.2. Relationship Between Functional Traits and Drought Tolerance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bartlett, M.K.; Scoffoni, C.; Sack, L. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: A global meta-analysis. Ecol. Lett. 2012, 15, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Maréchaux, I.; Bartlett, M.K.; Sack, L.; Baraloto, C.; Engel, J.; Joetzjer, E.; Chave, J. Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest. Funct. Ecol. 2015, 29, 1268–1277. [Google Scholar] [CrossRef]
- Blackman, C.J. Leaf turgor loss as a predictor of plant drought response strategies. Tree Physiol. 2018, 38, 655–657. [Google Scholar] [CrossRef] [PubMed]
- Maréchaux, I.; Bartlett, M.K.; Iribar, A.; Sack, L.; Chave, J. Stronger seasonal adjustment in leaf turgor loss point in lianas than trees in an Amazonian forest. Biol. Lett. 2017, 13, 20160819. [Google Scholar] [CrossRef]
- Mitchell, P.J.; Veneklaas, E.J.; Lambers, H.; Burgess, S.S.O. Leaf water relations during summer water deficit: Differential responses in turgor maintenance and variation in leaf structure among different plant communities in south-western Australia. Plant Cell Environ. 2008, 31, 1791–1802. [Google Scholar] [CrossRef]
- Zhu, S.D.; Chen, Y.J.; Ye, Q.; He, P.C.; Liu, H.; Li, R.H.; Fu, P.L.; Jiang, G.F.; Cao, K.F. Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits. Tree Physiol. 2018, 38, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Ratzmann, G.; Meinzer, F.C.; Tietjen, B. Iso/Anisohydry: Still a Useful Concept. Trends Plant Sci. 2019, 24, 191–194. [Google Scholar] [CrossRef]
- Yan, C.L.; Ni, M.Y.; Cao, K.F.; Zhu, S.D. Leaf hydraulic safety margin and safety-efficiency trade-off across angiosperm woody species: Leaf hydraulics across global species. Biol. Lett. 2020, 16, 20200456. [Google Scholar] [CrossRef]
- Lenz, T.I.; Wright, I.J.; Westoby, M. Interrelations among pressure-volume curve traits across species and water availability gradients. Physiol. Plant. 2006, 127, 423–433. [Google Scholar] [CrossRef]
- Farrell, C.; Szota, C.; Arndt, S.K. Does the turgor loss point characterize drought response in dryland plants? Plant Cell Environ. 2017, 40, 1500–1511. [Google Scholar] [CrossRef]
- Bartlett, M.K.; Klein, T.; Jansen, S.; Choat, B.; Sack, L. The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought. Proc. Natl. Acad. Sci. USA 2016, 113, 13098–13103. [Google Scholar] [CrossRef]
- Brodribb, T.J.; Holbrook, N.M.; Edwards, E.J.; Gutiérrez, M.V. Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant Cell Environ. 2003, 26, 443–450. [Google Scholar] [CrossRef]
- Ziegler, C.; Levionnois, S.; Bonal, D.; Heuret, P.; Stahl, C.; Coste, S. Large leaf hydraulic safety margins limit the risk of drought-induced leaf hydraulic dysfunction in Neotropical rainforest canopy tree species. Funct. Ecol. 2023, 37, 1717–1731. [Google Scholar] [CrossRef]
- Meinzer, F.; Woodruff, D.; Marias, D.; McCulloh, K.A.; Sevanto, S. Dynamics of leaf water relations components in co-occurring iso- and anisohydric conifer species. Plant Cell Environ. 2014, 37, 2577–2586. [Google Scholar] [CrossRef]
- Fu, X.; Meinzer, F.C. Metrics and proxies for stringency of regulation of plant water status (iso/anisohydry): A global data set reveals coordination and trade- offs among water transport traits. Tree Physiol. 2018, 1, 122–134. [Google Scholar] [CrossRef]
- Inoue, Y.; Araki, M.G.; Kitaoka, S.; Tsurita, T.; Sakata, T.; Saito, S.; Kenzo, T. Seasonal changes in leaf water relations in regards to leaf drought tolerance in mature Cryptomeria japonica canopy trees. J. For. Res. 2023, 28, 280–288. [Google Scholar] [CrossRef]
- Martínez-Vilalta, J.; García-Forner, N. Water potential regulation, stomatal behaviour and hydraulic transport under drought: Deconstructing the iso/anisohydric concept. Plant Cell Environ. 2017, 40, 962–976. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, S.; Wan, X.; Liu, S. Strategies of tree species to adapt to drought from leaf stomatal regulation and stem embolism resistance to root properties. Front. Plant Sci. 2022, 13, 926535. [Google Scholar] [CrossRef]
- Martin-StPaul, N.; Delzon, S.; Cochard, H. Plant resistance to drought depends on timely stomatal closure. Ecol. Lett. 2017, 20, 1437–1447. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Lu, M.; Wang, Y.; Wang, Y.; Liu, Z.; Chen, S. Response mechanism of plants to drought stress. Horticulturae 2021, 7, 50. [Google Scholar] [CrossRef]
- Greenwood, S.; Ruiz-Benito, P.; Martínez-Vilalta, J.; Lloret, F.; Kitzberger, T.; Allen, C.D.; Fensham, R.; Laughlin, D.C.; Kattge, J.; Bönisch, G.; et al. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecol. Lett. 2017, 20, 539–553. [Google Scholar] [CrossRef]
- Maréchaux, I.; Saint-André, L.; Bartlett, M.K.; Sack, L.; Chave, J. Leaf drought tolerance cannot be inferred from classic leaf traits in a tropical rainforest. J. Ecol. 2020, 108, 1030–1045. [Google Scholar] [CrossRef]
- Forster, P.; Storelvmo, T.; Armour, K.; Collins, W.; Dufresne, J.-L.; Frame, D.; Lunt, D.J.; Mauritsen, T.; Watanabe, M.D.P.M.; Wild, M.; et al. The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity. In Climate Change 2021—The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2021; pp. 923–1054. ISBN 9781009157896. [Google Scholar]
- Zanne, A.; Lopez-Gonzalez, G.; Coomes, D.; Ilic, J.; Jansen, S.; Lewis, S.; Miller, R.; Swenson, N.G.; Wiemann, M.; Chave, J. Global Wood Density Database. 2009. Available online: https://www.scirp.org/reference/referencespapers?referenceid=1998611 (accessed on 2 July 2025).
- Réjou-Méchain, M.; Tanguy, A.; Piponiot, C.; Chave, J.; Hérault, B. biomass: An r package for estimating above-ground biomass and its uncertainty in tropical forests. Methods Ecol. Evol. 2017, 8, 1163–1167. [Google Scholar] [CrossRef]
- Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 2013, 61, 167–234. [Google Scholar] [CrossRef]
- Melgarejo, L.M.; Romero, M.; Hernández, S.; Barrera, J.; Solarte, M.E.; Suárez, D.; Pérez, L.V.; Rojas, A.; Cruz, M.; Moreno, L.; et al. Experimentos en Fisiología Vegetal; Universidad Nacional de Colombia: Bogotá, Colombia, 2010; Volume 34, ISBN 9789587196689. Available online: https://repositorio.unal.edu.co/handle/unal/11144 (accessed on 11 September 2025).
- Becerra, N.; Barrera, E.; Marquínez, X. Morfología y Anatomía de los Rasgos Vegetativos de las Plantas Vasculares; Facultad de Ciencias, Universidad Nacional de Colombia: Bogotá, Colombia, 2002. [Google Scholar]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Bartlett, M.K.; Scoffoni, C.; Ardy, R.; Zhang, Y.; Sun, S.; Cao, K.; Sack, L. Rapid determination of comparative drought tolerance traits: Using an osm—Ometer to predict turgor loss point. Methods Ecol. Evol. 2012, 3, 880–888. [Google Scholar] [CrossRef]
- Johnson, D.M.; Berry, Z.C.; Baker, K.V.; Smith, D.D.; McCulloh, K.A.; Domec, J.C. Leaf hydraulic parameters are more plastic in species that experience a wider range of leaf water potentials. Funct. Ecol. 2018, 32, 894–903. [Google Scholar] [CrossRef]
- González, I.; Déjean, S. Canonical Correlation Analysis, R package version 1.2.2. Available online: https://CRAN.R-project.org/package=CCA (accessed on 11 September 2025).
- Friendly, M. Candisc: Visualizing Generalized Canonical Discriminant and Canonical Correlation Analysis, R package version 0.9-0. Available online: https://github.com/friendly/candisc/ (accessed on 11 September 2025).
- Brune, M. Urban trees under climate change. Clim. Serv. Cent. Ger. 2016, 24, 123. [Google Scholar]
- Zhang, C.; Huang, N.; Zhang, F.; Wu, T.; He, X.; Wang, J.; Li, Y. Intraspecific variations of leaf hydraulic, economic, and anatomical traits in Cinnamomum camphora along an urban-rural gradient. Sci. Total Environ. 2023, 904, 166741. [Google Scholar] [CrossRef]
- Dadkhah-Aghdash, H.; Rasouli, M.; Rasouli, K.; Salimi, A. Detection of urban trees sensitivity to air pollution using physiological and biochemical leaf traits in Tehran, Iran. Sci. Rep. 2022, 12, 15398. [Google Scholar] [CrossRef]
- Lüttge, U.; Buckeridge, M. Trees: Structure and function and the challenges of urbanization. Trees–Struct. Funct. 2023, 37, 9–16. [Google Scholar] [CrossRef]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Qiu, T.; Song, C.; Zhang, Y.; Liu, H.; Vose, J.M. Urbanization and climate change jointly shift land surface phenology in the northern mid-latitude large cities. Remote Sens. Environ. 2020, 236, 111477. [Google Scholar] [CrossRef]
- Stratópoulos, L.M.F.; Zhang, C.; Häberle, K.H.; Pauleit, S.; Duthweiler, S.; Pretzsch, H.; Rötzer, T. Effects of drought on the phenology, growth, and morphological development of three urban tree species and cultivars. Sustainability 2019, 11, 5117. [Google Scholar] [CrossRef]
- Wu, Z.; Zohner, C.M.; Zhou, Y.; Crowther, T.W.; Wang, H.; Wang, Y.; Peñuelas, J.; Gong, Y.; Zhang, J.; Zou, Y.; et al. Tree species composition governs urban phenological responses to warming. Nat. Commun. 2025, 16, 3696. [Google Scholar] [CrossRef]
- Kunert, N.; Zailaa, J.; Herrmann, V.; Muller-Landau, H.C.; Wright, S.J.; Pérez, R.; McMahon, S.M.; Condit, R.C.; Hubbell, S.P.; Sack, L.; et al. Leaf turgor loss point shapes local and regional distributions of evergreen but not deciduous tropical trees. New Phytol. 2021, 230, 485–496. [Google Scholar] [CrossRef]
- Álvarez-Cansino, L.; Comita, L.S.; Jones, F.A.; Manzané-Pinzón, E.; Luke, B.; Engelbrecht, B.M. Turgor loss point predicts survival responses to experimental and natural drought in tropical tree seedlings. Ecology 2022, 103, e3700. [Google Scholar] [CrossRef]
- Díaz-Barradas, M.C.; Zunzunegui, M.; Ain-Lhout, F.; Jáuregui, J.; Boutaleb, S.; Álvarez-Cansino, L.; Esquivias, M.P. Seasonal physiological responses of Argania spinosa tree from Mediterranean to semi-arid climate. Plant Soil 2010, 337, 217–231. [Google Scholar] [CrossRef]
- Stratópoulos, L.M.F.; Zhang, C.; Duthweiler, S.; Häberle, K.H.; Rötzer, T.; Xu, C.; Pauleit, S. Tree species from two contrasting habitats for use in harsh urban environments respond differently to extreme drought. Int. J. Biometeorol. 2019, 63, 197–208. [Google Scholar] [CrossRef]
- Kuang, Y.; Xu, Y.; Zhang, L.; Hou, E.; Shen, W. Dominant trees in a subtropical forest respond to drought mainly via adjusting tissue soluble sugar and proline content. Front. Plant Sci. 2017, 8, 802. [Google Scholar] [CrossRef]
- Hartmann, H.; Link, R.M.; Schuldt, B. A whole-plant perspective of isohydry: Stem-level support for leaf-level plant water regulation. Tree Physiol. 2021, 41, 901–905. [Google Scholar] [CrossRef]
- Blackman, C.J.; Brodribb, T.J.; Jordan, G.J. Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms. New Phytol. 2010, 188, 1113–1123. [Google Scholar] [CrossRef] [PubMed]
- Mcdowell, N.G. Mechanisms Linking Drought, Hydraulics, Carbon Metabolism, and Vegetation Mortality. Plant Physiol. 2011, 155, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- Binks, O.; Meir, P.; Rowland, L.; Da Costa, L.; Vasconcelos, S.S.; De Oliveira, A.A.R.; Ferreira, L.; Christoffersen, B.; Nardini, A.; Mencuccini, M. Plasticity in leaf-level water relations of tropical rainforest trees in response to experimental drought. New Phytol. 2016, 211, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Scoffoni, C.; Sack, L. The causes and consequences of leaf hydraulic decline with dehydration. J. Exp. Bot. 2017, 68, 4479–4496. [Google Scholar] [CrossRef]
- Oliveira, R.S.; Eller, C.B.; Barros, F.d.V.; Hirota, M.; Brum, M.; Bittencourt, P. Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytol. 2021, 230, 904–923. [Google Scholar] [CrossRef]
- Reich, P.B. The world-wide “fast-slow” plant economics spectrum: A traits manifesto. J. Ecol. 2014, 102, 275–301. [Google Scholar] [CrossRef]
- Meinzer, F.C.; Woodru, D.R.; Goldstein, G.; Campanello, P.I.; Gatti, M.G.; Villalobos-Vega, R. Coordination of leaf and stem water transport properties in tropical forest trees. Oecologia 2008, 156, 31–41. [Google Scholar] [CrossRef]
- Hiromi, T.; Ichie, T.; Kenzo, T.; Ninomiya, I. Interspecific variation in leaf water use associated with drought tolerance in four emergent dipterocarp species of a tropical rain forest in Borneo. J. For. Res. 2012, 17, 369–377. [Google Scholar] [CrossRef]
- Choat, B.; Cobb, A.R.; Jansen, S. Structure and function of bordered pits new discoveries and impacts on whole-plant hydraulic function. New Phytol. 2008, 177, 608–626. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef] [PubMed]
Species | ID | Botanical Family | Leaf Phenology | Theoretical Wood Density (g/cm3) 1 |
---|---|---|---|---|
Erythrina fusca (Lour.) | Ef | Fabaceae | Evergreen | 0.29 |
Annona muricata (L.) | Am | Annonaceae | Evergreen | 0.36 |
Triplaris americana (L.) | Ta | Polygonaceae | Semideciduous | 0.49 |
Guarea guidonia (L.) Sleumer | Gg | Meliaceae | Evergreen | 0.60 |
Coccoloba acuminata (Kunth) | Cc | Polygonaceae | Evergreen | 0.58 |
Swartzia robiniifolia (Vogel) | Sr | Fabaceae | Semideciduous | 0.84 |
Pithecellobium dulce (Roxb.) Benth. | Pd | Fabaceae | Evergreen | 0.68 |
Psidium guajava (L.) | Pg | Myrtaceae | Evergreen | 0.65 |
Hymenaea courbaril (L.) | Hc | Fabaceae | Evergreen | 0.79 |
Bulnesia arborea (Jacq) Engl | Ba | Zygophyllaceae | Evergreen | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vásquez, M.I.; Moreno, F.; Orozco Suárez, N.; Saldarriaga, K.H.; Cifuentes, L. Drought Resistance and Its Relationship with Functional Traits of Tree Species in a Tropical Urban Environment. Forests 2025, 16, 1493. https://doi.org/10.3390/f16091493
Vásquez MI, Moreno F, Orozco Suárez N, Saldarriaga KH, Cifuentes L. Drought Resistance and Its Relationship with Functional Traits of Tree Species in a Tropical Urban Environment. Forests. 2025; 16(9):1493. https://doi.org/10.3390/f16091493
Chicago/Turabian StyleVásquez, María Isabel, Flavio Moreno, Néstor Orozco Suárez, Krafft H. Saldarriaga, and Lucas Cifuentes. 2025. "Drought Resistance and Its Relationship with Functional Traits of Tree Species in a Tropical Urban Environment" Forests 16, no. 9: 1493. https://doi.org/10.3390/f16091493
APA StyleVásquez, M. I., Moreno, F., Orozco Suárez, N., Saldarriaga, K. H., & Cifuentes, L. (2025). Drought Resistance and Its Relationship with Functional Traits of Tree Species in a Tropical Urban Environment. Forests, 16(9), 1493. https://doi.org/10.3390/f16091493